ENABLING USER SPACE SECURE HARDWARE
By
AIMEE COUGHLIN
B.S. Computer Science, Colorado School of Mines, 2013
B.S. Electrical Engineering, Colorado School of Mines, 2013

M.S. Electrical Engineering, University of Colorado Boulder, 2015

A dissertation submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Electrical, Computer and Energy Engineering

2018

This dissertation entitled:
Enabling User Space Secure Hardware
written by Aimee Coughlin
has been approved for the
Department of Electrical, Computer and Energy Engineering

Professor Eric Keller

Professor Eric Wustrow

Professor Sangtae Ha

Professor Fabio Somenzi

Professor Dirk Grunwald

Date

The final copy of this dissertation has been examined by the signatories, and we find that the
content and the form meet acceptable presentation standards of scholarly work in the above
mentioned discipline.

Coughlin, Aimee (Ph.D., Electrical Engineering, Department of Electrical, Computer and Energy
Engineering)
Enabling User Space Secure Hardware

Dissertation directed by Assistant Professor Eric Keller

User space software allows developers to customize applications beyond the limits of the priv-
ileged operating system. In this dissertation, we extend this concept to the hardware in the system,
providing applications with the ability to define secure hardware; effectively enabling hardware to
be treated as a user space resource. This addresses a significant challenge facing industry today,
which has an increasing need for secure hardware. With the ever increasing leaks of private data,
increasing use of a variety of computing platforms controlled by third parties, and increasing so-
phistication of attacks, secure hardware, now more than ever, is needed to provide protections we
need. However, the current ecosystem of secure hardware is fractured and limited. Developers are
left with few choices of platforms to implement their applications and oftentimes the choices dont
fully meet their needs. Instead of relying on manufacturers to make the correct design decisions
and ensuring that these platforms are implemented correctly, we enable applications to define the
exact secure hardware that it needs to protect itself and its data.

This vision leverages the emergence of programmable hardware, specifically FPGAs, to serve
as the basis of user space secure hardware. The challenges of this, however, are that (i) sharing of
FPGA resources among multiple applications is not currently practical, and (ii) the reprogramma-
bility of FPGAs compromises the security properties of secure hardware. We address these chal-
lenges by introducing two systems, Cloud RTR and Software Defined Secure Hardware, which
individually solve each challenge, and then combine these solutions together to realize the com-

plete vision. Cloud RTR solves the first challenge by leveraging cloud compilation to allow for an

1l

FPGA to be shared between applications, making hardware into a user space resource. SDSHW
solves the second challenge by introducing a self-provisioning system that allows for an FPGA
to provisioned into a secure state, allowing for secure hardware to be run in an FPGA. We then
combine these two systems to implement the user space hardware provided by Cloud RTR on the

secure platform provided by SDSHW, which provides our vision of user space secure hardware.

v

Contents

1 Introduction

2 Parties, Trust and Threats
2.1 Secure Hardware Properties
2.2 Secure Hardware Threat Model
2.3 Definitionof Roles e
2.4 Secure Hardware Trust Model

3 Cloud RTR: Enabling User Space Hardware
3.1 Introduction L e e
3.2 Motivation (Why an FPGA)
3.2.1 Architecture enhancementso
3.2.2 Software-defined Radio
3.2.3 Cryptographic and Parallel Processing
3.3 PastAttempts e
3.3.1 Why is sharing an FPGA difficult?
3.3.2 Soln. 1: runtime Placeand Route
3.3.3 Soln. 2: Slot-based Reconfiguration
3.4 Cloud RTR: A Practical Approach For Sharing the FPGA
34.1 High-level Overview
3.4.2 Static (Phone) Design Architecture
3.4.3 Reconfigurable (App) Module Architecture
3.4.4 Cloud Compiler (inthe AppStore)
3.5 Dynamic Module Loading Service
3.6 Evaluation
3.6.1 Application Performance Acceleration
3.6.2 Cloud Compilation Resources Needed
3.7 Case Study: Orbot TorClient
3.8 Related Work

4 SDSHW: Enabling (Programmable) Secure Hardware
4.1 Introduction e e e e e e e
42 Related Work
4.2.1 Software-based Solutions Lo
4.2.2 Secure COProCESSOTS v v v v v v i e et e e et e e e e

4.2.3 Trusted Execution Environments 50

4.2.4 Hardware-based Re-designs 52
4.2.5 Programmable Co-processors and FPGA Solutions 52
4.3 Architecture e 54
4.3.1 Fixed Hardware Requirements 54
432 SDSHW Platform 56
433 SDSHW Threat Model 62
4.4 SDSHW Platform Implementation 65
4.4.1 Self-Provisioning 66
442 Secure StOrage i e e e e e 68
4.43 Secure Update System 71
4.5 Secure Filesystem 73
4.6 Secure Coprocessor with Remote Attestation 74
4.6.1 Hardware Design e 75
4.6.2 SDK . . 77
4.6.3 Password Manager Application 78
477 Evaluation e 79
477.1 Secure Filesystem e 80
4.7.2 Enclave Performance Benchmarks 81
4.8 DISCUSSION e e e e 86
4.8.1 Trust Anchors. L 86
4.8.2 Ideal Hardware Support 87
User Space Secure Hardware 89
5.1 Introduction 89
5.2 Challenges. e 91
5.3 Secure Slot Architecture L 91
5.3.1 Internal Reconfiguration, . 92
5.32 SlotlIsolation 94
5.33 SlotPreemption. 97
5.3.4 Secure Storage ACCESS it e 97
5.3.5 Combining Solutions L e 100
5.4 TImplementation e e e e e e 101
541 Secure Slots L 101
5.4.2 Secure Storage Proxy L o 102
543 SecureLoading 102
5.5 BEvaluation 103
5.5.1 Contact Discovery Performance 103
552 ICAPBenchmark 106
5.6 Security Analysis L 108
5.6.1 Fixed Functionality 108
5.6.2 FixedIsolation 111

vi

6 Discussion, Future Work and Conclusion 112

6.1 DisSCuSSION e e e e 112

6.2 Future Work 114
6.2.1 CloudRTR e 114

6.2.2 SDSHW e 115

6.2.3 User Space Secure Hardware 115

6.3 Conclusion e 116
References 117

Vil

List of Figures

1.1
2.1

3.1
32
33
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8

User Space Secure Hardware Overview 4
Trust Relationships 16
Smart phone with FPGA SoC 18
Partial Reconfiguration Example o000 25
Cloud RTR Architecture e 27
FPGA StaticDesign e 29
Example App Design 31
AES Encryption Experiment L o 36
QAM Experiment e 38
Process Trust L 53
SDSHW Stack 55
Secure Storage L. Lo e 69
Secure Coprocessor and Remote Attestation Design 75
Remote Attestation Sequence 76
SDK Development Flow 78
Filesystem Performance, 80
SHAS512 Enclave Performance 81
Enclave Memory Access Performance, 82
Enclave Loading Performance 83
Password Manager Write Performance 84
Password Manager Read Performance 85
Secure Hardware Layers 86
Secure Slot Loading 93
Potential Slot Wire Snoopingo 95
Floorplanned Slot 96
Secure Storage Proxy 98
User Space Secure Hardware Overview 99
Contact Discovery Overall Performance 105
Contact Discovery Intersection Performance 106
Contact Discovery With Pre-loaded Database 107

viil

List of Tables

3.1 App Compilation Time
3.2 Cloud RTR Resource Estimation

4.1 Secure Hardware Features . . .

1X

Chapter 1

Introduction

In this dissertation, we propose the creation of a new application resource: user space secure
hardware. User space secure hardware allows software to include custom hardware modules that
are executed with the same properties as hardware implemented in silicon. We define these prop-
erties as fixed functionality and fixed isolation, meaning that any such hardware module is fixed to
provide only the functionality that it was designed to perform without interference or observation.
These properties are the fundamental motivation for implementing secure systems in hardware,
derived from the fact that hardware systems are “fixed”” when they are manufactured, meaning that
their functionality cannot be changed. By exposing these properties to user space programs, hard-
ware implementations can be provided directly by software to provide custom security features,
and these features will still have the same protections as if they were manufactured directly in

silicon.

Secure Hardware Advantages and Disadvantages

We need secure hardware because many security applications can only be implemented with
the properties provided by a silicon implementation. This is because these isolation and func-
tionality properties cannot be provided completely by software, as the functionality of software
can, by definition, be changed. Once manufactured, the functionality of silicon cannot be altered.

As such, this functionality can be implemented to provide a security primitive, such as secure

key storage or isolated computation. Because the only way to access these features is through
the API (application programming interface) that the hardware exposes, the security the hardware
provides is enforced by the immutability of the hardware; this API cannot be changed since it is
implemented as silicon. These properties have been used to implement various secure systems, in-
cluding brute-force resistant user data encryption [1], authenticated data feed systems [2], scalable
blockchain transactions [3], and have the promise to address many of the security challenges of
cloud computing [4].

Use of hardware systems does not come without problems, though. Hardware implementations
are as prone to implementation flaws as software, but due to the immutability of a hardware imple-
mentation, these flaws are much more difficult to fix. More problematic is the fact that there are
few different implementations of secure hardware systems, so the set of hardware features of one
platform is not likely to be supported by another. Therefore, it is likely that there is not a single
platform that supports all of the hardware features an application needs, and if a flaw is discovered

in an existing platform, moving to another means sacrificing functionality.

Problems Caused by Inflexible Feature Sets

This lack of feature sets is a problem for application development, because it locks developers
to both a certain silicon manufacturer and certain system implementations from that manufacturer.
There are some cases where flaws can be addressed or new features enabled in released devices,
such as by changing system firmware or CPU microcode, but developers rely on manufacturers
to make these changes. However, there remains a fundamental limit to these systems: the actual
functionality of the silicon cannot be changed. This leaves the developer the choice of either
accepting flaws until new hardware is released or looking for a different platform that may not

exist.

Our Vision of User Space Secure Hardware
For these reasons we propose user space secure hardware. We ask the question: what if ap-

plications could implement their own hardware? Having such a capability would put the design

decisions of which features to implement in hardware into the hands of developers. Our vision is
for applications to be able to include their own hardware that can be launched with the same prop-

erties as physical secure hardware, essentially making secure hardware into a user space resource.

Leverage FPGA Technologies

Our vision requires that the hardware can be reprogrammed, meaning that new hardware could
be loaded without the manufacture of new silicon. Fortunately, technology exists that provides this
capability in the form of Field Programmable Gate Arrays (FPGAs), which are systems that imple-
ment reprogrammable hardware. Importantly, FPGAs are no longer special purpose devices that
only a few can access. Reprogrammable hardware (i.e., FPGAs) is starting to become pervasive
in computing platforms. For example, Amazon AWS offers instances which allow developers to
program FPGAs [5]. FPGAs also have a promising future in Microsoft data centers [6, 7, 8, 9],
and in embedded systems such as self-driving cars [10] and mobile phones [11, 12]. In general,
using FPGAs is desirable for certain classes of applications, as FPGA implementations of these
applications can achieve near-silicon like performance and high degrees of parallelization, and are

often used for machine learning.

Challenges of using FPGAs for Arbitrary User Space Hardware

FPGAs are more difficult to integrate as a software resource however, even in these new
systems-on-chip (SoCs). The main technical challenges for using them with applications is that
the FPGA is much more constrained when compared to other resources that an application has ac-
cess to, such as computation, memory, storage, or networking. This means that sharing the limited
space in an FPGA between multiple applications is difficult. Furthermore, the reprogrammability
of FPGAs violates the properties provided by silicon, as the functionality can be changed at any
time, whereas a silicon implementation derives its security from the fact that this is not possible.
Both of these challenges make using FPGAs to provide secure hardware as a user space resource

difficult to achieve.

Cloud RTR ~ Enable Sharing =
N —~—

|
- |
I
| App1HW
cPuU ||,
|
—— = —
0S A" X 1
\)~ Fixed Functionality and Isolation
\ I Ve
SDSHW
FPGA

Figure 1.1: Overview of using Cloud RTR and SDSHW to allow software applications to include
their own hardware, thus enabling user space secure hardware.

Overcoming FPGA Challenges

In this dissertation, we overcome these challenges and enable FPGAs to be both shareable and
secure to ultimately provide our vision of user space secure hardware. We illustrate this vision
in Figure 1.1, which presents how our solutions of Cloud Runtime Reconfiguration (RTR) and
Software Defined Secure Hardware (SDSHW) interact.

Cloud RTR provides our solution of sharing the FPGA by compiling applications in the cloud.
By leveraging the centralized deployment model of mobile applications, Cloud RTR is able to
compile applications for any target platform without requiring knowledge of every applications at
design time. Cloud RTR does this using existing vendor tools so that this solution can be realized
today. We describe Cloud RTR in Chapter 3.

SDSHW makes the FPGA secure by having the FPGA self-provision its own security. With
SDSHW, we provide a platform for arbitrary secure hardware to execute with the same properties
as a silicon implementation. The self-provisioning process allows for an FPGA to have these

properties. In order to still leverage the reprogrammability of the FPGA, SDSHW also provides an

update system that breaks existing trust relationships so that applications can be updated without
compromising the properties provided by self-provisioning. We describe this system in Chapter 4.

We combine these in Chapter 5 to provide our complete vision by making Cloud RTR com-
patible with the security requirements of SDSHW. Without modification, these two systems are
incompatible with each other, as SDSHW has several security requirements that break the func-
tionality of Cloud RTR. To use them together, we move the reconfiguration system into the FPGA,

allowing for Cloud RTR to reconfigure slots without compromising the security of SDSHW.

Chapter 2

Parties, Trust and Threats

In this dissertation, we present a system that allows software to use secure hardware as if it is
any other shareable resource. Here, we define the exact properties of secure hardware that we are
trying to provide. We do this by examining the threat model of secure hardware by showing what
threats secure hardware is designed to defend against, and providing examples of applications that
are or are not sensitive to these threats. Based on these examples, we distill the exact properties that
secure hardware requires, present the threat model that results from these properties, and describe

the trust relationships needed to enable this model.

2.1 Secure Hardware Properties

Silicon hardware is defined as a physical silicon microchip manufactured in a facility that as-
sembles a circuit design into an array of transistors. Once manufactured, the operation of this chip
cannot realistically be changed as the transistors are physically embedded in the chip; it is gen-
erally accepted that once manufactured, the layout of the transistors cannot be physically moved.
This layout and interconnection of transistors forms the implementation of digital circuits that are
fundamental to computing systems. These circuits provide everything from simple controller logic
to sensors and convertors to complex systems such as CPUs and GPUs, and must be implemented

with silicon to exist. Software is designed to be programmed to these physical systems based on

6

their ABIs (application binary interfaces) (i.e., their instruction sets). Essentially, these hardware
systems provide features that software can take advantage of.

When implementing a security feature in hardware, designers are attempting to take advantage
of the promises that a silicon implementation provides, which are derived from the fact that any
digital circuit cannot be changed. Therefore, one can implement a function that will not perform
any other execution than its original design. For example, a system like a Trusted Platform Module
provides an API for secure data access and cryptographic operations using secret keys. These keys
are generated and stored inside the TPM and operations are requested through the API the TPM
provides to the rest of the system. This API cannot be changed and the secret keys cannot be
leaked out of the isolated storage maintained by the TPM because they are implemented as an
isolated hardware system (with caveats, as explained later).

Essentially, secure hardware applications like TPMs rely on properties of physical hardware
to ensure that the functionality of their application cannot be subverted. In comparison, software
systems depend inherently on the platforms they are run on top of. This includes the physical
hardware (e.g., CPU), the operating system, and the various libraries that the software interacts
with. This means that any of these interactions can be used to influence the operation of the
software, and often times requires an application to make assumptions about these systems.

For example, a web browser password manager application must make assumptions about per-
missions enforced by the browser to access its internal state. Since the purpose of the application
is to store passwords for a user, the application wants to only let the user have access to this data.
Since web browsers read data and execute arbitrary code from untrusted sources (e.g., Javascript),
they must ensure that this code is properly isolated so that a malicious script cannot read the data
from the password manager in place of the user. The password manager trusts the web browser to
implement these controls.

More examples are communication protocols like the Secure Shell protocol (SSH), which rely
on the operating system to protect import authentication data in the form of secret cryptographic

keys. These keys are used by the protocol to authenticate users of the software and the operating

system is trusted to enforce permissions such that only the user that generated the keys can access
them. If this function is not performed correctly, then any user or program on the system can gain
access to this data and impersonate the user when interacting with the protocol. Therefore, SSH
trusts the operating system to enforce file permission access control on this data, which is a feature
the operating system claims to provide.

By comparing these examples of secure hardware versus secure software, we can summarize
the properties of silicon that secure hardware attempts to leverage. From these examples, there is a
need to trust the execution platform to operate correctly and non-maliciously, as seen by software.
For secure hardware, the execution platform is the application itself. Therefore, we see that secure
hardware needs two properties. The first is fixed functionality, meaning that the functionality of
an application is difficult to modity, as a digital circuit is difficult to modify after manufacture.
The second property is fixed isolation, meaning that the execution of an application is difficult to
observe or modify, which is also provided by the difficulty of modifying a digital circuit. From the
examples we have discussed, we see that secure hardware uses these properties to provide security,
such as the fixed functionality and isolation of a TPM, whereas a software application such as SSH
requires the operating system and libraries to provide these properties.

In the next section we discuss the various threats that these properties of silicon can be used to
defend against, those that it is not useful for, and those that it is still vulnerable to. As mentioned
above, silicon provides several properties based on some assumptions, but there are some advanced

attacks that break these assumptions.

2.2 Secure Hardware Threat Model

As stated, security applications that are implemented in hardware implicitly rely on certain
properties of silicon, which we summarize as fixed functionality and fixed isolations. These prop-
erties provide protection against certain classes of adversaries that other technologies are not able

to defend against. Specifically, hardware protects against adversaries that can gain control of or

modify other parts of the system, such as the operating system or storage devices. Secure hardware
also defends against adversaries that can gain physical access to systems to make these changes,
which is a threat that is explicitly omitted from threat models of most secure systems. Essentially,
secure hardware is used to defend against other parts of a system that may be compromised by an
adversary that can physically modify the system, and can maintain this model against all but the
most sophisticated attackers.

Examples of applications that need this threat model are systems that need to protect some sort
of state from being observed and perform operations using this state. For example, disk encryption
software is designed to protect data on a computer hard drive. The encryption is performed using
a secret key that is either stored on the system itself or derived from a user’s password. As such,
the security of this data is maintained either by the strength of the user’s password or the security
of how the system stores the key. If part of the system is compromised, this secret key can be read
out of a system if it is not securely protected, and a physical adversary can also simply remove the
storage and perform a brute-force attack on the user’s password to decrypt it.

Because of these issues, such applications often use secure hardware systems, such as TPMs,
to protect this secret key. A TPM can securely store the secret key in an isolated storage system
and perform cryptographic operations using it, and allows for authorization to be required before
the key can be accessed. As such, an encryption system can store the secret key in the TPM and
require data to be decrypted using this key, which makes decrypting the data impossible outside of
the system. Furthermore, a user’s password can be used to unlock the TPM rather than deriving an
encryption key, and combined with rate-limiting enforced by the TPM, can prevent brute-forcing
of the password. In short, using a TPM makes physical attacks against a encryption software
more difficult, essentially requiring an adversary to perform an online attack that compromises the
system so as to snoop the user’s password in some way, such as by compromising the software
itself with a keylogger, rather than being able to brute-force the user’s password offline.

Other applications use secure hardware to protect other types of state. Trusted Execution Envi-

ronments (TEEs), such as ARM TrustZone and Intel’s Software Guard Extensions (SGX), isolate

the execution of software to prevent observation and interference with its execution and secret
data and are designed to prevent even the most privileged code (e.g., the operating system) from
interfering with the software’s operation. Secure and trusted boot systems prevent unauthorized
software from executing on systems, and are meant to defend against the trusted operating system
being overwritten by an adversary that has access to the physical storage of the device. Remote
attestation systems prove that software is executing in a system to an external party and is meant
to defend against an adversary that can force imposter software to be launched by either compro-
mising the operating system or physically replacing the software. All these systems rely on the
properties of hardware to ensure that these functions cannot be overridden, as they are specifically
designed to defend against the rest of the system. The properties of hardware are needed in this
case because the fundamental trust model required by software, which requires all of the parts of
the system to work together, cannot be relied on in the face of adversaries that can manipulate the
rest of the system.

Secure hardware is also vulnerable to a class of advanced physical adversaries that have the
resources to perform more invasive and expensive attacks. These attacks involve circuit reverse
engineering, chemical analysis, and chip deconstruction that requires highly sophisticated equip-
ment and facilities, and is quite destructive. These ‘decapping’ techniques, though unreliable,
theoretically allow the state of a digital circuit to be inspected post-manufacturer, which can lead
to secret data being retrieved from a protected storage system. These techniques often involve the
removal of hardware from a system and generally result in the destruction of the physical chip, and
so are one-time attempts. However, these attacks are more difficult to perform and are expensive.
Manufacturers of secure hardware can chose to invest more to prevent these attacks, but there is
a tradeoff between security and implementation cost for these solutions. Secure hardware there-
fore can be vulnerable to these threats, but it also forces adversaries to use these more expensive
techniques to attack the system.

Finally, secure hardware has several threat vectors related to the physical requirement for sili-

con to be powered. Differential power analysis (DPA) is a technique where the power consumption

10

of a system is analyzed during its execution to determine its state, which otherwise cannot be ob-
served. This type of attack is theoretically possible against all hardware systems, since they use
power, but the difficulty depends on the power consumption of the application under attack and
how much this changes during execution. It is possible to design hardware and applications to be
resistant to this attack, but comes with their own tradeoffs (e.g., higher power consumption to mask
usage changes). Additionally, hardware systems can be disabled or have their execution interrupted
if an adversary has control of the power supply to the system. The adversary can therefore perform
a denial-of-service (DoS) attack against any hardware device if they have this capability, but it is
difficult for this to be targeted to a single hardware application in a complete system. These power
vulnerabilities, however, are applicable to all systems implemented in silicon.

We note that implementation flaws of silicon secure hardware is out of scope of this threat
model. Applications are still trusted to be correct; silicon does not make an application any easier
or safer to design (in fact, the opposite is often true). Silicon manufacturers have introduced a
number of systems to mitigate the risk of an incorrect implementation, as any silicon system that
has a flaw cannot be patched due its immutability. These mitigations therefore attempt to define
as much of a system’s functionality in software, such as through CPU microcode or firmware, but
cannot completely solve the issue. The system we propose in user space hardware does allow for
a developer to easily update the functionality of the secure hardware they design by leveraging the
flexibility of an FPGA, but does not prevent an incorrect implementation from being created, just
as traditional secure hardware does not provide this protection.

In this dissertation, we present a system that makes secure hardware into a software resource,
meaning that it can be accessed and programmed from user space. We do not add any new protec-
tions or expand the threat model of secure hardware, but we do design our system so that this user
space secure hardware maintains the same threat model as existing secure hardware, with all of its
benefits and vulnerabilities. However, because we allow secure hardware to be used as a software
resource, we introduce a problem resulting from the fact that an FPGA needs to be shared between

applications. We discuss this in further detail in later chapters, but in summary, we introduce a

11

new threat vector resulting from the fact that secure hardware can be loaded and unloaded after
a device has been manufactured, meaning that the property of fixed functionality may not always
hold. In order to maintain the same threat model as secure hardware, we need to also address this
new threat vector.

In Chapter 3, we show how to enable user space hardware by sharing an FPGA, but that system
makes no claims about the security of this hardware, and in fact this new threat vector is introduced.
In Chapter 4, we show how hardware in an FPGA can be executed with the properties we have
identified by addressing this new threat vector, and in Chapter 5, we show how this threat model
can be expanded to user space hardware so that sharing of secure hardware between applications
can be enabled. In the next sections, we define the exact parties involved in creating and using
secure hardware and the resulting trust relationships that must be maintained in order for the threat

model we have presented to hold.

2.3 Definition of Roles

The threat model for secure hardware relies on a number of parties that must perform certain
actions for the threat model of secure hardware to be possible. For example, secure hardware
silicon is manufactured by one party, which must be trusted to implement features correctly and
not to introduce backdoors or vulnerabilities into the system. In this section, we identify the roles
that are required to provide and use secure hardware today. In the next section we discuss the
trust model of secure hardware, which describes the relationship between these roles and how our
system changes these relationships.

We have identified six fundamental roles that are involved in the manufacture, design, and use
of secure hardware systems, both in existing models and the systems presented in this dissertation.
These roles are intuitive, but often multiple roles can be assumed by the same party (e.g., a person
or organization) and so do not always appear to be separate in the real world. For this reason, we

define these roles here explicitly and provide examples of how they are assumed.

12

We define these roles as: the silicon manufacturer, the hardware assembler, the system pro-
visioner, the application developer, the application distributor, and the end user. Each of these
roles is assumed by some party in any device, but many are assumed by a single party, in different

combinations for different devices.

e Silicon Manufacturers manufacturer a physical chip, such as a CPU, a GPU, or other inte-
grated circuits. This party maintains its own manufacturing and design facilities and its own
supply chain, and sells the manufactured systems to hardware assemblers. Examples of this

role are chip manufacturers, such as Intel, AMD, or Qualcomm.

e Hardware Assemblers are the party that combines a number of different physical compo-
nents into a single device, such as a server, laptop or desktop computer, or a mobile device.
These systems are then provided for sale to customers. Examples of this role are system

manufacturers such as Dell, Apple, or Samsung.

e System Provisioners are the party that determines what software (and/or reprogrammable
hardware modules) run initially or can be run on a device. As such, they provision the
system with an initial configuration and determine how (or if) updates can be made to this
configuration, or if the system can be reconfigured by another system provisioner in the
future. In the case of personal computers, this can be done by the end user, but is often
done by system distributors who manufacture devices in the role of the hardware assembler.
Google is an example of a provisioner that does not assemble the system, as Google contracts

with a hardware assembler such as HTC or LG to assemble their smartphones.

e Application Developers implement the software that is run in a device, including the initial
configuration chosen by the provisioner. For example, developers such as Microsoft imple-
ment operating systems, whereas developers such as Mozilla, Dropbox, or Oracle provide

individual applications.

e Application Distributors provide applications to devices. Often, this application distribu-

tion system is integrated into the operating system (e.g., the Google Play store, Microsoft

13

Store, Linux package manager) and is the only way of providing new applications (e.g., 10S
App store, video game consoles). Most of these distributors are only applicable to a single
platform, and so are maintained by the providers of a device’s operating system, which is se-
lected by the system provisioner, but some, such as the Linux package management systems,

can be shared between different platforms.

e End Users are the individuals that use the device after it is configured, such as after a pro-
visioner has purchased and provisioned a device and offered it for sale to a consumer. En-
terprises are an example of an end user that would provision or re-provision a device, as a
company’s IT department may choose to replace or add to the software running on employ-

ees’ computers.

We will use these role definitions throughout the rest of this dissertation in order to explain
how different systems interact. In the following chapters, we will show how the responsibilities of
these roles introduce problems and how they can be changed to provide our solution. In the next
section, we show the trust relationships between these roles that are needed for the threat model of

secure hardware to be realized.

2.4 Secure Hardware Trust Model

The subject of trust is another important definition for any secure system. Any secure function
should define which entities are trusted to perform what actions, and how much that trust can
impact the system’s security if violated. We have already presented the threat model for secure
hardware. In this section, we define which parties need to perform what actions in order for this
threat model to be realized.

As the concept of trust is ambiguously defined in security research, we define trust as the
acceptance of any claim about a system made by an involved party, specifically a claim about a

security property. For example, an application developer frusts a silicon manufacturer to provide a

14

feature, who then claims that the feature is implemented correctly and that there are no backdoors
or other ways to exploit it.

For applications with no expectation of security, this trust relationship is simpler, as a user can
verify the operation of the application to prove that the system performs correctly and any other
features the manufacturer implemented are superfluous if they do not impact the execution of the
hardware. However, for secure hardware, these extra features do matter as they can potentially
compromise security, such as a backdoor to leak private data in a system designed to protect it.
If these features are undocumented, they are difficult to discover due to the inherent introspection
resistance of hardware, which results from its fixed isolation property. A user must instead accept
the promises a silicon manufacturer makes based on other criteria, such as the reputation of the
manufacturer or the risk of the actual data that would be compromised. Any such security system
that relies on such a trust model therefore is vulnerable to adversaries that can subvert it. Different
examples of trust models for secure hardware are discussed further in Chapter 4.

The six parties that we identified previously in this chapter have different impacts on the trust
of a secure hardware application. For existing hardware implementations, each of these parties
makes or must accept certain claims from others. The trust chain for existing secure hardware and
user space secure hardware is shown in Figure 2.1. This figure shows two type of trust relations:
functional trust and process trust. Functional trust is the trust of a party to design and build a
system, but is only required at design and manufacture time. Process trust is the trust of a party
to maintain a service or business process for the lifetime of a device for it to provide its function,
such as the protection of cryptographic keys. Examples of these process relationships in existing
systems can be seen in SGX and UEFI secure boot. SGX requires the use of Intel’s services in
order to create new enclaves or perform remote attestation, but this relationship can be potentially
abused maliciously or for revenue generation [13]. UEFI secure boot relies on the protection of a
set of secret signing keys, but the security of these keys was compromised by Microsoft [14, 15,
16]. In both these systems, a process trust relationship exists that can be used to compromise the

system with a flaw existing in the hardware’s actual implementation.

15

Silicon Manufacturer Silicon Manufacturer
(provides secure HW) T
¥
Hardware Assembler
Hardware Assembler T
¥
— . System Provisioner
Functi System Provisioner
unctional 3
Trust Relations ¥ | b
Application Distributor
— Application Distributor PP
Process ¥
Trust Relations Y Application Developer
Application Developer (provides secure HW)
3 v
End User End User :)

Current Secure Hardware User Space Secure Hardware

Figure 2.1: The trust relationships between existing secure hardware (left) and user space secure
hardware (right). Red arrows indicate trust for the implementation of functionality, whereas green
arrows indicate trust for a process that the party depends upon. The current model requires trust in
processes as well as implementation of functionality for secure hardware to be secure. User space
secure hardware changes this model to replace this process trust of the silicon manufacturer to a
one-time functionality trust of the system provisioner. The device and the end user are the only
ones responsible for maintaining the security of the secure hardware in this model.

These process trust relationships also exist in FPGAs, as is discussed further in Chapter 4. The
problem with an FPGA is that the functionality trust is not one-time, as it is with secure hardware.
In Chapter 4, we present systems that change this to make the functionality trust one-time, just as
in silicon secure hardware. To do this, we need to break the process trust model used by FPGAs,
which results in the second column in Figure 2.1. In this model, we require the system provisioner
to put the FPGA into a single secure state that cannot be changed, and require that only this secure
initial state can authorize future states. This removes the existing process trust models of secure
hardware, as only the secure hardware can affect its own state, but also requires an additional

functional trust relationship with the provisioner.

16

Chapter 3

Cloud RTR: Enabling User Space

Hardware

Enabling end-users to install applications of their own choice has been a cornerstone of each
wave of computing. From vertically integrated mainframes transitioning to the personal com-
puter with complete user control of software, and from early vertically integrated personal devices
(phones and PDAs) with manufacturer-packaged applications transitioning to modern devices with
app stores, this trend has been continually repeated. We propose a similar model that we call user
space hardware, which allows systems to present hardware as a software resource to applications.
This is a first step toward our vision of secure user space hardware. To provide this, we must
overcome a fundamental challenge for any system that supports multiple applications and users:
how to share limited resources? In this case, the question is how to share limited FPGA logic

amongst many applications.

3.1 Introduction

User space hardware is needed because smart phones do not always provide the hardware fea-
tures that application developers need, and in other cases provide features that are never used. This

is because silicon manufacturers and hardware assemblers designing smart phones must operate

17

App
[HW

(-

Android

@FD}

Figure 3.1: Smart phone with a processor (ARM) coupled with programmable hardware (FPGA).

under a number of constraints — form factor, functionality, cost, energy use, etc. This leads to the
assembler making a number of decisions regarding the various tradeoffs. These decisions, how-
ever, lead to the case where the device has both too little (the application developers/end users want
more) and too much (the application developers/end users don’t use what is there). What if there
was a way to put these trade-offs into the hands of end users and application developers?

In this chapter, we present our vision for ‘user space hardware’ (illustrated in Figure 3.1). This
vision incorporates programmable hardware, such as an FPGA, into a smart phone', and extends
a mobile operating system to allow for application control of the current hardware configuration
(e.g., by including the hardware configuration with their app). The high-level idea is to couple
software-like (re)programmability with hardware-like performance and immutability. In provid-
ing programmability, hardware assemblers empower application developers (and by extension end

users) with the ability to influence these design decisions. As such, we can realize part of our

'"We envision this as being commercially available smart phones, not just in prototyping devices — a vision sup-
ported by the commercial availability of system-on-chip devices which already couple an ARM processor that is widely
used in smart phones (such as the ARM Cortex A9 processor found in the iPhone 4) with reconfigurable logic [17,
11], with or more recently the ARM Cortex A53 [12], and further supported by recent advances by vendors where
hardware modules can be designed using a high-level language, such as C++ [18].

18

overall goal of user space secure hardware by first making hardware into a software resource, i.e.,
user space hardware.

Application developers, for example, would be able to introduce (and deploy) new communica-
tion technologies, such as those that work on the emerging dynamic spectrum access paradigm [19],
where they can perform ‘software’ radio at the needed hardware performance levels and gain sys-
tem wide benefits (e.g., from not needing phones to include many dedicated radio interfaces).
Developers will also be able to introduce new accelerators, such as for cryptography or other par-
allel processing that improve overall performance and efficiency. Finally, developers will be able
to introduce independent co-processors, which can, for example, provide additional security capa-
bilities [20] not possible in today’s smart phones. In general, we introduce programmability of the
smart phone hardware by creating an architecture centered on an FPGA with an embedded proces-
sor — with which, as we’ve seen with other programmable technology, such as GPUs and FPGAs
in other contexts within the network systems community, developers will find creative ways to use
the available processing power [21, 22, 23, 24].

Previous research [25, 26, 27] has proposed adding reconfigurability to mobile devices, but they
have limitations that prevent them from being used today, such as lacking a method to share FPGA
hardware, a distribution system for applications, or integration into modern operating systems or
devices. Therefore, there are a number of challenges that need to be addressed to make this vision
possible. First, we need to be able to share an FPGA between different smart phone applications —
existing FPGA hardware and software are heavily centered on running a single application and not
on an idea of temporal or spacial sharing of resources. Second, we need a way to distribute apps
and their hardware modules to the correct platforms; hardware modules are not easily relocatable
between different platforms. Finally, we need the ability to manage the FPGA so that applications
only have access to authorized resources; while processors have been adapted overtime to isolate
running tasks, FPGAs have not.

In this chapter we present our Cloud RTR system that addresses these challenges. We introduce

a system-level contribution that makes use of cloud technologies and builds on existing FPGA

19

technology that together solve a problem that has eluded researchers for years. Specifically, we

make the following contributions:

A slot-based solution that allows for practical FPGA sharing: A central need to be able to allow
apps to span software and the FPGA hardware is to enable the FPGA to be shared, as apps will be
running concurrently. This approach is based on runtime reconfiguration (RTR), or the ability to
change an FPGA’s configuration at runtime. Specifically, the Cloud RTR system builds on the idea
of “slots” [28, 29, 30], or areas of the FPGA that can be reconfigured separately and shared between
applications. To make this practical where previous systems have failed, it provides a new approach
to slot-based reconfiguration using a compilation system that abstracts away the underlying FPGA
requirements. The resulting platform supports the use of slots at runtime, whereas previous systems
only support slots at design time, and can share the FPGA between multiple parties, as we discuss
next. Further, it introduces operating system services to manage slots at runtime to allow for on-

demand access from apps.

An app store-based approach that allows for multiple parties to distribute apps: Without
operating system and binary compatibility, envisioning a system which allows for multiple parties
to create apps and have them be distributed to a wide variety of devices may seem difficult. We
introduce a new distribution system which extends existing smart phone application distributors
(i.e., app stores) to allow for both the compilation and the distribution of apps with hardware.
Developers can upload apps with hardware to an extended app store, which will interface with the
compilation system in order to generate the required slot configurations. We extend the app store
system further to ensure that these configurations are distributed to the correct devices in packaged
apps, and we provide corresponding operating system support in order to install them.

In addition to the above system-level advances which enable the apps with hardware vision,

we make the following contributions which evaluate and demonstrate their use:

Evaluation of the computational requirements of Cloud RTR: While our approach of perform-

ing some compilation in the cloud is, to a degree, simplistic, we feel that the fact that it has not

20

been done before does points to its novelty. Importantly, we go beyond simply proposing to com-
pile in the cloud and extend our work to fully evaluate the computation requirements of such an
app store to support this using data about the current app market ecosystem. We show that com-
pilation throughput per machine ranges from 51 to 121 apps per day, which translates to needing
981 servers to support an app ecosystem where 1% of all apps use the reconfigurable logic for a

case where there are 1000 phone variants.

Demonstration and evaluation of three applications: In Section 3.2, we describe three example
categories of applications that will benefit from user space hardware, independant of the overall
goal of user space secure hardware. For each, we implemented and evaluated a representative
application (Section 3.6). Our evaluation of an app which offloads to a hardware based Quadrature
Amplitude Modulation (QAM) module (a representative software-defined radio application) shows
a 40x speedup and a hardware-based AES module (a representative cryptography application)
shows a 3x speedup (including all of the interface between hardware and software). Additionally,
our evaluation of a simple memory security scanner (a representative architectural enhancement)
that is capable of searching the entire system address space only results in 3% overhead for other
software running. Finally, to understand the considerations when integrating into existing and
complex applications, we modified the open source and widely used Orbot [31] Tor [32] client for

Android to include and use a hardware cryptography module (Section 3.7).

3.2 Motivation (Why an FPGA)

The premise of incorporating an FPGA into a smart phone lies in the general benefits of an
FPGA - that it provides hardware-level programmability which will enable phone manufacturers
to defer some decisions about tradeoffs to the end user and enable developers with the ability to
innovate in the hardware space.

Here we discuss a few examples that help motivate an FPGA within a smart phone, including

a description of a demonstration application that we implemented for each of these categories.

21

3.2.1 Architecture enhancements

For the first set of motivating examples, we present several architectural enhancements that
have been proposed in the research community that each required a hardware plug-in and were

targeted at a server. With our work, similar benefits could be brought to a smart phone.

CoPilot: CoPilot [20] is a PCI card designed to detect rootkits. As rootkits execute at the highest
privilege, detection mechanisms at the same (or lower) privilege are presented with a significant
challenge. The CoPilot PCI card is independent of the processor and operating system and has
access to all memory via the PCI bus. Rootkit detection (or more generally, security applications)

have tremendous potential with the introduction of an FPGA within a smart phone.

Somniloquy: The Somniloquy [33] work observed that the energy consumption on servers was
impacted by a number of low-rate types of tasks that prevented the servers from entering the power
saving states. As such, they proposed a small, low-power processor that could perform these tasks,
and if needed, trigger the main processor to exit a low-power state. In the case of a smart phone
with an FPGA, similar types of activity have been observed in smart phones [34], so a small co-
processor in the FPGA fabric could provide a solution (while also enabling the main processor to
shut off completely). We leave full exploration of power as future work.

As a demonstration of architectural enhancements, we have implemented a memory scanner
module as a simplified proxy for a CoPilot-like function, that scans our device’s system address

space.

3.2.2 Software-defined Radio

A great deal of research has resulted in many innovations in wireless communications, which
allow wireless interfaces to have better performance or more functionality. Research papers in this
space commonly use FPGA platforms (such as the WARP Board [35, 36]), or devices to interface
to high performance desktop machines (such as the USRP [37]) in order to meet the needs of the

new innovation. While these papers provided promising research results, there is little opportunity

22

for deployment — requiring the researchers to commercialize the technology, or get adoption from
a major chip vendor.

With a smart phone that has an FPGA along with a more flexible radio front end (e.g., a tunable
antenna), developers of a new communication protocols could simply create an app, enhancing the
impact of the research. This architecture also has benefits for production systems, as existing de-
vices could be upgraded to new wireless systems without requiring replacement, such as upgrading
such a system from 3G to 4G wireless technology.

As a demonstration of an SDR application, we have included an example implementation of
a Carrier Phase Recovery Loop for a single carrier Quadrature Amplitude Modulation (QAM)
demodulator. QAM is a representative building block in signal processing applications including

many real-world modulation systems.

3.2.3 Cryptographic and Parallel Processing

FPGAs have the ability to perform large amounts of processing in parallel. This allows them
to achieve higher throughputs and lower latencies.

An exemplary application for FPGA acceleration on a smart phone is cryptographic processing,
as it both faster in an FPGA and widely used — including the encryption of internet communication
using SSL and communication protocols such as Tor [32], the accountable internet protocols [38],
and Named-data Networking [39] For example, an FPGA (Altera Stratix V) was shown to be 520
times faster than a general purpose processor (Intel Xeon E5503) for AES encryption (and 15x
speedup over an AMD Ratheon HD 7970 GPU) [40]. While the exact numbers will depend on a
number of factors, this is illustrative of the potential.

Parallel processing goes beyond cryptography. One recent example used an FPGA based server
[41] to implement common functions used in analytics (search, fuzzy search, and term frequency),
and in each case demonstrated that it would require 100-200 servers running Spark [42] to match
the performance. This example is geared towards cloud scale applications, but we believe this

would allow us to perform some analytic processing locally.

23

As an example of this type of application, we have implemented a 128-bit AES encryption
module that can encrypt an arbitrary number of 128-bit contiguous regions of memory. We also

incorporated this AES module into the Orbot Tor client (Section 3.7).

3.3 Past Attempts

A central challenge in reaching our vision relates to how to share the FPGA between applica-
tions and the system. That is, we wish for multiple apps to be able to simultaneously use some
of the FPGA’s programmable fabric, while at the same time allowing the operating system to use
some of the programmable fabric as well (e.g., to connect to some I/O devices).

The core concept required is runtime reconfiguration, or the ability to dynamically change the
FPGA'’s configuration (completely or partially) at runtime while it is still operating. Despite over a
decade of research in runtime reconfiguration [43, 44, 45, 46, 47, 48, 49, 50] there has yet to be a
practical solution which would enable hardware modules from various sources to be loaded onto a

variety of platforms.

3.3.1 Why is sharing an FPGA difficult?

The main challenge in achieving FPGA sharing is ensuring that the apps’ modules in the FPGA
do not conflict with each other, or with other logic that is present in the FPGA. FPGAs are difficult
to share because a complex mapping of resources must occur in order to generate a configuration
for an FPGA. This is because application’s logic must be mapped to physical resources in the
FPGA, and connections must be made between these locations, just as in any physical circuit.

As an example, consider Figure 3.2, which illustrates a single module to be loaded into an
FPGA at runtime. The dotted area indicates one possible location to put that module. As indicated,
however, there will be contention for resources — i.e., this module cannot co-exist with the current
FPGA configuration. Because of this, the partial reconfiguration mechanism supported by the

vendors (Altera and Xilinx) comes with great restrictions — the modules can only work with a

24

Possible
location to
ut module

Hardware module

resource
contention
(red)

FPGA

Figure 3.2: Example of partial reconfiguration in a running FPGA configuration.

single design (in our case, they wouldn’t work across phone architectures), and they can only be
loaded into a single location. These restrictions make partial reconfiguration unusable in its current
form to enable apps with hardware.

More general runtime reconfiguration approaches have been proposed in the research com-
munity that fall into one of two categories, which we describe next. In general neither of these

approaches is practical.

3.3.2 Soln. 1: runtime Place and Route

The first approach is to perform place and route at runtime [51, 52, 53] (rather than when it
is normally performed — at design time). As background, place and route is a computationally
expensive, NP-complete task of first mapping logic elements from the design (place) and then
determining a collection of wire resources to use to connect the logic elements from the design

(route).

25

This approach enables reconfigurable modules to be created entirely separately from the FPGA
configuration. They can be loaded into the FPGA by being placed around existing hardware and
connected with free wiring resources.

This is a general approach and supports our model, but there are two major problems. First,
place and route can take a long time, depending on both the size of the reconfigurable module as
well as the sparseness of the current FPGA configuration — i.e., if there are few resources available,
it will be a more difficult task to find a solution. The implication relates to the second problem —

that a solution is not always possible, which means that the app would fail to load.

3.3.3 Soln. 2: Slot-based Reconfiguration

The second method that has been proposed also seeks to support a general approach where the
static design and the reconfigurable modules can be created independently. This approach does so
by reserving empty and identical areas in the static design [28] [29] [30]. These areas, or slots,
are analogous to PCI slots on a motherboard, where any card can be plugged in independent of the
processor. In this case, the ‘cards’ are partial bitstreams (a binary file used to configure an FPGA).

Two constraints emerge:

Partial bitstreams need to be relocatable — So that a partial bitstream can be loaded into any slot,
each area needs to be identical. This is not difficult from a logic standpoint, as FPGAs are fairly
regular structures. In order for the static and reconfigurable portions to be able to communicate,
howeyver, there need to be wires that cross the boundaries, which in turn, need to be identical for
each slot. This puts incredible strain on the creation of the static design, to the point of not being
practical (because place and route becomes very constrained if certain circuit elements need to use
certain physical wires).

Partial bitstreams cannot conflict with the static design — That is, when loading a partial
bistream, it cannot, for example, use a wire that the main system design used (and vice versa).
To achieve this, the static design is highly constrained to reserve areas such that no logic is used

(generally, easy to achieve) and such that no wires are used (in Figure 3.2, this would mean that

26

Cloud RTR

phone2 — stored [l E]E
°PP |rphoner) | | stored variants
e JI[/ 3PPS

Phone
Manufacturer

Front End
(app store)

Cloud
Compiler

phone
hw design

app package
(with hw)

Netlist,
app software

User device Developer

Figure 3.3: Cloud RTR approach to the generation and deployment of apps with hardware

static portion of the design would not have been allowed the wires that are in the dotted area).
Such constraints are ultimately possible (through a painstaking process of reverse engineering and
over-constraining), but highly constrain the static portion of the design — forcing wires to be routed
around these areas, causing them to be extra long and resulting in congested areas.

In short, this is a good abstraction, but not practical.

3.4 Cloud RTR: A Practical Approach For Sharing the FPGA

In order to realize the user space hardware vision, we need two things. First, we need a mecha-
nism to be able to share the FPGA resources — i.e., a practical runtime reconfiguration mechanism
that overcomes the limitations of past solutions in terms of usability and deployability. Second,
we need a mechanism to be able to manage the apps at runtime. Here, we describe our novel so-
lution for enabling FPGA sharing, and in Section 3.5 we describe our system support for runtime

management of apps.

27

3.4.1 High-level Overview

Central to this design, we adopt the general idea of slots — that is, reserved areas within the
FPGA where modules can be loaded. As previously mentioned, we believe this is a good abstrac-
tion, but the previous realizations of it are not practical. The key difference with our approach is
that slots are less constrained — only logic resources need to be left free (which is easier), but the
wiring resources within these areas can be used by the static design logic (i.e., the portion of the
FPGA configuration that does not change and provides system functionality for different phones).
Other key differences with this approach are that the reconfigurable modules can (i) work with
multiple slot sizes, (ii) work with multiple slot signaling interfaces, and (iii) be targeted at various
end-systems.

The key idea to enable this is that by leveraging the delivery model of mobile apps (i.e., via an
app store), we can effectively merge the modules into various static designs in the cloud, before
delivery to the end user. We call this Cloud RTR (RTR for runtime reconfiguration). As illustrated
in Figure 3.3, each phone manufacturer and app developer would submit their design to the Cloud
RTR system, and the Cloud RTR system would perform a compilation step to enable a general
runtime reconfiguration mechanism.

In this section we describe the architecture of the phone in order to support this model (Sec-
tion 3.4.2), how the apps are designed to work within the framework (Section 3.4.3), and finally

discuss how Cloud RTR performs the compilation (Section 3.4.4).

3.4.2 Static (Phone) Design Architecture

The key requirement for the phone’s design lies in the ability to support interfacing the recon-
figurable modules with the rest of the system resources. Described below are the main components,

which are also illustrated in Figure 3.4.

28

processor programmable fabric
subsystem

embedded
devices access control
(e.g., UART) Device
DMA interfaces ==
—— Mem (e.g., HDMI, RF)
I Controller I
I |
Memory

Figure 3.4: Example static FPGA design.

Slots

Slots should have enough of all types of resources to be useful. Today’s FPGAs can contain (i)
configurable logic blocks (CLBs), which can implement any logic function of N inputs, (ii) block
random access memory (BRAM), which are small memory elements (e.g., 36 Kb in the FPGA
we use for implementation), and (iii) digital signal processing (DSP) blocks, which are custom
building blocks geared toward signal processing applications.

Slots will also need to be able to access various system resources and expose an interface for
communication with the processor. For this, we expect that all slots will allow access to (i) a system
bus for communication with the processor, and (ii) a direct memory access (DMA) controller for

access to system memory.

Module-to-Memory Interface

In order to provide performance benefits, the modules need to be able to directly access CPU-
accessible system memory. A DMA controller that is accessible by the hardware modules would
allow for modules to access system memory without involving the processor (providing the greatest

performance and flexibility). To achieve this, we also need a security module which performs

29

access control — that is, one which limits what memory each hardware module can access and is

configured by the operating system.

Processor-to-Module Interface
The ability to stream from memory will be important, but the processor also needs to be able
to directly interface to each module. This interfacing is achieved through the use of, for example,

a system bus (such as the ARM-based Advanced eXtensible Interface, or AXI).

Device interfacing and other misc. logic

The rest of the static design will include interfacing to the various devices that will connect to
the FPGA. Some devices, such as a UART, may have interface logic included in the processor sub-
system, but the rest, such as interfacing to a tunable antenna, may go through the programmable
fabric with custom logic to interface with it. These devices will be connected to the general inter-
face of the slots, allowing for manufacturers to include custom peripherals without requiring new

slot definitions.

3.4.3 Reconfigurable (App) Module Architecture

In the previous slot-based approaches, the reconfigurable modules are designed for a specific
slot design (device, interface, etc.). In this approach, we abstract away the ultimate target such that
app developers can develop reconfigurable modules that can be loaded onto a variety of platforms.
Of note, the reconfigurable modules in this approach can (i) work with multiple slot sizes, (ii) work
with multiple slot signaling interfaces, and (ii1) be targeted at various end-systems.

Here we describe the design of an app, with the various components illustrated in Figure 3.5.

App Hardware
The first major component is the app hardware. In order to match the skills of app developers,

we focus on the high-level synthesis (HLS) design flow [18] that has emerged in recent years which

30

Hardware code

int example(char[] varl,
hls::stream var2) {

Software code

// app code
load module

alloc shared mem
call set/get_varl

generated)
poll/interrupt

netlist

JNI
// user level driver

|
o | [regter |] setvartva

Figure 3.5: Example app design.

allows developers to use a high-level language (e.g., C) to describe hardware modules®. What this
means is that the argument that FPGAs are hard to design for, and therefore not accessible to the
software app developers, is quickly becoming invalid.

The app hardware (in this example) is written as a C++ function, example(). The parameters to
the function describe the interfaces to the rest of the system, such as char arrays (e.g., varl), which
describe memory mapped registers accessible to the processor or streaming memory interfaces
(e.g., var2, which has the type hls::stream), that allow for streaming data from memory (when
connected to DMA hardware in the static design). This description is valid C++ code that can be
compiled and tested as software, which can simplify hardware testing.

While there will need to be some consideration by developers, in general developers will not
need to be fully aware of the hardware architecture. For example, the exact bus signals for commu-

nicating with the module are not directly used, but are instead inferred based on the types on the

The developer can use a hardware description language, but will then need to manually provide the interfacing
hardware and software, which are automatically created with high-level synthesis.

31

function parameters (such as how to perform data transmission handshakes or send valid signals).
With this, the same module could actually target various hardware interfaces (e.g., if different
handshake protocols or signals are used, or if different bus widths are available). Developers do
need to consider the size (resource utilization) of their hardware modules to ensure they will fit in
a particular slot size. We envision standard slot sizes will emerge (much like screen sizes), and
in this design flow we allow for modules designed for one slot size to always be instantiated in a

bigger slot.

App Software

The app software that the developer writes will be mostly the same as current apps (e.g.,
written in Java for Android apps). The only difference is the loading of and interfacing with the
hardware module. To load, the app will submit a request to a system service to load the bitstream
(e.g., via an intent in Android).

To interface with the module, the app will use the functions in the user-level driver generated
by the FPGA vendor’s high-level synthesis tool when synthesizing the design (the process which
generates the FPGA hardware from the C++ code). This driver is low-level code that runs within
the same process as the application and provides functions that can be used to interface with the
reconfigurable module. Functionality includes mapping memory regions (e.g., via mmap()) that
both the reconfigurable module and the app will access. It also provides functions to access the

various registers (the char[] variable) through functions like set_varl().

3.4.4 Cloud Compiler (in the App Store)

The Cloud RTR compiler is responsible for ensuring that an app’s hardware module(s) can be
loaded into a variety of target devices (smart phones). Rather than working around the limitations
of the vendor tools, we work within their constraints, resulting in a practical solution. Recall that
the vendor tools have a partial reconfiguration design flow which has the constraints that a module

can only be used for a specific static design and target FPGA and for a specific location within that

32

static design. Working within that, the Cloud RTR compiler will simply use the vendor tools to
compile the module for every static design variant and for every possible slot within each variant.
The end result is a data structure stored within the app store that looks like the following (where

a.bit...e.bit are individual partial bitstreams):

[phone 1:
[slotl:a.bit, slot2:b.bit, slot3:c.bit]]
[phone 2:

[slotl:d.bit, slot2:e.bit]]

When an app is downloaded to a given device, the Cloud RTR system will repackage the
application with the set of device-specific bitstreams (possible since the app store has knowledge
of a user’s device). In Android, for example, apps are packaged in an Android Application Package
(APK), which will now include module bitstreams as extra resources for apps that use hardware.
To get a rough idea of how this impacts the size of an APK, for the case study we describe in
Section 3.7, the hardware module bitstream 1s 904KB, the Orbot APK of the version we modified
is 5.5MB (before any added hardware), and the latest Orbot release is 11 MB.

We show that this brute-force approach is quite practical in Section 4.7. As such, it provides a
general approach that is deployable and usable today. In addition, we also envision a large amount
of reuse of both static designs and hardware modules (e.g., by using precompiled libraries). Just
as SoCs are oftentimes reused between different mobile devices, there is no need to have a distinct

static design for different devices unless a particular device requires some custom technology.

33

3.5 Dynamic Module Loading Service

To support apps with hardware, there needs to be system support for loading hardware mod-
ules into the FPGA. The operating system will have access to a loading system that can take a
hardware module compiled using the Cloud RTR system and load it into the FPGA. However, user
applications will not have direct access to this system.

User applications will instead submit requests through a privileged hardware loader system
service. Upon loading and initialization of the app, the service will be provided with the location
of the app’s hardware module files. The service will then choose an empty slot, select the module
compiled for this slot, and use the secure loading module to load the module into the FPGA. In
the case where no slots are available, the operating system can create ‘virtual® slots by time-slicing
existing slots. Given the slot reconfiguration time, we do not expect to swap app hardware as
frequently as app software, but we see this is as an area for future consideration.

We can implement virtual slots by using the readback capability of FPGAs to store the run-
ning configuration of modules, and developers can provide custom unload functionality to aid the
readback system in storing difficult to access state (specifically, certain FPGA memory is more dif-
ficult to access). Applications that would be disrupted by time slicing can be specifically flagged as
unsafe to swap, but the number of these applications running simultaneously should be restricted.

The time to load a hardware module provides an estimate of the time needed to context switch
a hardware module. This time is a function of the size of the hardware being written to the FPGA,
which we measured to have an average throughput of 37 MiB/s. This leads to a latency of approx-
imately 100 ms for a 4 MB static bitstream, or 27 ms for 1 MB hardware module.

The hardware module is presented as a devfs character device in the Linux /dev directory
(when using Android). The hardware loading service will set file permissions to ensure that only

the application that requested the loading of the hardware module can access it.

34

3.6 Evaluation

There are two main questions to answer, which we discuss in this section:

Is there value in user space hardware?
It is generally accepted that hardware will be faster than software®. The question we seek to
answer here is whether the same performance benefits are retained when we consider it within a

system (e.g., does crossing the hw-sw boundary make things worse).

Is the cloud compilation of Cloud RTR practical?

As mentioned, rather than continuing the path of runtime reconfiguration research, which leads
to creative, but impractical solutions, we aimed for a solution which was highly practical and
deployable immediatly. This resulted in a brute force approach. Here, we ask whether this is itself

practical by examining the processing required to support the app market ecosystem.

3.6.1 Application Performance Acceleration

Performance acceleration is one of the benefits of using an FPGA. Of course, we also believe
that new applications are now enabled, such as this hardware-based memory scanner. We focus on
performance here as a concrete demonstration with a quantitative evaluation.

We focus on three key application domains that are enabled. Each of these applications consists
of a hardware module written in C++ using high-level synthesis and an Android application that
interfaces with the module. We run the hardware module through the Cloud RTR compilation
platform targeting the static design for this development board. The end result is an APK that can
be loaded into this demonstration board. Each application fits within these slots, which we defined
at 12% of the overall FPGA area — a number resulting from dividing the remaining area after what

is needed for the static design by six available slots.

3That’s not really the focus of this work — we take the stance that there are places where each wins (FPGA, CPU,
GPU) and that heterogeneous architectures are good, and more importantly, open programmability is what drives
innovation.

35

10°

. : +-
o +¢ﬁf’%ﬁ#%4++ﬁ4+ HHFHE

107 B o +++++ﬂﬁﬁwﬁw

Execution time (s)

AOSP Implementation Results
OpenSSL Results

FPGA Results - Java Measured
FPGA Results

< [] ®

107

0 20i00 40i00 60i00 80i00 10(i)00 12(i)00 14000
Number of 16-byte blocks

Figure 3.6: The execution time to perform an AES encryption for a range of data sizes — from 10
to 13000 contiguous 128-bit (16-byte) segments of memory.

For these experiments, we prototyped a mobile device using the Zedboard development board,
which integrates a Xilinx Zynq 7020 FPGA [11] that has an embedded dual-core ARM Cortex-A9
CPU. We based these Android services on the Android 2.3 and 5.0.2 operating systems that were

already ported to our device.

Cryptography: AES

In Figure 3.6, we compare three different AES implementations using our development board,
and running Android as the operating system on the CPU*:

This figure shows the execution times of the AES implementation (which we derived from [54],
though we also experimented with versions from Apple [55] and NIST [56], which had identical
performance) for a range of data sizes to be encrypted, varying in size from 10 to 13000 contiguous
128-bit segments of memory. It can be seen that the FPGA implementation is on average three

times faster than the OpenSSL implementation, and is approximately 12 times faster than the

4We also performed the OpenSSL benchmark in Ubuntu Linux to confirm that the Android OS does not institute a
performance penalty.

36

AOSP. However, the execution time of the FPGA module as measured by Java (marked in red stars)
and executed using the JNI is longer than the execution time of the same module when executed
directly by a C program (marked in blue diamonds). This is likely due to overhead entailed in
copying memory to the JNI function call and transferring control to the JNI. This can potentially
be alleviated using Java direct byte buffers passed directly to the JNI function, but is deferred to

future work.

Software-defined Radio: QAM

This application can process a signal stored in a contiguous memory region and produce an
output signal that is stored into another contiguous region. In a live smart phone, the static design
would place the signal off of the antenna into buffers in memory, notify the Android application
of a buffer being full, and the application would pass this data to the QAM module. The number
of samples the QAM block can process determines the sample rate of the radio application. We
implemented this module by modifying (to be compatible with our Cloud RTR system) a reference
Xilinx project [57], which comes with C++ code that can be executed in software or run through
high-level synthesis to produce hardware.

As shown by Figure 3.7, the hardware implementation is several orders of magnitude faster than
the software implementation. The hardware implementation achieves an average throughput of ap-
proximately 5 Msps (mega-samples per second), while the software implementation only achieves
and average of approximately 500 samples/s. The Xilinx application notes claim a throughput
value of 50 Msps [57], which is likely achievable due to the fact that the hardware device is in-
tended to process data received directly from an analog-to-digital converter (ADC), whereas our

implementation has been retrofitted to stream data from system memory.

Memory Scanner

Our final application is a simple implementation of a hardware memory scanner that searches

our device’s address space for occurrences of a 16 byte strings.

37

10° ! ! ! ! ! !

Execution time (s)

10 ;0:"6' - = = Software Results [
f ¢ ¢ FPGA Results
10-5]]] 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Number of Samples

Figure 3.7: The execution time to process a different number of samples with my QAM application.

Using the LMbench testbench [58], we instituted a memory benchmark that measured the
throughput of our device’s memory while under normal operation and while the hardware memory
scanner was executing (which is constantly reading from memory). Using this benchmark, we
measured a 2.7% reduction in performance for read operations and a 5.5% reduction in perfor-

mance for write operations.

3.6.2 Cloud Compilation Resources Needed

We propose performing compilation of the reconfigurable module in the cloud as part of the
process to upload to the app store. To understand the feasibility of this, here we evaluate the
amount of computing resources needed to sustain a ‘user space hardware’ ecosystem.

The metric of interest is how long it takes to compile a single reconfigurable module for a given
static design. Recall that a static design is the base design that roughly corresponds to a system
on chip used for a given smart phone. These static designs have open areas (slots) for placing
reconfigurable modules.

For all experiments, we used a server with a 6-core Intel Xenon CPU (2.1 GHz, 48 GB RAM).

38

of slots | Compilation Time (min) | Throughput (apps/day)
2 11.92 121
3 14.93 96
4 19.02 76
5 24.21 59
6 28.23 51

Table 3.1: Compilation time and number of apps a single server could service per day.

Single App for a Single Static Design

An app with hardware uploaded to the app store must have its hardware modules compiled
for each slot that it can be placed into. However, certain steps in the process do not need to be
performed for each slot — e.g., synthesis needs to be performed once for each module, then for
each slot, the synthesized module needs to be placed and routed. For this evaluation, we used
an FFT module, which is a highly regular structure and enabled us to adjust its parameters to
effectively alter its size to fill up any slot size we experimented with.

Table 3.1 shows the total time to compile a single application’s reconfigurable module for
static designs with two to six slots (each slot is defined as 12% of the overall area of the FPGA, as
previously mentioned), as well as the extrapolated throughput (the number of apps that could be
compiled per day on one server given this compilation time). We chose up to six slots (in contrast
to the 60-100 slots in [28]) as we believe each to be big enough to implement a reasonable module

within a single slot.

Compiling All Apps

Using the calculated throughput, we can now estimate the amount of computing resources
needed to service the entire app ecosystem.

First, we need to know how many apps are uploaded each month. The company AppFigures
provided us with the Google Play Store application upload figures for the entire year of 2017, with

a total of 1.5 million apps at the end of 2017. Based on this, we calculate the approximate monthly

39

6 Slots Requirement | % of Jan 2017 Apps that Use Hardware
0.1 1 10
of Apps Uploaded per Day
5| 50 500
of Static Designs | # of Machines Required to Compile RMs
1 1 1 10
10 1 10 99
100 10 | 99 981
1000 99 | 981 9804

Table 3.2: Number of servers required to support the compilation requirements of Cloud RTR,
assuming designs with six slots.

upload rate for the beginning of 2018 to be 125,000 apps per month.

Table 3.2 shows the number of machines required to service monthly demands for compiling
apps with hardware, for six slots as an example (2-5 slots would be proportionally less). Each table
varies the number of apps with hardware uploaded each day based on the percentage of applications
that require hardware (0.1%, 1%, and 10%), as well as the number of static hardware variants —
for the sake of illustration, we assume from one to 1000 variants, with each interval increased by
a factor of ten (we expect the number of variants to be on the low end, as static bitstreams can be
reused between devices, just as phones today use a small set of SoCs, and not every device will
require a new static bitstream).

The cloud provider will easily be able to support the lower end of the spectrum internally. On
the upper end, the cloud provider might look to relieve the computation burden by offloading to

the phone manufacturers to compile for their own variants.

40

3.7 Case Study: Orbot Tor Client

Developing our demonstration applications from scratch allows us to design it to use an FPGA
natively. Here we explore modifying an existing, complex application to make use of a hardware
module to understand the inefficiencies that may result.

We chose to modify the Orbot [31] Tor [32] client for Android. Tor is an anonymization
network that allows a user to access the internet without disclosing their source IP address, making
identifying and tracking their internet traffic very difficult for third parties. A Tor client creates a
circuit through this network and encrypts their traffic separately for each node along the path to
prevent eavesdropping during transmission. Because of this extensive use of encryption and based
on notes by the Orbot developers mentioning that AES is one of the areas to optimize Orbot [59],
we see this as an ideal case study.

Our AES module implements the CTR (counter) mode of operation on top of a standard AES
block cipher that is an equivalent to the OpenSSL CTR implementation used by Tor. In order to
integrate this AES accelerator with Tor, we replaced all calls to OpenSSL AES encryption with
calls to the FPGA accelerator, which proved to be a fairly minor modification. We also needed
to ensure that all data that was to be encrypted was located in a contiguous memory region with
a known physical address, which required us to replace all malloc() calls with calls to a custom
memory allocator and leverage a memory region that we reserved from the kernel.

Thus modified, the application is able to make use of the FPGA resources and operate correctly.
However, there are inefficiencies remaining due to (i) the overhead required to allocate memory
in the reserved region, (ii) the overhead in accessing this memory, as it is implemented using
memory-mapped I/O, and (iii) the fact that certain memory system calls (e.g., malloc(), memcpy(),
and memset()) are incompatible with the current memory mapped implementation — which would
require more extensive modifications to the code to resolve. Even so, this provides us with great
insight into how apps should be designed to capitalize on the FPGA resources and is an area for

future improvements.

41

3.8 Related Work

Although there are no existing systems that implement all of the functionality of our Cloud
RTR system in mobile devices, work has been done in reconfigurable computing in other contexts,
including several different attempts with Android.

Of note from previous reconfigurable computing research is the BORPH system [49], which
attempts to create operating system extensions in Linux for FPGA operations, and uses Berke-
ley’s BEE2 system [60], and the more recent Connectal framework [61], which can automatically
generate hw-sw interfaces during hardware development. These systems do not, however, address
application distribution or FPGA resource sharing.

In terms of mobile systems research, some proposals have been made, such as the rSmart
system [62] and the work from Smit et. al. [26]. Smit et. al. proposes a similar hardware
architecture to the Zyng-7000 architecture, but does not present an operating system integration or
a deployment system. The rSmart system only presents a high-level sketch of a system similar to
ours, but no details on implementation or integration are provided. Our system builds upon this
research to create a general system that is deployable using existing technology.

There has also been recent advances in reconfigurable cloud platforms. For example, Mi-
crosoft’s Project Catapult makes use of FPGA peripherals in data centers to accelerate web searches
[63] and neural networks [64], and Intel’s acquisition of Altera [65] is leading to x86 CPU archi-
tectures coupled with FPGAs [66]. Microsoft’s solutions, however, are only single-application
hardware accelerators, whereas our system allows for usage in general applications. Intel’s system
is more general, but has not been released publicly, although it does claim to use OpenCL [67] as
the software interface.

Our work is complementary. For example, OpenCL can be used on mobile devices with support
from major hardware manufacturers, such as ARM, Intel and Qualcomm, [68, 69, 70, 71, 72], and
can even be used with our system by using a compatible hardware module. OpenCL’s main limi-
tation is its focus on parallel acceleration, which does not enable new architectural enhancements,

such as our SDR or security applications.

42

Reconfigurable Android devices and systems have also been proposed, such as Google’s Project
Ara [25], among others, including various other modular phones [73, 74, 75]. These modular phone
systems allow for reconfiguration and upgrading of smart phone physical components, similar to
how personal computer components can be upgraded. However, these modular architectures can
only be reconfigured manually by the user replacing the physical modules, whereas our system
allows for dynamic and custom reconfiguration by software.

Finally, the Android OS has been ported to the Zyng-7000 in several projects, such as the work
of Barbareschi, et. al., among others [27, 76, 77, 78]. However, with the exception of the work of
Barbareschi, et. al., these projects only port the OS to a new device. The work of Barbareschi, et.
al. only extends this work to create an Android-compatible custom accelerator to address a single
problem, whereas our system allows for any general software developer to create their own custom

hardware modules.

43

Chapter 4

SDSHW: Enabling (Programmable) Secure

Hardware

In Chapter 3 we described how we overcome the challenges in sharing an FPGA to enable user
space hardware. In this chapter we describe how we overcome the challenge of programmability
to enable secure hardware on an FPGA. It is silicon’s property of immutability that is traditionally
relied upon by secure hardware, but the programmability of FPGAs seems to negate this property.
Just as Cloud RTR provides a means for application developers to provide their own implemen-
tations of hardware for their applications, here we enable developers to provide their own imple-
mentations of secure hardware. We overcome the problems presented by the fact that FPGAs can
be reprogrammed to allow for this hardware to be used in an FPGA while maintaining the same

security as if they were implemented in traditional silicon.

4.1 Introduction

Secure hardware provides many benefits for securing systems due to the immutable nature of
silicon circuitry, whose functionality cannot be altered after it is manufactured. As previously high-
lighted, secure hardware systems can implement various applications, e.g., brute-force resistant

user data encryption [1], authenticated data feed systems [2], scalable blockchain transactions [3],

44

Feature TPM TZ SGX

Cache Side Channel Defense
TLB Side Channel Defense

Flexible Root of Trust) o O
Trusted Execution Environment O ([] ()
Remote Attestation o O o
Peripheral Access O [) O
Trusted Input O O @)
Hardware RNG o O ()
Hardware Crypto ® [D) [D)
Secure Storage ® O o
Shared Architecture L)) ® o
Oblivious Memory O O [

(O O

O o O

Table 4.1: Secure Hardware Features — We compare the features supported by Trusted Platform
Modules (TPMs), ARM TrustZone (TZ), and Intel SGX. @ represents support, © represents partial
support or support that depends on how the design is instantiated, and O represents no support.

and protected cloud computing [4], that derive their security from the properties of silicon hard-
ware.

Despite the benefits that these types of applications can provide, we are currently stuck with
a constrained ecosystem of secure hardware providers. Due to the constraints that silicon man-
ufacturers and hardware assemblers must operate under (which are essentially the same as the
constraints described in the previous chapter) — cost, time, and complexity of hardware design and
manufacture [79, 80] — the design choices and trade-offs are decided unilaterally by a small num-
ber of these manufacturers and assemblers. This results in scattered support of a wide range of
features, and ultimately limited selection for users of secure hardware. Table 4.1 presents a sum-
mary of several secure hardware systems and the features they support. Even in this modest list of
features, there is no existing system that offers every feature, despite each system implementing
features the other does not.

For example, while Intel Software Guard Extensions (SGX) and ARM TrustZone both provide
Trusted Execution Environments (TEEs) that allow applications to execute trusted code in an iso-
lated component, only Intel supports Remote Attestation of software running in the TEE. However,

Intel made the decision that they must be the trusted party to provide proof and verification of the

45

remote system’s state. Furthermore, updates to secure hardware systems in response to discovered
vulnerabilities [81, 82, 83, 84, 85, 14, 15, 16] or demand for new features are at worst impossible,
and at best gated by the chip manufacturers, leaving system designers that use secure hardware at
the mercy of a few companies.

These design trade-offs and features may make sense for some applications, but the ultimate
problem is that these decisions are made by the silicon manufacturers, and not by the individual
developers that ultimately use secure hardware in their design. In order to realize our ultimate
vision of user space secure hardware, we need to change this design flow so that developers have
control of the secure hardware features that are available. This enables secure hardware to be

customized to different applications.

In this chapter, we propose empowering the individuals that ultimately use secure hardware to
make the decisions that are right for their needs. We introduce an architecture we call Software
Defined Secure Hardware (SDSHW), that enables system provisioners and application develop-
ers that wish to use secure hardware functionality to develop custom logic, deciding for themselves
what sets of features they ultimately need in their design without sacrificing the security properties
of fixed hardware. This provides us an essential building block for our user space secure hardware
vision, namely a secure platform for custom, application-specific hardware. In the previous chapter
we provided a solution for making hardware into a user space resource for applications. Here we
provide a similar capability that lets application developers implement secure hardware for their
applications.

As we have shown in the previous chapter, FPGAs can be used as a resource for software
applications, which enables developers, rather than requiring manufacturers and assemblers, to
decide what hardware features their applications need. Here, we want to enable a similar model
for secure hardware developers by leveraging the reprogrammability of FPGAs.

While prior researchers have proposed building open source secure hardware features such
as remote attestation and trusted execution environments [86], and others have leveraged FPGAs

for cryptographic primitives [87], they only demonstrated that it is possible to implement security

46

functionality on FPGAs. Others have implemented more extensive security functions in FPGAs
and have even addressed some of the threat posed by advanced physical adversaries (e.g., DPA
resistance) [88]. However, none of these solutions provide a means to allow for arbitrary secure
hardware; even the solutions using an FPGA cannot provide all the properties of a secure hardware
system while still allowing reprogrammability of this hardware. SDSHW enables the ability to
design arbitrary secure hardware with a flexible root of trust on top of the flexible platform by
breaking the traditional trust relationships that were described in Chapter 2.

With all this previous work, however, we ask the question: Why hasn’t this been solved be-
fore? Previous research has implemented various different secure hardware systems and has used
FPGAs to provide security functionality, so extending them to provide the complete security prop-
erties would appear to be trivial. However, we identify that prior research leverages processes
we remove, as our system breaks these process trust relationships that exist in traditional secure
hardware. These processes enable prior work with FPGAs to achieve the needed security to pro-
vide their applications, but their presence violates the properties of secure hardware when run on a
reconfigurable platform.

To summarize this process trust: prior work in use of FPGAs for secure hardware requires trust
in a provisioner or developer whose hardware design is executing in the FPGA, and this party can
change the configuration at will. The hardware in the FPGA therefore has to trust the processes
that the provisioner maintains for both the hardware to be secure and for it to even provide its
function. This differs from traditional secure hardware process trust, as the functionality of the
hardware still cannot be changed, even if the process trust is violated. With an FPGA, the process
trust and the functionality trust are linked, as the functionality of the FPGA can be changed after it
has been programmed at any time.

We remove this process trust in SDSHW by putting the device, rather than an external party,
in control of its own reconfiguration. This prevents hardware from being overwritten or modified
without detection, meaning that it can maintain the properties of functionality and isolation, since

updates will always be detected and will require approval from the device to be applied. We

47

provide this with SDSHW’s novel self-provisioning system, which leverages a minimal amount
of fixed silicon hardware commonly found in FPGAs to ensure that only authorized hardware can
exist in the FPGA. On top of that, we provide an update protocol that requires authorization from
the FPGA before new hardware can be authorized based on security policies established during
provisioning, allowing for the reprogrammability of the FPGA to still be used.

The removal of process trust enables SDSHW, as we can now use the reprogrammability of
FPGAs s to provide secure hardware applications with the same properties as hardware. This enables
system provisioners and application developers to take control over the design decisions of secure
hardware implementations by giving them the freedom to chose the features required to support
their applications, as any device can be used to support any feature. As we can implement SDSHW
on commercial-off-the-shelf (COTS) hardware, developers are further empowered to design their
own devices if existing system provisioners refuse to provide a feature in an existing device.

In the rest of this chapter, we will describe the design of the SDSHW platform and the im-
plementation of our proof-of-concept applications, along with an evaluation of their performance.

Specifically, we make these contributions:

Provide secure hardware self provisioning: In order to provide the security properties of hard-
ware in an FPGA, the designed functionality of a secure hardware application must be fixed to only
provide this application without any vectors for observation or interference. To provide this, we
have implemented a method for FPGAs to provision themselves so that only authorized hardware
can exist in the FPGA and that the FPGA is isolated from the rest of this system, thus providing

these properties.

Identify Minimal Fixed Hardware: In order for the self-provisioning system to be able to
configure the FPGA to provide the needed properties, the actions of the self-provisioning system
need to be permanent and unable to be circumvented. To do this, we have identified a minimal
amount of fixed secure hardware that enforces the configuration of the self-provisioning process.

This effectively allows the self-provisioner to extend the properties of this fixed secure hardware

48

to the reprogrammable hardware; if this fixed hardware remains secure, so will the FPGA.

Create the SHSHW platform: We have designed a platform that allows secure hardware to
be implemented in an FPGA. The Software Defined Secure Hardware platform leaves the choice
of features to implement up to the system provisioner and application developers, allowing for

flexible roots of trust, easy extension, and security updates.

Implement SDSHW on COTS hardware: To demonstrate the practicality of SDSHW, we have
developed a prototype implementation on a COTS SoC. We then prove the flexibility our frame-
work by implementing several secure hardware modules and applications and evaluate these ap-
plications to determine the necessary performance trade-offs that must be considered when imple-

menting secure hardware on our platform.

4.2 Related Work

SDSHW allows application developers and system provisioners to have control over the secure
hardware features that are available in a device. As mentioned previously, there has been significant
prior research on secure hardware in various forms, from different secure hardware features to
improvements on existing models, and even work that has leveraged FPGAs to varying degrees.
Here, we differentiate ourselves from this prior research and explain how none of this technology

can provide the same capabilities as SDSHW.

4.2.1 Software-based Solutions

Due to the difficulty of designing and implementing secure hardware in silicon, many systems
rely on software to define much of the functionality of a system, such as firmware and CPU mi-
crocode [89, 90]. However, other systems go further by designing special isolated environments

and even exposing these systems to run arbitrary software. However, these systems are essentially

49

software built on top of a secure hardware foundation. Though the software can be updated to

modify the system’s security, the underlying platform cannot.

4.2.2 Secure Coprocessors

A secure coprocessor is a separate execution environment for software that is isolated from the
rest of the system by the physical design of its interconnects. These systems execute some soft-
ware that can securely generate and execute upon secret state, as the hardware prevents this state
from being observed. The most common example of these systems is the Trusted Platform Mod-
ule, which is a secure coprocessor that executes a software application that presents an industry-
standardized API [91, 92]. These APIs allow systems to request cryptographic operations to be
performed using keys stored securely in the TPM, allowing tasks such as encryption to be per-
formed without risk of exposing these keys. Such capabilities are essential to data protection as
is used by disk encryption in Chrome OS [93], Microsoft Bitlocker [94], and Nokia mobile plat-
forms [95].

Although few problems have been found in the specification of TPMs, the rigor in designing
the specification has caused problems for its usefulness, and has even caused applications to seek
alternatives [96]. The time required to implement new TPM hardware meant that an implementa-
tion was not available when needed by an application, which forced Microsoft to re-implement the
TPM spec in a trusted execution environment. This shows that secure coprocessors can provide
the needed security with a software-based approach, but that the inflexibility of the system’s fea-
ture sets is still a problem. SDSHW would have solved this problem by allowing for an existing
hardware device to be updated to support a new standard, rather than requiring new hardware to be

manufactured.

4.2.3 Trusted Execution Environments

A more flexible approach than existing secure coprocessors is to isolate arbitrary code from

the rest of the system. The two most prominent implementations of TEEs are ARM TrustZone and

50

Intel SGX, both of which implement an isolated execution environment on an otherwise standard
CPU [97, 80]. Though the method for loading code into these systems differs, each allows the
isolated code to be interacted with using special CPU instructions, allowing the code to implement
its own API and present it as a service to other software in the system. For example, Microsoft has
used TrustZone to implement a firmware-based TPM when updated implementations of the TPM
specification were unavailable [96].

These systems are not without problems, however. ARM TrustZone lacks both a method to
store secrets and a means to ensure that the correct code is loaded into the secure environment.
These features must be provided by separate secure hardware systems, such as secure boot (to au-
thorize correct code) and replay-resistant storage (to securely protect persistent state) [96]. How-
ever, neither of these features is provided directly by TrustZone and they are not commonly found
together at the same time in ARM systems that are TrustZone enabled. Microsoft was able to solve
this by designing their own hardware and partnering with manufacturers, but other application
developers do not have this option.

SGX has been well studied to reveal potential attacks on its implementation due to its more
complete feature set and its availability on traditional desktop and server CPUs, which makes
it both more interesting and easier to study. Research has found many vulnerabilities in SGX’s
implementation and have proposed software patches on SGX programs to work around them, such
as to address problems from cache side channels, I/O side channels, and control channel attacks that
use page faults to affect execution [98, 99, 100, 101, 102, 103, 104, 105, 106]. Work has also been
done to allow for new features to be added to SGX or to overcome hardware limitations: Komodo
decouples hardware mechanisms from management using a privileged software monitor [107] and
SGXIO attempts to bring trusted I/O to SGX [108].

All these systems build on top of a complex hardware system (the TEE hardware) to provide
their security functions, but inherit the vulnerabilities of these platforms when they are discovered,
or have difficulty with implementation due to missing features. Developers are in general powerless

to change any functionality of the platforms beyond redesigning their application software, which

51

can only go so far and cannot provide a missing hardware feature. SDSHW can be used to allow
developers to make these needed changes rather than being reliant upon silicon manufacturers to

fix vulnerabilities and provide new features.

4.2.4 Hardware-based Re-designs

Another research direction simply proposes new processor designs. Sanctum, a RISC ISA ex-
tension, mitigates software side-channels and protects DRAM access [86]. Aegis provides secure
DRAM usage to the TEE using encryption and integrity verification [109]. XOM maintains sensi-
tive code and data in isolated containers, however, it fails to protect from memory access pattern
attacks [110]. Bastion provides a hardware supported secure hypervisor environment, protecting
hypervisors from guest VMs using virtual memory compartmentalization and secure storage [111].
Hyperwall extended this idea to provide full protection for guest VMs from potentially malicious
hypervisors by preventing direct memory access once a VM is provisioned and providing signed
evidence of memory confidentiality [112]. Iso-X offers the same properties as SGX, and protects
DRAM access using a section provisioned at boot, however, the proposed ISA changes add to the
core’s cycle time and do not protect against cache timing attacks [113].

These solutions are only addressing point problems with secure hardware, adding missing fea-
tures for specific applications without addressing the overall problem of features sets (just adding
another column to Table 4.1 with a different set of filled in and empty circles). SDSHW tackles
this problem directly by allowing application developers to select the needed features, meaning
that any combination of these solutions could be put together in a system, rather than requiring

new silicon to be manufactured for each application.

4.2.5 Programmable Co-processors and FPGA Solutions

The avenues of prior research most closely related to SDSHW are the work on programmable
co-processors. For example, the SAFES architecture demonstrates the use of FPGA components to

provide security primitives and guarantee invariants in program execution [87]. These works break

52

Traditional FPGAs with
FPGASs IP Protection

/Y

FPGA

/]

SDSHW

FPGA FPGA

—) Functional Trust
—— Process Trust

Figure 4.1: Process Trust Process trust and functionality trust are the two different trust rela-
tionships we identify. Functional trust is a one-time promise to implement the functionality of a
system, whereas process trust is the continued trust of an entity for the system to operate correctly.
Traditional FPGAs can be reprogrammed from any source, and so functional and process trust are
not differentiated. When used with IP protection and anti-tamper technology, FPGAs lock their
process and functionality trust to a single source. In SDSHW, self-provisioning allows for a single
source of the initial functionality, and the update system allows for the device itself to mediate
process trust.

down into primitives implemented in FPGAs [114, 115, 116], or programmable designs [117,
118, 87]. These systems make use of an FPGA to allow for hardware solutions to be developed
more quickly without the need to manufacture new hardware, and even take steps to isolate this
hardware. However, they do not actually provide the same properties of physical hardware, which
SDSHW does by preventing arbitrary reprogramming of the FPGA.

More advanced uses of FPGAs, such as products offered by Microsemi, offer a more secure
platform for running secure functions by using advanced fixed hardware blocks to implement so-
phisticated intellectual property (IP) protection [88]. Their products are also resistant to DPA

attacks, and are locked to allow only a trusted developer’s applications to execute in the FPGA.

53

However, these systems do not go far enough to provide the same security properties as hardware,
as a hardware application cannot have any expectation of fixed functionality or isolation due to
the inherent process trust relationship with the trusted developer. SDSHW removes these process
relationship so that FPGA hardware can provide these properties.

The differences between these uses of FPGAs that provide secure hardware are shown in Fig-
ure 4.1. Security primitives implemented in FPGAs have many process trust relationships, as they
can be updated at any time (the leftmost example). The use of IP protection technology (e.g., the
Microsemi approach, in the center) reduces these process trust down to a single relationship with
the developer. SDSHW uses both IP protection and self-provisioning to allow the device itself to
mediate the process trust (the rightmost example); the application may choose to still export this
to an external entity, but it is not inherently required. It is this change of process trust that allows

for SDSHW to provide the same security benefits as hardware, where prior solutions cannot.

4.3 Architecture

As illustrated in Figure 4.2, our SDSHW platform only requires a small amount of fixed hard-
ware, which we leverage to provide a platform that allows for custom secure hardware to be built
in programmable logic, with the same properties as secure hardware. In this section, we describe

the hardware requirements and components of our architecture.

4.3.1 Fixed Hardware Requirements

We have already identified fixed functionality and isolation as the two properties of hardware
that we are trying to provide with SDSHW. As was described in Chapter 2, one of the overall goals
of user space secure hardware is to maintain the same threat model of secure hardware while still
providing these properties.

SDSHW provides these properties while still using the reprogrammability of an FPGA, but

these same properties are seemingly incompatible with reprogrammable logic: FPGAs do not

54

- N

SW L Custom
Applications Secure HW Application Hardware
Secure Update
Storage | Mechanism SDSHW
Platform
Fixed
Hardware

Figure 4.2: SDSHW Stack. The SDSHW platform is built on top of the CPU/FPGA SoC, where
the trusted (blue) secure boot is responsible for loading the SDSHW logic into the FPGA at boot,
and protecting it from the untrusted (grey) CPU and software stack. The SDSHW platform pro-
vides several secure hardware components useful for modules such as trusted execution environ-
ments, and remote attestation, that are built as applications on top of the platform.

provide fixed functionality, as they are designed to be reprogrammed, and their isolation depends
on the interface with the rest of the system. We show how to provide these properties in an FPGA
by leveraging a minimal amount of fixed secure hardware present in existing SoCs to ensure only
the trusted secure hardware is present in the FPGA, and that it is configured to be isolated from the
rest of the SoC.

Our platform achieves security by bootstrapping the FPGA into a secure state and authoriz-
ing an initial hardware design to execute in the FPGA. A self-provisioning process configures
the secure hardware to isolate the FPGA from the rest of the system and prevent unauthorized
hardware from being loaded into the FPGA. The initial configuration that is authorized by the self-
provisioning system may include an update subsystem that can authorize future updates based on a
security policy established at provision time, which is also encoded in the application’s logic. Fu-
ture updates are therefore possible, but only if they conform to this security policy that is enforced

by the hardware in the FPGA. The fixed secure hardware prevents any other hardware from ex-

55

isting in the FPGA and prevents all external interference with this hardware, thus providing fixed
functionality and isolation, and also ensures that the security policy implemented by the update
system cannot be circumvented.

Essential to the operation of SDSHW are specific requirements of this fixed secure hardware
in any device, as these systems are used by the self-provisioning system to protect the FPGA.

Specifically, we require the following fixed hardware capabilities:

1. Anti-tamper logic that can isolate the FPGA from external access and reprogramming that

can be disabled after the FPGA is configured at system startup.

2. A secure boot technology that is capable of configuring the FPGA with an authorized hard-
ware configuration, based on verifying a signature over potential configuration bitstreams at

boot.

3. A secure storage system accessible only to the FPGA that can be used to store the authoriza-
tion keys that are generated during self-provisioning and programmed into the secure boot

system. The keys are needed in future for an update subsystem to authorize updates.

These requirements can be found in most COTS FPGA systems, as SDSHW reuses the secure
hardware systems used for IP protection. SDSHW uses them in a different manner, however, as

we break the process trust that these hardware systems are designed to enforce.

4.3.2 SDSHW Platform

In the previous section, we described the minimal fixed hardware needed to enable our archi-
tecture and how it is used to provide the security requirements of our platform. In this section,
we describe the three main features that allow for SDSHW to operate and how they interact to
provide the complete platform. These features are the self-provisioning system, the update sys-
tem, and the secure storage system, that when combined, comprise our platform. We describe
an implementation of applications built on this platform using a commercially available device in

Section 4.4.

56

Self Provisioning

The self-provisioning system is essential to providing the security properties of secure hard-
ware, as the FPGA needs to be configured into a secure state to prevent running applications from
being compromised. Once this state has been established, any hardware configuration running in
the FPGA will have these properties: that of fixed functionality and isolation.

The secure boot system is used to provide and enforce these properties. We note that traditional
secure boot systems can be circumvented if the private key used to authorize the booted software is
leaked [14, 15, 16]. This results from the inherent process trust that is used with most secure boot
systems: the keys used to authorize new booted data are held by a party external to the system.
The secure boot system is therefore dependent on this party for its security to be maintained; even
though there are no implementation flaws in the system, this trust can be abused, as has been
shown. However, we have stated that one of the contributions of SDSHW is that we break these
process trust relationships.

The self-provisioning system does this by generating all secure boot keys inside of the de-
vice, rather than leaving them in the hands of an external party. This breaks the process trust
relationships of secure hardware that rely on the silicon manufacturer to maintain state as these
relationships are defined as the external party having control of this key, which is shown in Fig-
ure 2.1. As prior incidents have shown, these relationships can cause the security of secure boot
to be removed without any flaws existing in the hardware itself. If this were to occur in SDSHW,
then an unauthorized FPGA configuration could be loaded by compromising secure boot using
these relations, thus also negating the property of fixed functionality that we provide. Therefore,
SDSHW has to break these relationships to meet our stated goals, which is achieved by generating
the keys internally.

Secure boot systems typically operate by verifying a signature over code at boot. The device
maintains the public keys, while an external party keeps the private keys to allow them (and only
them) to sign updates. In SDSHW, the self-provisioning system generates these keys on the device

and programs the public key to the secure boot system and signs an initial hardware configuration.

57

The system provisioner is responsible for providing this self-provisioning system and selecting this
initial hardware configuration, which is illustrated as the additional functional trust in Figure 2.1.

It is assumed that the secure boot system will only load a correctly signed hardware configu-
ration into the FPGA, meaning that only a configuration signed by this key can ever exist in the
FPGA. Therefore, to support the update system of SDSHW, the generated key must be retained,
and so is stored in the secure storage system. Assuming that the secure boot system cannot be cir-
cumvented or disabled, as we require, the only way to load an unauthorized configuration directly
into the FPGA would be to break the cryptography used by secure boot, such as by generating an
RSA signature without the correct private key.

The self-provisioning system must also ensure that the FPGA is isolated from the rest of the
system to provide the fixed isolation property. This is simpler to achieve in theory, as most FPGAs
contain anti-tamper logic to protect running bitstreams. The self-provisioning system must either
set system configurations that prevent reconfiguration and readback access to the FPGA after boot,
or ensure that these settings are set each time the system boots. This can be done by configuring
global system registers or by signing a trusted bootloader (or other boot-time code) that will always
perform these actions. Unfortunately, configuring these systems is very device-specific compared
to secure boot systems, and so a specific sequence of actions cannot be prescribed for all situations.
The system provisioner is responsible for selecting or customizing the self-provisioning system so
that it is targeted to a particular device, and is therefore designed to set up the system’s anti-tamper

logic correctly for how it is implemented in that system.

Secure Update System

The self-provisioning system essentially ‘locks’ the FPGA to a single hardware configuration at
provisioning, meaning that no other secure hardware implementations can exist in the FPGA after
is has been provisioned. However, one of the stated goals of SDSHW is to allow for updates to
be provided if they conform to the application’s security policy. This security policy is determined

by the application designer and encoded as a subsystem in their application logic that is locked

58

to the FPGA during provisioning. As no other logic can exist in the FPGA after this point, this
effectively means that this security policy is established at provisioning and is enforced by the
secure boot system, which prevents any other policy from existing.

The mechanics of performing an updates are simple. An update is authorized by reading the
secure boot key from the secure storage system and signing the update, which is simply a different
FPGA bitstream from the one currently executing. This signed bitstream then replaces the current
one in the persistent storage media that the secure boot reads the boot data from. After the signature
has been generated and written, this new hardware can be booted on the next device power cycle.

The application developer must therefore implement this functionality in their update subsys-
tem. However, they must also select the conditions for when an update will be accepted, in the

form of a security policy. Examples of these policies are:

1. Signed by the developer’s key.

2. Authorized by the end user.

3. Signed by the developer and authorized by the user.

4. No updates ever allowed.

For example, if the third option is chosen, the developer must implement the update subsystem
to verify a signature based on a key encoded into the application logic and receive some sort of
input from the user. This can be as simple as the pressing of a physical button to more complex
authentication, such as the input of a PIN or password that is compared to a value stored in secure
storage.

The application developer must make the choice about which security policy to encode into the
logic, however, if updates are to be allowed. SDSHW does not provide an implementation of this
system, as no one security policy will meet the needs of all applications. As the secure boot key is
stored in the secure storage accessible only to the FPGA, if no update mechanism is implemented

to perform these checks and then read the key, no updates can be performed.

59

This update system effectively puts the FPGA in control of updates and introduces a new
process trust model, where the security of the FPGA depends on this security policy that the FPGA
itself enforces, meaning that the FPGA must trust itself to maintain its own security. This security
policy can outsource this trust to a third party by requiring an external signature, but the device
still mediates this trust. This allows updates to occur without compromising the property of fixed
functionality; no update can be made to the device without its involvement, meaning that any
application in the FPGA will be notified if its functionality is changed. Therefore, any application
in the FPGA can always be assured of its own functionality when it is running, as no update can
occur without its knowledge. When updated, this property still exists, but now a new functionality
is covered by this property.

The update system takes advantage of this self-provisioning to allow a new process trust model,
in which the device mediates its own updates. The only way for a new hardware configuration
to be booted on the device is for it to be signed with the same key as is programmed into the
secure boot hardware. This key can only be accessed by the FPGA after provisioning, meaning
that only the FPGA can authorize a new update. Any hardware configuration in the FPGA will
need to include an update subsystem in its logic that will sign a new update if it conforms to the
specific security policy that is needed by the application. As this security policy is encoded into
the actual implementation of the update system, and this update system is part of the initial FPGA
hardware configuration, it is effectively established at provision time and cannot be overwritten or
circumvented, so long as the secure boot system cannot be compromised.

Even though SDSHW does not prescribe a specific security policy, the steps that are required
to perform an update are identical, other than the enforcement of the security policy. However, the
exact methods for passing data to an FPGA and accessing the secure storage will vary for different
devices, and so it is impossible to provide a single implementation for all of these cases (the FPGA
design process only allows implementations to be targeted to a single device in any case). We do
provide an example implementation of an update system in the next section, showing that providing

such an implementation is practical and does not require significant FPGA resources.

60

Secure Storage

The secure storage system is the final component of the SDSHW, and is essential for the update
system to operate. However, its design is not complicated and is also dependent on the capabilities
of the target device. We require some method to securely store the secure boot keys that are
generated during self-provisioning, as these keys are needed by the secure boot system. It is
assumed that a secure storage system exists that is only accessible to the FPGA, but the actual
interface to this system is dependent on how it is implemented in that device. For example, the
FPGA may have access to a dedicated flash storage device, or may have to share access to a
persistent storage media with a coupled CPU. All that is required is for the secure boot to be stored
in a manner that only the FPGA can access it, which can be achieved by encrypting it and storing
it in persistent storage. An encryption key can be encoded into the FPGA in a number of ways,
including using bitstream encryption, partial reconfiguration, and physically unclonable functions
(PuFs).

The self-provisioning system is responsible for storing the secure boot keys after they are
generated, meaning that it must also initialize this storage if necessary. If only a shared persistent
storage device is available, then the self-provisioning system is responsible for encrypting the
secure boot keys in a manner that allows the FPGA to access them. This means that any secure
hardware application for a device must be aware of the device’s capabilities so that application
designers know whether an encryption key needs to be generated on the device and encoded in
some way. The self-provisioning system will be aware of these requirements and will perform the
necessary encryption, possibly by loading the initial hardware into the FPGA to allows for it to use
its encoded key to perform the encryption at this stage. This implies either a standardized method
of implementing secure storage, or close interaction between system provisioners and application
developers. As application developers must already trust the provisioner and interact with them in
order for their application to be included as the initial hardware in the FPGA, we do not see this

interaction as being a barrier to usage.

61

4.3.3 SDSHW Threat Model

As presented in Chapter 2, the goal of SDSHW in terms of threats is to maintain the same threat
model as secure hardware implemented in silicon, i.e., to defend against the same adversaries and
provide the same protections. That chapter defined the properties of secure hardware as fixed
functionality and isolation, which our self-provisioning system attempts to provide.

The self-provisioning system makes several assumptions:

1. The FPGA secure boot system will not let an unauthorized (e.g., unsigned) bitstream be

loaded in the FPGA.

2. The FPGA anti-tamper logic can isolate the FPGA and cannot be circumvented.

3. The secure storage protects the stored key from being read outside of the FPGA.

4. The FPGA silicon itself is implemented to not have backdoors that can compromise the

running bitstream.

The assumptions essentially require trust in the silicon manufacturer to have implemented the
FPGA correctly and non-maliciously. The secure boot hardware enforces that only the initial
hardware authorized during self-provisioning can exist in the FPGA, meaning that this bitstream
has the property of fixed functionality — only this hardware can exist in the FPGA and cannot be
modified. This assumption holds so long as the secure boot system is implemented correctly (i.e.,
there is no other way to boot a bitstream in the device once the secure boot system is enabled)
and the cryptography it relies on is correct. For example, if the secure boot verifies an RSA-4096
signature of a SHA3 hash of the bitstream, the system is secure so long as this cryptography cannot
be broken. As the secure boot key never leaves the device, there is no other way to generate a valid
signature than from within the FPGA, meaning that a new valid signature cannot be made using

this key except by the hardware that is already authorized in the FPGA.

62

The secure storage system must also be able to store the key correctly. As discussed, if the
secure boot key is leaked, a valid signature can be made that will be accepted by the secure boot
system. Therefore, the secure storage system is trusted by SDSHW to be correctly implemented
as well.

The anti-tamper logic must be similarly trusted, as it isolates the FPGA from the rest of this
system. This provides the property of fixed isolation, as once hardware is loaded into the isolated
FPGA, the rest of the system cannot observe the execution of this hardware except through the
interface implemented by this hardware. As the hardware has fixed functionality, it can assume
that this interface cannot be circumvented. This only holds, however, if the anti-tamper hardware
is implemented correctly, and so the silicon manufacturer is also trusted to do this.

Finally, the silicon manufacturer is trusted to implement the FPGA itself correctly, so that there
is no backdoor or other vulnerability in the FPGA silicon that an attacker can exploit. SDSHW
relies on the trust that a bitstream loaded into the FPGA will execute the exact functionality that it
was designed to do. If an attacker can exploit a vulnerability in the FPGA to force the hardware to
perform a different function, then fixed functionality is lost.

These trust relationships can be summarized as: the silicon manufacturer must implement the
FPGA correctly and faithfully. This is the same trust model as in secure hardware, as any applica-
tion must trust that is was manufactured correctly. SDSHW uses fixed secure hardware to protect
the FPGA, and the properties of this hardware are extended to the reprogrammable hardware that
is loaded into the FPGA. Assuming that this assumption holds, SDSHW can maintain the same
threat model for the initial hardware locked to the FPGA during self-provisioning.

SDSHW introduces a new threat vector, however, in the form of the update system. To maintain
the same properties as secure hardware, this update system must not be exploitable to allow for an
attacker to load an unauthorized bitstream into the FPGA. The definition of “authorized,” however,
varies depending on the security policy implemented by the secure hardware update system itself.
If an attacker can meet this security policy, then they can cause hardware to be loaded, as it will

be authorized. Therefore, applications must decide which security policy to choose and are trusted

63

to implement it correctly. For example, if hardware requires both user authorization and an update
signed by the developer, the application is trusted to prompt the user correctly for this input and
determine the correct type (e.g., input of a PIN, pressing of a trusted input, or even a combination
of both) and that the signature verification is performed correctly and cannot be forged. This
update mechanism makes a choice to export some process trust to the developer, but still mediates
this trust by requiring the update to be verified by the hardware being updated. So long as this
update system is implemented correctly, fixed functionality can be maintained, as the hardware
will always be executing the functionality it was designed to perform; if updated, this occurs using
this functionality and is an extension of the hardware’s properties.

SDSHW does not make any attempt to defend against threats that secure hardware is vulnera-
ble to. FPGAs are not inherently more resistant to advanced physical adversaries and ‘decapping’
attacks that other silicon systems. In an FPGA, such attacks would likely need to be performed
while the FPGA is still powered to directly observe the state of the running hardware, but attackers
could potentially attack the secure storage to discover state instead. Power attacks, such as glitch-
ing attacks and power analysis, are also possible with FPGAs, just as they are possible with silicon.
In short, SDSHW provides the same threat model as secure silicon hardware, but does not provide
any additional protections. That is not the goal of this dissertation; we merely wish to prove that
using SDSHW is as secure as secure hardware, not more secure.

Furthermore, SDSHW does not defend against the applications themselves being implemented
incorrectly. Just as in secure silicon, an SDSHW application must not accidentally expose its data
or allow its execution to be hijacked. SDSHW does not provide a framework in which secure
hardware applications gain increased security, but only provides a platform for them to be imple-
mented. Applications are still responsible for not compromising their own security, just as they are

in a silicon application.

64

4.4 SDSHW Platform Implementation

To illustrate the capabilities of Software Defined Secure Hardware, we implemented our plat-
form on a modern FPGA and built several proof-of-concept applications. Specifically, we used
the Xilinx ZCU102 Evaluation Board !, which consists of a Xilinx Zynq UltraScale+ FPGA that
couples a quad-core ARM Cortex A53 CPU with Xilinx’s programmable logic fabric as separate
subsystems on the same SoC. In this section, we illustrate how we implemented the three core
aspects of our platform (self-provisioning, secure storage, and a secure update) on this FPGA. The
FPGA contains secure fixed hardware that is largely intended for intellectual property protection
and anti-tampering defenses, which makes it compatible for our requirements. In the sections to
follow, we describe two secure hardware applications we built on top of this platform: a secure
filesystem protected by hardware encryption similar to Apple’s Secure Enclave (Section 4.5) and
an isolated software execution environment with remote attestation similar to Intel’s SGX (Sec-
tion 4.6).

Our complete implementation consists of the self-provisioning process, which initializes the
FPGA to provide its security properties and authorize initial hardware, the secure storage sys-
tem, to hold the secure boot keys, and the secure update system, which is implemented as another
application in the initial hardware. The applications from Sections 4.5 and 4.6 are applications
implemented in two separate bitstreams, which also include the needed secure storage logic to
support these applications an the secure update system. These bitstreams are provisioned sepa-
rately into our SoC for each application during its evaluation, meaning that we perform the the
self-provisioning for each application on the SoC, using the bitstream for each application individ-
ually for each evalutation. In the following sections, we present how the individual components of
SDSHW are implemented, which are common to each of the applications presented in Sections 4.5

and 4.6.

Thttps://www.xilinx.com/products/boards-and-kits/ek-ul-zcu102-g.html

65

4.4.1 Self-Provisioning

The self-provisioning system of SDSHW is needed to establish the FPGA into a secure state,
and as such, allows SDSHW to provide its security properties. The first step to implementing
SDSHW is to provide this system. This implementation must interface with the secure hardware
proved by the FPGA to configure the secure boot system correctly and to set the correct anti-tamper
configuration.

The SoC we are using contains secure boot hardware, but this hardware can only be configured
from the coupled CPU. The same can be said for the SoC’s anti-tamper hardware- it provides the
capabilities we need, but also is only accessible to the CPU. This means that the self-provisioning
system must be implemented as a small provisioning operating system that runs on the SoC before
it has been configured.

As our SoC is a Xilinx product, it uses a proprietary standard for loading software and bit-
streams into the device. The boot flows follows a series of steps, which are executed by a fixed
bootloader, known as the Boot ROM. This bootloader exists as a small amount of code in a one-
time writeable memory that is programmed when the SoC is in Xilinx’s production facilities, and
afterwards cannot be changed. The SoC CPU is hard-wired to load this code at power-on, which

then performs a number of actions:

1. The Boot ROM is loaded and examines the boot mode from jumper settings. Our implemen-

tation always assumes these are set to boot off an SD card.

2. in SD card boot, the Boot ROM loads the file ‘boot.bin’ off the SD card’s first partition. This

file is in Xilinx’s proprietary format.

3. The Boot ROM examines system to see if authentication or decryption of the boot.bin file is
required. On the first boot of self-provisioning, this will not be required. After provisioning,

this will be required.

4. If no authentication is required, the Boot ROM loads the first partition of the boot.bin file,

the First Stage Bootloader (FSBL). The FSBL then loads other partitions from the boot.bin

66

file, including the FPGA bitstream and operating system. The FSBL programs the bitstream

to the FPGA and loads the operating system into memory.

5. If authentication is required, the Boot ROM must first derypt the FSBL. The Boot ROM reads
the public key from the boot.bin file, and uses a fixed Keccak-384 accelerator to compute
the hash of the RSA-4096 public key. The resulting hash is compared to a hash stored in
the eFUSE array (one-time programmable configuration registers). Assuming that the hash
matches, the Boot ROM then uses the public key from the boot.bin file to verify signatures
of the file’s partitions (e.g., FSBL, bitstream and operating system). The Boot ROM loads

the FSBL if these signatures pass, and then performs the previous step.

Secure boot in our SoC is therefore implemented as RSA-4096 signatures of Keccak-384
hashes. During self-provisioning, the provisioning OS will be loaded without authentication as
a specially-prepared boot.bin file, using Xilinx’s tools. The OS will be provided the initial bit-
stream, FSBL and OS that will boot in future power cycles, and will generate the device-specific
secure boot RSA-4096 keypair. The OS will then generate a new, signed boot.bin using these keys
and the initial hardware, FSBL and OS, using Xilinx’s tools to generate the correct proprietary
format.

The self-provisioning OS will then perform a Keccak-384 hash of the public key and store it
into the secure boot eFuse configuration registers; it stores the complete keypair into secure storage
(the OS also initializes the secure storage, as is described later). The self-provisioning system does
not directly perform any system configuration of anti-tamper logic in our SoC, as these settings
are lost on reboot. Instead, these are done with the FSBL that is included in the signed FSBL,
meaning that the system provisioner must have selected or designed this FSBL to perform the
correct actions.

For our device, the FSBL disables the processors ability to reprogram the FPGA (through the
processor configuration access port), disables JTAG access, and locks out access to the system

interconnect access control logic from the CPU. This is performed on each boot, and is enforced

67

by the SoC’s secure boot system. Thus, the secure boot system effectively isolates the FPGA from
the CPU and prevents the CPU from reconfiguring the system to get access back.?

After the OS finishes these tasks, the SoC is provisioned correctly and can boot in future
to launch the initial secure hardware. As all boot will be required to be signed, and only one
compatible boot.bin file was ever generated, only this hardware can ever exist, assuming the keys

are never leaked from the secure storage.

4.4.2 Secure Storage

As mentioned in the previous section, the self-provisioning operating system has to initialize
the secure storage system on our SoC. This is because our SoC does not have any persistent storage
connected to the FPGA. Therefore, we had to implement a separate set of steps to make secure
storage work.

The secure storage system is implemented as two parts: a subsystem in the FPGA secure
hardware logic is implemented by the developer to encrypt data before it leaves the FPGA, and a
proxy agent running on the CPU (e.g., in the operating system) receives encrypted data and writes
it to persistent storage, or reads it back and provides it to the FPGA. This means that during self-
provisioning, the OS must launch the initial hardware and run the secure boot keypair through this
subsystem in the FPGA in order for it to be encrypted such that the FPGA can later decrypt it.

We recognize that this method of secure storage is effective for storing data that never changes
(e.g., the secure boot keypair), but is not sufficient for storing secure hardware application state.
For many FPGA applications, replay-resistant secure storage is needed. To provide this, we make
use of an AES accelerator that exists in our SoC to be used for bitstream encryption, but can also
be used by the CPU for general-purpose encryption. This is shown in Figure 4.3.

This AES accelerator the SoC to encrypt or decrypt using a key stored in a special secure

storage implemented as battery-backed RAM (BBRAM). The BBRAM is implemented to be write-

2This process is highly customized to our SoC. Other systems may have completely different access control systems
or connections between the the FPGA and CPU. Even in Xilinx systems, such as Zynq7000 devices, the precursor to
our SoC, the access control configuration is completely different.

68

CPU

FPGA

Figure 4.3: Secure Storage — (1) A trusted CPU agent uses the AES-GCM accelerator to decrypt
the storage from the SD card, with the encryption key stored in BBRAM. The FPGA is given the
decrypted value to read or modify. Modifications are given back to the CPU. The CPU generates
a new AES key, overwriting the old key in the BBRAM (2) and encrypts the data under this new
key, writing the ciphertext to the SD card (3). Any attempts to rollback or replay old storage data
will not succeed, as old storage can no longer be decrypted.

only to the CPU, meaning the AES accelerator is the only device able to read the key from BBRAM
after it has been written. The self-provisioning system initializes the BBRAM with a generated key
during provisioning. The CPU has the ability to use this hardware for arbitrary encryption, but as
the data that is encrypted by the FPGA is already encrypted, the AES accelerator is never able to
actually decrypt the data.

Instead, we use that fact that the BBRAM can be reprogrammed to implement replay protec-
tion. This is the only secure storage medium on the SoC that can be rewritten — there is secure
storage in a limited amount of eFuse memory for storing keys, but this memory cannot be rewrit-
ten. To implement replay protection, a new key is generated on each boot by the trusted FSBL and
programmed to the BBRAM after the current storage is decrypted and provided tot he FPGA. The
storage proxy on the CPU then simply runs any data from the FPGA through this accelerator and
stores the results on the persistent storage (SD card).

As the AES accelerator implements AES GCM, any replay of storage encrypted under an old
key will be detected and rejected. The FSBL makes use of this to provide the replay-protection.
At each boot, the FSBL loads a file holding the encrypted secure storage and decrypt it with the
accelerator, and provides it to the FPGA. The FSBL then generates a new key and encrypts the the

decrypted data under this key using the accelerator (the AES accelerator can be toggled to encrypt

69

using an arbitrary key or the BBRAM key) and stores the new file, along with the old one, to the
SD card. Finally, the FSBL programs the new key to the BBRAM, overwriting the old key.

This sequence is intended to prevent a situation where power is lost when reprogramming
the BBRAM key. If power is lost at any point, either the old data or the new data will still be
decryptable, as the BBRAM will either have the old or the new key. This assumes that writing the
key to BBRAM is atomic, and requires the FPGA to wait before attempting to write data to the
secure storage until this sequence has been completed. Therefore, the FSBL will also provide a
signal to the FPGA to indicate when complete and the secure storage is available for writing, via
the storage proxy.

The primary risk to this system is denial-of-service by the operating system. The OS may refuse
to execute the proxy, preventing the FPGA from writing to secure storage, or may remove the use
of the AES accelerator by replacing the proxy with a different implementation. Unfortunately,
these risks cannot be avoided without the FPGA having direct access to storage. The risk can be
mitigated by increasing the collateral damage of such an attack. This can be achieved by having
the FSBL interact with the FPGA to increment a counter in the secure storage after the replay-
protection sequence has occurred, and then provide a measurement of the secure storage, and
allow the FPGA to store this as well, before the FPGA interacts with the untrusted proxy. This
allows the FPGA to detect a DoS attack, as the FPGA will be able to tell if the hash of the storage
is the same between boots, which indicates that the proxy is not writing the FPGA’s storage when
the FPGA requests it. In this case, the FPGA can refuse to execute, and even can shut down the
system, if configured with that capability.

On the FPGA side, the secure storage is implemented as a simple microcontroller, using the
Microblaze soft CPU, that receives encrypted data from the CPU and decrypts it, placing the data
into isolated buffers for each subsystem in the FPGA that needs access to it. This microcontroller
listens for write requests from each of these applications and writes the data back to the CPU
on these requests (accomplished by watching signals from the applications in these buffers in the

FPGA). This microcontroller also performs the hash checks on the secure storage by interacting

70

with the FSBL on startup, and is wired with the ability to put the FPGA into reset if it detects

malicious behavior by the untrusted proxy.

4.4.3 Secure Update System

The final component of SDSHW is the update system. Although we are unable to prescribe
a single implementation, as that would require selecting a single security policy for all users of
SDSHW and implementing a system that relies on features of a certain FPGA, we do provide
an example system that works on our SoC and should be reasonable for many applications. The
security policy we select is developer authorization via an ED25519 signature over the update
bitstream and local user authorization through the input of a PIN from the operating system, and
the toggling of a button connected directly to the FPGA.

The update system is implemented as a subsystem in the SDSWH platform that runs each of
the example applications described in the next sections. This subsystem is connected to the secure
storage microcontroller with a separate buffer, and only this buffer is allowed to access the secure
boot key, as hard-coded into the microcontroller’s operation. The subsystem is also connected to
the CPU and exposes an API to allow for a potential update to be loaded. The subsystem has a
hard-coded ED25519 public key of the developer (i.e., our public key, as we are the developer).

The security policy for updates requires that any updates be signed by this public key, a user
must input a PIN, and a physical button must be pressed. This PIN is not present until a user sets
it, and is set by the first user that takes ownership of the device. The update system is wired to the
reset system of the FPGA as well as the secure storage, and holds the rest of the secure hardware
in reset if a PIN is not set. A PIN can be specified through the same API exposed to the CPU, and
once a PIN is first written, the update system stores it in the secure storage and allows the FPA to
execute.

During self-provisioning, the self-provisioning OS also signed a special update OS that is
booted by the FSBL in this situation, and is signed by the secure boot keypair. When an up-

date is specified, the CPU sets a flag indicating an update request and reboots. The FSBL sees

71

this flag and boots the trusted update OS, rather than the untrusted normal OS. The update OS
provides a PIN attempt, the update, and an ED25519 signature over the update to the hardware
update subsystem.

If the signature checks pass and the PIN attempt was correct, the update system toggles an LED
and the user pushes a button as the final update authorization. If too many PIN attempts are made
(e.g., we set five attempts as this threshold), the update system refuses to accept the update during
this power cycle and records the number of PIN attempts made. The system then requires a certain
number of power cycles before attempts are again accepted (this is to emulate anti-hammering
systems used by TPMs).

Assuming all the authorization steps are performed correctly, the update subsystem provides
the secure boot key to the trusted update OS, which then uses the Xilinx tools to sign the new
update and generate a new signed boot.bin file. The update OS then attempts to securely wipe the
key from memory, clears the update flag, and reboots. Now the new, updated hardware can be
executed in future boots.

The main vulnerability in this system is the need to expose the key outside of the FPGA so
that it can be used by Xilinx’s tools. Unfortunately, so long as the format of the boot.bin file is
proprietary, this will be required, as a compatible file cannot otherwise be generated. This leaves
the secure boot key vulnerable to memory attacks, such as a cold-boot attack, where the key could
theoretically be extracted from memory, even though the update operating system is trusted and
does not execute any external code or open any network connections. This risk is reduced due to
the fact that we require the user to provide physical authorization, but can be exploited if a valid
update is provided, the user’s PIN is compromised, and the attacker has physical access to the
system (a user could theoretically prevent a cold boot attack if they are legitimately applying an
update, so long as their device is not stolen during the process). Unfortunately, this is a limitation

imposed by Xilinx’s implementation of the device and cannot be completely solved .

3We could implement a simple Linux OS in the FPGA on a Microblaze CPU to use the Xilinx tools, but the needed
resources would likely be too much for our FPGA, if other applications are to be supported.

72

4.5 Secure Filesystem

As a first secure hardware application that builds on our platform, we implemented an en-
crypted filesystem that provides functionality similar to Apple’s Secure Enclave. In this applica-
tion, an amount of data is protected by hardware from access outside the device by encrypting it
using a key that is stored in the secure storage that cannot be exported. An AES encryption engine
in the secure hardware application is the only component that can read this key and the untrusted
operating system passes data to be encrypted or decrypted when it is accessed. In addition, the
encryption engine will not perform any operations until a PIN has been provided correctly within
a certain number of attempts. The operating system will provide the PIN to the hardware to unlock

the key, and only then can data be decrypted.

Comparison to the Secure Enclave Similar to Apple’s solution, the PIN is intended to prevent
access to the encrypted data without requiring a long password from a user. Apple provides a
similar solution in its iPhones that prevents access to a device and its storage after a certain number
of PIN attempts have been reached. Apple’s Secure Enclave technology enforces this by encrypting
all storage with a key that is held by a secure storage system and accessible by a secure coprocessor
running trusted code. This code will not boot or decrypt the system if the PIN attempt is exceeded.
Our system attempts to emulate this functionality by not unlocking the storage without a successful
PIN entry, and then locking out further attempts. We make use of the secure storage system of the

FPGA to keep track of PIN attempts, in addition to securely storing the key.

PIN Initialization To initialize the secure hardware application when it is first used, a user will
provide an initial PIN that will be stored in the secure storage (i.e., if no PIN is in the secure storage,
the first one received will be stored). This implements a TOFU (trust-on-first-use) security model,
which should be sufficient, as no sensitive information can be stored using the system if the PIN is
not set (the hardware will not perform encryption without a PIN entry). To transfer to a new user,

the system can be reset using the update mechanism in factory reset mode, as described below.

73

Update and Reset To make use of the update capabilities that are provided by our platform, we
also designed an update mechanism in the trusted hardware that has certain application-specific
requirements, which can also be used to factory reset the system (i.e., clear the encrypted storage
and allow for a new PIN to be set). In order to allow new hardware to be authorized to run in the
FPGA, the hardware requires the currently set PIN to be entered correctly. However, in the cases
where the PIN needs to be reset, the hardware will also accept a new PIN, but will first generate a
new encryption key and delete the previous one, effectively deleting the data that was protected by
this key. In this case, a new PIN can be set, and then can be used to update the hardware. Once the
PIN has been set correctly, the hardware will release the secure boot key to sign the new hardware
configuration. As this is part of the secure hardware application, these requirements also cannot be

circumvented.

Access from the Operating System To interface with this system, we also designed a FUSE
(File Systems in Userspace) filesystem that encrypts and decrypts its contents by passing them
through the hardware encryption engine after a successful PIN has been provided. We use the
Python FUSE bindings to implement it, and present a performance benchmark of the filesystem in

Section 4.7.

4.6 Secure Coprocessor with Remote Attestation

For the second example, we implemented a secure hardware application that provides similar
features to Intel’s SGX secure trusted execution environment, namely hardware-enforced software
isolation and remote attestation (illustrated in Figure 4.4). The hardware is centered on the use of
Xilinx’s MicroBlaze soft processor [119] to realize the isolated software execution environment,
and we developed software tools to allow applications to be built in a similar manner to the SGX
software development kit (SDK). In this section we elaborate on the hardware design, the software
development kit to develop software applications, and an example software application (password

manager) that was built with our software development kit.

74

Remote client

Server Enclave
endpoint driver

Trusted FPGA Logic

Figure 4.4: Secure Coprocessor and Remote Attestation Design Here we run the FPGA as a
coprocessor and are able to enforce software isolation and perform remote attestation. A remote
attestation client uploads a program to an untrusted server. The program is launched in a MicroB-
laze CPU in the FPGA by trusted logic, which also signs the program code and performs a key
exchange. The driver communicates with the program in the MicroBlaze over a shared buffer and
relays data to the client.

4.6.1 Hardware Design
Isolated Software Execution Environment

To provide software isolation and remote attestation, we implemented a MicroBlaze soft CPU
inside the FPGA as part of the secure hardware application. Any code that executes in this CPU is
isolated from the untrusted operating system and can be trusted to execute once loaded. In order to
securely program this CPU, we utilize custom logic that ensures that any trusted code (i.e., a trusted
“enclave” program, similar to SGX) is loaded, and that a hash of this program and a signature are
performed. This “enclave logic” accepts binaries to run in the isolated CPU (i.e., the enclave CPU)
and programs the enclave CPU memory directly, while simultaneously calculating a SHAS512 hash
of the program. Only this logic has direct access to the enclave CPU’s memory, so the only way to
change the program is to overwrite it with a new program.

In addition, this logic reads an ECDSA private key from the secure storage, and uses this key

to sign the hash of the signature and a message from the enclave CPU during the remote attestation

75

Remote Verifier Trusted Enclave Logic

Sig(enclave, SK,), enclave

Program Launch Success
Sig(PKv|nonce, SK,), PK,
Sig(PKepcave[Hash(enclave), SK,;), PK.,ca0e|Hash(enclave)

Figure 4.5: Remote Attestation Sequence: In the remote attestation protocol, the remote verifier
uploads a program (enclave) signed by its private key (SK,). The enclave launches the program and
notifies the verifier, which then requests an attestation by sending its signed public key (PK,). The
enclave logic uses this key to derive a shared secret for the enclave and responds with a signature
of an ephemeral public key for the enclave (PK,,q,c) and the hash of the enclave, signed by a
long-term key for the enclave logic (SK¢;).

process. As shown in Figure 4.4, a remote client can upload a program to services running in the
untrusted operating system, which will then pass the program to the enclave logic. This logic will
then launch the trusted code on the MicroBlaze CPU in the FPGA. An untrusted program (i.e.,
the “Enclave driver”) can interact with this code through the enclave logic using a special shared

memory buffer that is designated for this purpose.

Remote Attestation

The attestation protocol implemented by our secure hardware and companion software is shown
in Figure 4.5. In this protocol, a remote verifier uploads a program signed by its Ed25519 private
key (SK,) [120]). The program will be launched by the enclave logic, and the verifier will be
notified upon completion. The verifier will request an attestation by uploading its signed public
key (PK,). The enclave logic generates an ephemeral key pair for this attestation to establish a
shared secret for the enclave (PK.,,ciqve, SKenciave), and signs PK,, .40 and the hash of the enclave
program with its long-term attestation key (PK.;, SK¢;). The enclave sends these to the verifier,
along with a certificate chain configured at provision time by the root of trust for this device. Us-
ing this certificate, the verifier then verifies the signature and checks that the hash matches the

expected hash of the uploaded enclave program. If so, the verifier can calculate a shared secret us-

76

ing PK,,,ci.ve and SK,,, just as the enclave logic calculates a shared secret using PK,, and SK.,,cjqve-
Using this shared secret known only to the verifier and the isolated enclave, a secure channel can

be established.

Random Number Generation

To generate secure ephemeral keys during this process, we have included a cryptographic ran-
dom number generator within the trusted hardware of the FPGA, as implemented by the Cryptech
OpenHSM project [121]. The module draws randomness from both the LSB of A/D conversion
noise as well as a ring of digital oscillators implemented as a set of adders with the carry-out in-
verted and fed back as carry in. This entropy is collected and hashed using SHA512 to whiten
the numerical randomness and remove any bias introduced by the entropy sources. The resulting
digest is used to seed a ChaCha stream cipher by providing the key and I'V. A counter is maintained
such that the stream cipher can be reseeded when reaching a maximum number of blocks. Random
numbers are provided as a 32 bit value, which are sampled multiple times by the enclave logic to

generate secure keypairs.

4.6.2 SDK

In addition to designing the hardware of our software isolation system, we have also designed
a software development kit to make it easier to develop software applications that run in the sys-
tem. Figure 4.6 shows the major components of the SDK. A developer creates untrusted code that
runs on the ARM CPU of our system in the untrusted operating system (arm.c), code that imple-
ments the trusted functions that are run in the isolated MicroBlaze CPU (mb.c), and description
of the API the application wishes to use to communicate between the trusted and untrusted code
(interface.json). This interface describes the inputs and outputs of the trusted code as well as the
function signatures of the specific methods. The developer also has access to the enclave library
(encl.h, encl.c) that provides functions to launch an enclave, which is done by interacting with the

enclave logic.

77

Enclave library User created

Cross Compiler

ARM binary uBlaze binary

Figure 4.6: SDK Development Flow The enclave library (green) provides functions the software
developer needs to launch an enclave and perform remote attestation. The developer writes their
code (orange) that they wish to run on the ARM CPU and the isolated MicroBlaze CPU, while
calling the desired functions in the enclave library. The enclave library and user created code are
fed into the SDK (blue), which cross compiles the code and produces executable binaries for both
the ARM CPU and the MicroBlaze CPU.

The developer provides their code to the SDK, which will use the API interface definition to
generate communication code between the MicroBlaze and the ARM CPUs using the dedicated
shared buffer. It cross-compiles the code for the ARM and MicroBlaze instruction sets respectively,
producing two binaries. The (untrusted) ARM binary loads the trusted MicroBlaze into the enclave

using the enclave library.

4.6.3 Password Manager Application

As an illustration of running isolated software in this secure hardware module, we implemented
a password manager that encrypts stored credentials under a master password. Passwords are

encrypted and decrypted in an enclave with only the encrypted data being stored in persistent

78

storage. To access a password, the enclave must be provided with the encrypted data and a master
password. The enclave then derives a decryption key using this password and a device-only key
that can only be accessed from the enclave, as it is stored in the FPGA’s secure storage.

To use the manager, a user provides their master password to a client program which interacts
with the enclave. The user has the option to enter information for passwords, usernames, and
identifiers (e.g., a website). This information is given to the enclave to encrypt and passed back to
the client application to store in persistent storage. Retrieving data is acheived by interacting with
the client program and requesting data by its identifier, which will cause the enclave to decrypt it
and return it to the client. This password manager is similar in design to an example application
SGX provided by Intel [122].

Our implementation cannot remove all possible attack vectors, as the password manager must
still function to provide data in plaintext in order for it to be useful for users to interact with un-
modified programs. However, we can force any attacks to be online, in the sense that the adversary
must query the password manager in the trusted enclave, rather than simply be able to make copies
and reveal the entire database. This is because the encrypted password database can only be de-
crypted using the user’s master password and the FPGA’s device-only key. Even if the database is
exported and the user’s password is compromised, the data cannot be decrypted without interacting
with the enclave running on the device on which it was first encrypted. We present a performance

analysis of user interaction with the password manager in Section 4.7.

4.7 Evaluation

To understand the performance impacts of using secure hardware applications implemented
using SDSHW, we evaluate the example applications that we described previously using several
benchmark experiments. For all our applications, we continue to use the ZCU102 Evaluation Kit.
The goal of these experiments is not to improve upon performance compared to their traditional

implementations, but to show what the performance trade-off is for a developer to use the more

79

550

5001

450}

4001

Throughput (KB/s)

350}

3001

¢—¢ Python FS
¢4 FPGAFS

250 L -
103 104 10° 10° 10’
Data Processed (bytes)

Figure 4.7: Filesystem Performance Write performance of a pure-Python filesystem vs. SDSHW
(FPGA) filesystem. Despite being unoptimized, the FPGA implementation still only has an average
overhead of 1.38%.

flexible platform of SDSHW versus using an existing platform, or even implementing a new ver-

sion in silicon.

4.7.1 Secure Filesystem

To test the performance of our secure filesystem, we compared our Python FUSE secure hard-
ware filesystem with a pure Python implementation executed on the coupled ARM CPU of our
device. In both implementations of our experiment, all file system operations are implemented
in Python other than the data encryption calls. For the pure-Python version, a software imple-
mentation of AES-CTR encrypts all file data, while the trusted hardware version uses a naive
AES encryption system that performs the block cipher on a 16-byte input, with the CTR mode-of-
operation implemented on top of this cipher in software.

We generated and stored files from 1 KB to 4 MB in a directory mounted with each filesystem

and measured the throughput in writing these files to the encrypted storage directory. Figure 4.7

80

100 4

1

H
9

Execution Time (s)

._.

o
b
L

1073 A —— Microblaze SHA512
Reference SHA512

104 10° 10°
Data size (bytes)

Figure 4.8: SHAS512 Enclave Performance Performance of SHA512 hashes in an enclave running
in an embedded Microblaze CPU and a reference implemntation directly on an ARM CPU. The
Microblaze performance is approximately 20x slower than the reference, as expected by their
relative clock cycles.

shows the throughput achieved for each written file plotted against the size of each file. Compared
to the pure-Python filesystem, our naive hardware-backed filesystem offers a modest overhead of
less than 2%. We expect that with modest optimizations (e.g., using DMA and other bulk transfer),
our FPGA-based secure filesystem could outperform software-based implementations, as is done

in Chapter 3.

4.7.2 Enclave Performance Benchmarks

To test the performance impact of executing code on a Microblaze CPU, we designed several
microbenchmarks to test memory and computation performance, along with end-to-end perfor-
mance tests. This is to show the performance impact of using the Microblaze CPU and whether
this impact is large enough to impact even low throughput, user-interactive applications. Our ex-
periments show that the Microblaze imposes an expected performance decrease for various compu-

tational loads, but the SDK we use to develop applications and the method of data passing between

81

10—3 4

—

Execution Time (s)
=
o
I8

—#— Microblaze Memory Access
Reference Memory Access

0 250 500 750 1000 1250 1500 1750 2000
Data size (bytes)

Figure 4.9: Enclave Memory Access Performance Memory access throughput of the enclave
compared to the ARM CPU. For small memory transactions, the MicroBlaze is approximately
100x slower than the CPU, but at larger transfers, it is only 12x slower.

software and the Microblaze enclaves is not impacted to affect how performance scales. The Mi-
croblaze execution scales at the same rate as the ARM software implementation, but it has a much

lower overall performance, as is expected.

Enclave SHAS12 Performance We created a program that hashes a buffer of random data us-
ing SHAS512 in both an enclave and directly on the main CPU. As the enclave executes on the
embedded Microblaze CPU, we expect the performance to be much worse, and this experiment is
intended to determine if using our SDK to create enclave programs imposes additional overhead,
and what exactly the performance degradation is.

As shown in Figure 4.8, the performance of the Microblaze enclave is approximately 20x
worse than the reference implementation on the ARM CPU. However, both implementations scale
linearly with the size of the data being hashed. There does not appear to be any overhead caused by
using our SDK to develop a program for the enclave, and it appears that the execution performance

of the Microblaze CPU is the main performance bottleneck, as expected. We stress that while

82

14 A

12 A

10 A

Execution Time (s)

—#— Enclave Loading Time

0 200000 400000 600000 800000 1000000
Data size (bytes)

Figure 4.10: Enclave Loading Performance Performance of loading programs of various sizes
into the enclave. The throughput of loading programs is constant at approximately 35 KB/s.

our system has significantly less performance than that of pure hardware implementations, very
few secure applications require the full performance of the main processor, but instead emphasize

security, isolation, and ease of implementation over raw throughput.

Enclave Memory Access Performance To measure the memory access performance of an en-
clave, the enclave is simply tasked with copying an input buffer to an output buffer, and the perfor-
mance is compared to the ARM CPU’s performance at the same task. As shown in Figure 4.9, we
measured an overhead for Microblaze access times ranging linearly from 100x for small chunks of

data (0-250 bytes) to 12x for larger chunks (2 Kbytes and larger).

Enclave Loading Performance Our final benchmark measures the throughput of loading en-
clave program binaries of various sizes. After testing using binaries ranging in size from 20 KB to

1 MB, the throughput remained constant at 35 KB/s, as is shown in Figure 4.10.

83

0.20231 4 Enclave Password Write
Reference Password Write
0.2022 1
0
P 0.2021 1
£
'_
£ 0.2020 1
= | A
3 1 "
£ 0.2019 - / \‘ /\
7 A
© \
o
0.2018 - / \/J/ \
020174 Ay ¥ /\/‘/\ ¥
0 20 40 60 80 100

Password size (characters)

Figure 4.11: Password Manager Write Performance Time spent adding passwords to the pass-
word manager when protected by an enclave and when using a reference implementation running
completely on the ARM CPU without an enclave.

Password Manager Performance [llustrating the point that the performance impact of our im-
plementation commonly would impact a relatively small fraction of the overall perceived perfor-
mance, we measured the time to add and retrieve passwords from the password manager appli-
cation described in Section 4.6.3, for passwords of up to 100 characters in length. As seen in
Figures 4.11, both with and without running in an enclave results in an average 202ms latency for
encrypting new passwords (with less than 0.3 difference in the worst case). Likewise, for reason-
able passwords up to 100 characters, the latency for decrypting a password from the manager is
roughly 120ms for both implementations, well within the realm of usability (for passwords much
larger than that, the impact of the performance difference does become noticeable as more time is

spent in the enclave), as shown in Figure 4.12.

Remote Attestation Performance To measure the end-to-end performance of performing a re-
mote attestation, we implemented a private set intersection calculation program that calculates the

intersection of two sets of integers in an enclave, with one set being uploaded in encrypted form

84

0.140 1 —«— Enclave Password Read
Reference Password Read

0.135 4

©
=
W
o
!

0.125 4

0.120 1

0.115 1

Password Read Time (s)

0.110 1

0.105 1

0 20 40 60 80 100
Password size (characters)

Figure 4.12: Password Manager Read Performance Time spent reading passwords from the
password manager using enclave-protected code (top curve) and a reference implementation run-
ning on the ARM CPU (bottom curve).

using the shared secret negotiated by the remote attestation protocol, and the other provided to the
enclave by the local host, similar to the contact discovery feature used by Signal [123]. In each
attestation, a fixed amount of data is passed in each message, which is the public key of the verifier
in one message, and then the signed public key and hash of the enclave in the response. This exper-
iment measures the average time to pass these messages, for the enclave logic to generate the keys
and sign the message, and the time for the client to verify the response and calculate the shared
secret. After performing 1000 trials in ideal laboratory network conditions between a verifier and
the device running the trusted enclave logic, the average remote attestation time was 107.2 ms with

a standard deviation of 8.604 ms.

85

ARM TrustZone

Modules [Fup==

Trust Layer Secure Boot

HW Layer ARM Hardware

Intel SGX

Modules ==

Trust Layer Intel baked-in root

HW Layer Intel Hardware

Modules | Jf= =

Trust Layer Secure Boot

HW Layer Flexible Hardware

Figure 4.13: Secure Hardware Layers We conceptualize secure hardware into three layers, and
depict ARM TrustZone, Intel SGX, and our own SDSHW platform. The hardware layer details
who is responsible for the fixed hardware components/silicon, the trust layer describes who con-
trols the root of trust for the device, and modules shows implemented features on the platform.
Blocks in blue show flexible components that can be updated, while grey depicts fixed components:
for example, ARM TrustZone has a flexible root of trust that can be provisioned independent of the
device, while Intel SGX’s root of trust is fixed in hardware. SDSHW also allows future features to
be implemented after device manufacture.

4.8 Discussion

4.8.1 Trust Anchors

In traditional secure hardware systems, the root of trust is often simply the hardware manufac-
turer. However, in the SDSHW platform, the root of trust is configurable, as shown in Figure 4.13.
This affords a great deal of flexibility, but raises questions surrounding who or what these trust

anchors would be in practice. For instance, in a remote attestation setting, the server could easily

86

configure themselves to be their own root of trust. A concrete example would be Google con-
figuring their own servers to use a Google-rooted certificate to verify remote attestation proofs.
However, this may defeat the purpose of the remote attestation: if one trusts Google to not craft
malicious attestation proofs, why not trust them to simply run what they claim (without proof) to
run?

This example motivates the use of third-party trust anchors, independent from the parties that
use or even build the device. These trust anchors could be trusted by a large set of users or organi-
zations, and could either provision devices themselves, or could cross-validate other parties’ root
of trust certificates, allowing them to act as intermediaries verified by the trust anchor, similar to
how certificate authorities (CA) operate in the X.509 PKI.

In the remote attestation example, a third party trust anchor (e.g. Verisign) may audit and
review a secure hardware implementation written by Google, and sign certificates that allow that
specific configuration to be used in a remote attestation feature. While Verisign must be involved
in the provisioning step, thereafter, users that trust Verisign can trust that Google-provided remote
attestation proofs are valid and come from a configuration vetted by Verisign.

Another possible trust anchor could be a cloud-based data center such as Amazon EC2. In
this scenario, Amazon could act as their own trust anchor, renting out access to their machines to
other companies. These companies in turn could use secure hardware features implemented and
rooted in trust from Amazon, ensuring that the company renting the VM was protected from the

data handled by this secure hardware.

4.8.2 Ideal Hardware Support

We have implemented the SDSHW platform using commodity hardware, but there may be
additional fixed hardware that could simplify or improve support of SDSHW-like flexible secure
hardware. In this section, we explore subtle architectural modifications that could improve, sim-

plify, or further SDSHW support.

87

Dedicated FPGA storage. In our implementation, we used a combination of BBRAM and a
small kernel of trusted software to load a key into the FPGA, allowing it to later encrypt writes to
and decrypt reads from a system storage without needing to trust the CPU. A more elegant solution
could allow the FPGA to directly write to its own persistent storage that is not accessible from the

CPU.

FPGA Secure Boot. Our secure boot only supported booting trusted code into the main CPU,
which in turn could program the FPGA. This required a small amount of trusted code that would
program the FPGA, and then remove the CPU’s access to reprogram or introspect on the FPGA
before booting the untrusted OS on the CPU. An alternative, more elegant design however, could
allow the secure boot to directly program the FPGA, obviating the need for any trusted code to run

on the CPU.

FPGA control of CPU. As a further extension, the FPGA could have control over the CPU, rather
than vice versa. For example, the FPGA could be given control over the TLB, cache, and ring
level of the CPU, allowing it to halt the CPU and decide what code it should be running and from
what permission level. This would allow the FPGA to take advantage of the full power of the
CPU, running enclave code on it while keeping it isolated from the untrusted operating system and

clearing caches or encrypting memory before swapping the untrusted OS back in.

88

Chapter 5

User Space Secure Hardware

The vision for this dissertation is to allow applications to dynamically execute secure hardware
modules, i.e., to let software use programmable hardware as a user space resource for defining
secure hardware. We have proposed using FPGAs to provide this capability, as an FPGA can
implement any digital circuit, and so any secure hardware system that can be implemented in
silicon can also be supported by our system. Here, we describe how to bring these two solutions

together to realize our vision of secure hardware as a user space definable resource.

5.1 Introduction

As we have stated in this dissertation, secure hardware enables applications that otherwise
cannot be implemented based on its security properties. However, because these applications are
implemented as fixed silicon, it is difficult for developers to find a platform that implements all of
the systems that they would like to have. In Chapter 3, we showed that applications can actually
include their own hardware definitions that can be executed in an FPGA dynamically. In Chap-
ter 4, we showed that developers can have the secure hardware features they want in an FPGA by
showing how the FPGA itself can be used securely.

However, Chapter 4 requires that all hardware in the FPGA be trusted, meaning that it cannot

be shared between dynamic modules proposed by Chapter 3. This means that software cannot use

89

the FPGA dynamically for secure hardware as we would prefer. The need for this capability is the
primary goal of this work and would enable a new class of applications. Essentially, any application
that needs to protect state from the rest of the system in the face of an untrusted operator, potential
threat, or risk of compromise could make use of this capability.

For example, applications that need to store sensitive financial information can store and oper-
ate on it using the secure hardware. This can be used for mobile payment systems on smartphones
and for processing off-chain cryptocurrency systems. Applications can also choose to protect arbi-
trary data from the rest of the system in the case of device theft, such as a file sharing application
(e.g., Dropbox). Such an application would only store encrypted data that can only be decrypted
by the secure hardware, and would be unlocked periodically by the user. In the case of device
theft, even if the entire operating system is compromised, such as by compulsion by a state-level
actor, the data stored by this application would be safe so long as the user does not unlock it, with-
out requiring a custom hardware system to be implemented for a device to support it. Encrypted
messaging applications (e.g., Signal, Telegram) could benefit from this capability as well, as it
would allow them to ensure that data remains private even if the entire software system colludes
against it. Trusted computing systems such as cloud-focused TEEs like SGX can benefit from
this system too. Instead of requiring a general computational solution, developers could design
their own hardware that is optimized for their application and does not rely on a single hardware
implementation. This enables SGX-like applications to be built with fewer compromises, such as
an alternative implementation of the contact discovery application implemented by Signal using
SGX.

In this chapter we implement a proof-of-concept user space secure hardware module to demon-
strate the potential of this system. This module is an implementation of a private-set intersection
computation, similar to Signal’s contact discovery SGX service. However, there are some chal-
lenges to making our system work using the technology presented in previous chapters. We present
these challenges here and describe how our system overcomes them in the next section. Our actual

implementation of the system and proof-of-concept applications and their evaluation follows.

90

5.2 Challenges

Unfortunately, the Cloud RTR and SDSHW systems that were described in previous chapters
are not compatible with each other. SDSHW makes some assumptions and imposes requirements
on the FPGA configuration that Cloud RTR violates. If these challenges could be solved, then

Cloud RTR can implement the SDSHW platform in a device that is properly provisioned.

Cloud RTR Challenges: Cloud RTR’s primary incompatibility with SDSHW is that it requires
the CPU to have complete control over the hardware that exists in the FPGA. SDSHW requires that
all reconfiguration and debug access into the FPGA be disabled so that secure hardware cannot be
overridden or introspected. This means that Cloud RTR cannot be implemented in a system that
has been configured for SDSHW, as these capabilities will not be available, and so Cloud RTR will
not be able to load new hardware into the FPGA even if a compatible bitstream is booted using

SDSHW.

SDSHW Challenges: SDSHW makes an assumption that all of the hardware that is booted into
the FPGA is provided by the same entity, and so the entire FPGA is trusted to have access to
sensitive data. SDSHW does not provide any means directly for access control, such as to protect
data in the secure storage; these capabilities are left for different implementations of the platform
to provide if they are needed. The notion of loading hardware modules from different developers
dynamically violates this principle, as there is no way to ensure that these modules do not access

restricted resources maliciously.

5.3 Secure Slot Architecture

To overcome these challenges, we have identified four modifications that need to be made to
Cloud RTR and SDSHW that make them compatible with each other. These changes are to be

made to a Cloud RTR static design that executes in an FPGA that has been securely provisioned

91

using SDSHW. The goal of these changes is to make a system that is compatible with Cloud
RTR reconfigurable hardware modules (e.g., has dedicated reconfigurable slots) while not using
capabilities or introducing vulnerabilities that weaken the properties of SDSHW. The changes
we make are concerned with how reconfigurable modules are loaded and the connections these

modules have to the rest of the static hardware in the FPGA.

5.3.1 Internal Reconfiguration

The primary incompatibility between Cloud RTR and SDSHW is the method for reconfiguring
the hardware in the FPGA. In Cloud RTR, the operating system on a coupled CPU has com-
plete control over the hardware running in the FPGA, as it has access to dedicated reconfiguration
logic. SDSHW disables these features as part of the anti-tamper hardware requirements, as such
a capability would allow for a malicious operating system to override any secure hardware in the
FPGA without detection, and would thereby negate the security properties provided by the plat-
form. However, we note that Cloud RTR does not require the ability to reconfigure the entire
FPGA, only the actual reconfigurable slots using partial reconfiguration. In addition, all modern
FPGAs include internal configuration logic, sometimes called the internal configuration access
port (ICAP). We leverage the ICAP to implement a subsystem in the Cloud RTR static design that
receives reconfigurable modules to load from the CPU and loads them into the FPGA directly.

The main challenge to implementing this system is that the data used to reconfigure the FPGA
cannot be examined to determine where in the FPGA it is being placed, e.g., if the bitstream to
load is a partial or full bitstream. This is because the format of this data is proprietary, and so
cannot be parsed. When loading the data into the FPGA, the logic must not be tricked into loading
a bitstream that overwrites the static secure hardware; only a bitstream that is intended to go into
a particular slot should be loaded. Fortunately, Cloud RTR solves this problem by requiring the
cloud compiler to sign metadata for each bitstream indicating which slot it is compiled for, in
addition to the bitstream itself. The loading logic in the FPGA must verify the signature over the

bitstream and the metadata before attempting a reconfiguration.

92

Secure Storage

Verification Data
| y I I |

2. Verification
cpy |- Llead ; I I !
Bitstream Logic : I |
1 Slot 2
‘ | Slot1 1 (in use) !
4. Loaded in Slot 1 — ICAP I I I
Controller I]
I |
Loading Logic
3. Reconfigure Slot 1

h FPGA

\ ICAP /—

Figure 5.1: Secure Slot Loading The secure slot loading system is a module (outline in green)
that has a sub-function that verifies bitstreams, metadata, and authorization data (such as checking
a signature or a PIN) before allowing a reconfiguration to take place. The provided bitstream is
then given to the ICAP controller logic if authorization is successful, and then the slot that was
reconfigured is given back to the CPU.

This logic must also maintain state about the currently executing hardware modules, as the
operating system is untrusted when running the SDSHW platform. The CPU may request that
a module be loaded into a slot that is already occupied by a different module when a different
slot is available, or request that a module be loaded into a more privileged slot. To prevent these
situations, the loading logic will maintain this state and will only load modules into slots they are
authorized to use, and not overwrite a slot if a different slot is available. Rate-limiting of slot
overwriting is also needed to prevent hardware modules from being maliciously removed, but the
limit needs to be calibrated for different device use cases. Once measured, it can be configured
into the loading logic, and the SDSHW update flow can be used to update it, if needed.

Based on these requirements, the loading logic follows this operational flow, as shown in Fig-

ure 5.1:

1. The operating system requests a module to be loaded by writing to the loading logic’s con-

93

trol registers, which are memory-mapped into the CPU’s address space using FPGA-CPU

interconnects.

2. The loading logic will verify the cloud compiler’s signatures over the module bitstream and

metadata.

3. Assuming the signature check passes, the loading logic will determine if the slot indicated

by the metadata is available.

(a) If the slot is available, it will load the module immediately.

(b) If the slot is not available, and there is not a rate-limit constraint that prevents loading,

the logic will overwrite the slot with the new module.

4. If a load was made, the logic will return a descriptor to the CPU of the slot by writing to a

CPU-memory mapped output register.

To further prevent abuse of slot reconfiguring, the loading system will need to implement addi-
tional access controls. Cloud RTR introduced the concept of the privileged slot, which has greater
access to system resources such as direct CPU memory access. These capabilities are useful for
secure hardware applications, but are also targets for malicious modules. Therefore, at the very
least, the loading logic will perform another signature check over the module against a whitelist of
developer public keys that are trusted not to abuse these capabilities. This whitelist can be hard-
coded into the logic and updated using the SDSHW update flow. In addition, the logic can require
further authentication, such as user input of pushing a dedicated physical button or inputting an

authorization code.

5.3.2 Slot Isolation

Cloud RTR slots also do not make any claims about the security of the system. They offer
the ability to change a part of the FPGA at runtime, but not to do wo without compromising

other hardware or observing data. It has not been proven that FPGA hardware can be designed to

94

CPU Memory Watcher
: |
I Slot I
Lo FPGA

Figure 5.2: Potential Slot Wire Snooping If a static application in the FPGA, such as a memory
watcher that scans for malware, is connected to the CPU through a wire that runs through a slot,
there is a theoretical potential for the wire to be snooped. Although existing compilation tool do
not allow for hardware be designed to connect to a wire in this way, it has not been proven to be
impossible.

interfere with other hardware without having direct circuitry designed to perform it, but there is a
risk of a reconfigurable module having a wire that carries sensitive data being routed through the
reconfigurable region, and in theory, it may be possible to interfere with it, with an example shown
in Figure 5.2. In addition, memory corruption attacks such as Rowhammer [124] have not been
studied in FPGAs, but since FPGAs are comprised of similar memory technology to Rowhammer-
vulnerable systems, this attack also may be possible. To prevent these theoretical attacks, efforts
should be made in the design of the FPGA layout to prevent slots being placed near logic that is
sensitive to prevent memory corruption or wire snooping, as is recommended by the Xilinx security
guide [125].

This can be accomplished using two steps. When a design for an FPGA has been synthe-
sized, sections of the FPGA can be physically reserved for certain logic. This process is known as
“floorplanning” and is done before routing of wires is performed (a simple example is shown in
Figure 5.3). A simple first step is to isolate the reconfigurable slots and any sensitive static logic
into physically separate regions of the FPGA in such a manner that routing will not place wires
through the slots (e.g., having these regions on opposite sides of the physical FPGA). This initial
step may be sufficient, and can be manually examined after routing has been performed. As the

routing of the static design does not change when reconfigurable modules are compiled, this step

95

|

CPU Memory Watcher : [
I slot |

: |

FPGA Lo

Figure 5.3: Floorplanned Slot In this design, the slot has been floorplanned to be isolated from
the static logic so that sensitive wires are not routed through it. In this case, it is simple, but other
that designs that have more sensitive static logic or more slots, the floorplanning and wire routing
because more difficult.

only needs to be performed once per design.

If routing cannot be isolated in this way automatically, the design must be constrained to pre-
vent the routing of sensitive data and the placement of sensitive logic near the reconfigurable
modules. This process is more difficult to automate, but also only needs to be done once per static
design. However, using constraints in this manner reduces some of the benefits of Cloud RTR and
should only be done if absolutely necessary. Achieving isolation in this manner is left to future
work.

It should be noted that a reconfigurable module should not be able to directly read a wire that
is not part of its own logic. As the reconfigurable modules are designed as C code or synthesized
netlists and uploaded to the cloud compiler, designers should not even be able to know that such
wires exist, and any attempts to reference them should result in compilation failure.

It should also be noted that using design constraints to enforce isolation is only needed for
static designs with high resource utilization that results in high routing contention. The more extra
space there is in the FPGA that is not used by logic, the easier it is for wires to be routed without

being placed in the reconfigurable modules.

96

5.3.3 Slot Preemption

As previously described, the loading logic in the secure SDSHW hardware will load reconfig-
urable modules into slots on request from the CPU and overwrite running modules in certain cases.
Cloud RTR specifies that modules in slots should have metadata set to indicate whether they are
preemptable or non-preemptable, meaning that they will lose important state if they are unloaded
due to time slicing. Cloud RTR allowed for this, but also recommended limiting the number of
non-preemptable modules running simultaneously, as the number of available slots in a given de-
vice is limited. This is further complicated by secure hardware applications, where preemption
may impose a danger to the system.

To address this, we require that hardware modules still include this prememption flag in their
metadata, but we also add signals to the module to indicate that a reconfiguration is going to occur.
When a module must be unloaded, the loading logic will assert a signal and wait a certain number
of cycles based on a maximum time indicated in the metadata that the module needs to store state.
The module in turn will make use of the SDSHW secure storage system to store this state. Once a
finished signal from the module is asserted or the timeout is reached, the running module will be
overwritten with the new module. This is to balance the need for secure hardware to be running
with the challenge of limited FPGA resources. All slots will be updated to include these signals,
and modules are responsible for implementing the needed state-saving logic and indicating the
time needed to do this, if they use this functionality. Modules also can still indicate that they
are non-preemptable, but again, the number of these modules running will need to be limited to

conserve resources.

5.3.4 Secure Storage Access

As previously described, the reconfigurable modules should have access to the SDSHW secure
storage system in order to safely store application state. This is needed to support many secure
hardware applications, e.g., secure cryptography and TPMs that generate and store state. In order

for reconfigurable modules to have the same capability, the secure storage must be accessible.

97

Secure Storage

\ 4

\ 4

Storage Proxy

4 |
S _ v

| r="=n1
I l l
Slot1 | I siot2 |
l
J

\ 4

CPU Loading Logic

e

FPGA

Figure 5.4: Secure Storage Proxy So that the arbitrary hardware that can be loaded into a slot
cannot read all data out of the secure storage, such as the secure boot keypair or data used by other
applications, a proxy is placed between the slots and the storage in the FPGA. Since the slots can
only change the hardware in the slot area, but not the interface to the rest of the FPGA, this is the
only way to access the storage. The storage ensures that the hardware in each slot can only access
data that it has generated, based on information on the currently running hardware from the loading
logic. Static hardware in the FPGA can be directly wired to the secure storage, as this hardware is
present at design time and all comes from trusted sources.

The secure storage system could be connected directly to the slot definitions to provide this
access, but this imposes a security vulnerability. Since SDSHW assumes that all hardware in the
FPGA is trusted, there are no access controls imposed on the secure storage, as any hardware in
the FPGA is trusted to access it. This assumption fails when hardware is loaded from unknown
developers, as unrestricted access to the secure storage would allow for access to the SDSHW
secure boot key, and would then allow it to be exfiltrated and used to take over the device.

Instead, we implement a proxy system between the secure storage and the slots definitions that
processes read and write requests to the secure storage and only allows a module to access data
that it has generated. This is only used for access to storage from the slots; any other hardware in
the static secure hardware can be connected to the secure storage, since all this hardware is from

the same trusted source. This is shown in Figure 5.4.

98

5. Upload to Distributor

|
|
I
|
|
|
|
!_
|
|
|
|

Cloud RTR

FPGA [N

h e Tt | LR
pu— ron |1 Kl [rea |||
- :

1
1
1 1
1
; I
| 1 FPGA
o= ;[0 RO
! 1
- L |
1
1
1
|
1
1

! o S i | ' m

l_ T I _i

1.Build! 2. Assemble ! 3. Provision 4. Develop - 6. Download
Chips Devices Devices Applications applications

Figure 5.5: User Space Secure Hardware Overview User space secure hardware combines Cloud
RTR and SDSHW. Based on the six roles defined in Chapter 2, each party performs a action in the
device creation flow. In SDSH, the silicon manufacturer builds chips, the hardware assembler
builds devices from these chips and the system provisioner provisions hardware into the device. In
Cloud RTR, applications developers upload apps and hardware to the distributor and users down-
load applications to the device that the system provisioner provisioned with SDSHW.

This system will need to know which module is running in each slot, and so will receive this
data when a slot is configured. The loading system will generate an identifier for each module,
such as its hash value, and specify this identifier and the slot that it is running in to the storage
proxy. The proxy then uses this identifier to lookup where in the secure storage to process read and
write requests. Any requests from a given slot will be assumed to come from the module identifier
that the loading logic placed in that slot; the proxy will receive a request from a slot, look up the
module identifier for the slot in its internal state, and use that identifier to look up the modules’s

data in storage.

99

5.3.5 Combining Solutions

With these solutions, we have made Cloud RTR compatible with SDSHW. To provide our
complete system of user space secure hardware, we require that an FPGA be provisioned with
SDSHW and for a Cloud RTR bitstream to be executed in the provisioned FPGA. We expect
that chips are provided by silicon manufacturers that hardware assemblers can combine into a
system that provides the FPGA and fixed hardware requirements of SDSHW, which are already
available as off-the-shelf systems today. We then expect a system provisioner to have the FPGA
self-provision into a secure state that executes a modified Cloud RTR bitstream that incorporates
the solutions we have described above. Finally, application developers can design software and
hardware modules to target the Cloud RTR reconfigurable slots in the bitstream using the Cloud
RTR development flow, and the system’s operating system will have the needed interfaces to let
software load their hardware into the FPGA.

Specifically, our system is designed and used in these steps, which are outlined in Figure 5.5:

1. Silicon manufacturers provide chips with an FPGA and required fixed secure hardware.
2. Hardware assemblers take this chip and other components and assemble a device.

3. System provisioners design or select a modified Cloud RTR bitstream that incorporates our

solutions.

4. System provisioners load the SDSHW self-provisioning system into the FPGA and provide

the modified Cloud RTR bitstream as the initial configuration.
5. Developers design applications for these modified slots and upload them to the distributor.

6. The distributor provides these applications to users, and the users execute them. The appli-

cations load hardware into the secure slots as needed.

100

5.4 Implementation

To prove that the realization of user-space secure hardware is feasible and that Cloud RTR can
be modified to implement the SDSHW platform, we used an existing device to demonstrate our
secure slots architecture. This system is the ZCU102 Development Kit, which couples a quad-core
ARMvS8 CPU with a modern Xilinx FPGA. This system includes the required fixed secure and
system configuration hardware that is needed by the SDSHW platform, and so is usable for our
demonstration.

We implemented a modified Cloud RTR implementation that has the changes to the loading
and slot definitions as previously described. The heart of this implementation is a modified version
of the static design that is presented by Cloud RTR. The modifications that we made to this system
were to implement loading of modules internally by the FPGA, implementing a proxy system for
access-control to the secure storage and changing the definition of slots to support secure storage

and privileged resource access.

5.4.1 Secure Slots

In our modified version of Cloud RTR, there are still reconfigurable slots that are used for
dynamic modules, but now there are multiple classes of slots. Essentially, we have the vanilla
slots of Cloud RTR that do not provide any security properties, ‘secure’ slots that implement the
changes we have outlined in this chapter, and ‘privileged’ slots, which are secure slots that have
access to sensitive resources, such as full CPU memory space access. We note that upgrading a
vanilla Cloud RTR slot into a secure slot does not remove any functionality, so we upgrade all slots
to secure slots in our implementation. Not all applications can or should need access to privileged
resources, however, so we only provide a limited number of privileged slots, which are connected

to the system’s DRAM controller.

101

This slots are physically isolated in the static design and floorplanned to be separate from other
logic such that sensitive wires are unlikely to be route through these slots. After performing place
and route on the design, we verified that this was the case, as the other static logic outside of the

slots is not complicated, and so does not required abnormal wire routing to be performed.

5.4.2 Secure Storage Proxy

As the slots need access to the secure storage, there are ports in the slot interface that modules
can use for reads and writes. However, modules should not be able to access all stored data, as
they are not trusted to control the FPGA. Therefore, we implement a simple proxy subsystem of
the loading logic. When the logic loads a module into a slot, it provides this information to the
proxy in the form of the slot number and the SHAS512 hash of the module. When any module is
loaded, the proxy will partition the data they store, and only allow reads or writes to the storage
area corresponding to the hash. This allows for modules to still store data, but not access other data
for modules or hardware in the static design. We implemented these features by simply extending

the secure storage system that was implemented for SDSHW in Chapter 4.

5.4.3 Secure Loading

To be able to load reconfigurable modules without compromising the security of SDSHW, these
modules need to be loaded directly by the FPGA into the correct slots. Therefore, we implemented
a simple subsystem of the static secure hardware using the Microblaze soft CPU that interfaces
with the FPGA’s ICAP logic. The Microblaze CPU then exposes an API to the CPU to allow for
modules to be queued for loading, along with metadata indicated the modules requirements (e.g.,
is a persistent module, is a privileged module, signatures). All modules are hashed as they are
loaded, and this hash and the slot the module was loaded into is passed to the storage proxy as
described.

There is a security problem when loading the bitstream, however, in that the logic does not

know where the bitstream for a module is destined without other information. The ICAP logic

102

will load it into the correct place, but the Microblaze subsystem cannot parse the bitstream, as its
format is proprietary. However, Cloud RTR already requires the module and its slot information
to be signed by the cloud compiler. To address this vulnerability, we verify this signature in the
loading logic to ensure that the Cloud RTR system has compiled the bitstream for the slot that it is
being loading into. In addition, if the module is specified to be privileged, it also must be signed
by a key in a whitelisted set of keys that represent trusted module sources.

We combine all of these modifications into a single bitstream that we run on our test device.
The device is provisioned with SDSHW to provide the security properties that are needed by the

secure slots, and we use this bitstream for implementing applications described in our evaluation.

5.5 Evaluation

To prove that our vision of user space secure hardware is both possible and practical, we imple-
mented a proof-of-concept application that uses our system. We then evaluate the performance of
this application to determine the tradeoffs an application developer must be aware of when using
the FPGA, and use it to determine the throughput for reconfiguring the FPGA using the ICAP.
This application is an implementation of a real-world private set intersection service, similar to the
contact discovery designed for SGX by Signal. This system allows for an encrypted list of contacts
to be uploaded and compared to a database of contacts without exposing the uploaded list. In the
following sections we describe how this application works in detail and present benchmarks of its

performance compared to a software implementation.

5.5.1 Contact Discovery Performance

For our proof-of-concept application, we extend our private set intersection experiment from
the previous chapter to implement a functional system similar to an existing service. The en-
crypted messaging service Signal allows users to exchange messages without the service provider

having any information on the communication other than the knowledge of the total set of Signal

103

users [123]. However, in order to discover other users, a new user must match their set of contacts
against the database of users help by Signal, which is performed by Signal in the cloud and is
stored as a list of phone number hashes. To improve user privacy, Signal has implemented this
contact discovery service in SGX so that users can upload their contacts in an encrypted form and
have them matched against the database without directly exposing this list to Signal. This ser-
vice is open-sourced, so any user can verify that the correct code is running using SGX’s remote
attestation system.

We have implemented a similar system that is executed in a secure reconfigurable module. An
application will include this module and load it into the FPGA using the internal reconfiguration
system, just as with the previous application. The application maintains two lists of contacts: one
for the user’s uploaded contact list and one for a portion of the database. To use the hardware, a user
encrypts and uploads a list of phone number SHAS512 (Signal contacts are phone numbers). These
encrypted hashes are passed to the hardware, which decrypts them using a secret in the secure
storage and appends them to the contact list. The software application then provides portions of the
database to the hardware in batches, where the hardware matches them against all of the contacts
in the list and indicates which in the batch match. This is performed until the entire database has
been passed through the hardware.

We compare the performance of this hardware with an alternative implementation implemented
in C++ and executed on the coupled ARM processor CPU. The results are shown in Figures 5.6
and 5.7. As can be seen, the performance of the FPGA implementation is approximately 30 times
slower that the software implementation, and this relationship is maintained as the size of the
database increases. However, the time to determine a match between a database item and a contact
is constant, and is only approximately 20 times slower in the FPGA. This shows that the primary
bottleneck to using the FPGA is passing data between the CPU and the FPGA, and is consistent
to results found in Chapter 3. Results for this proof-of-concept could be improved with a more
sophisticated data-passing model, as was done in that chapter. This evaluation does not attempt to

make a performance argument, however. The goal is to present this tradeoff to developers, so that

104

+ ARM Results
FPGA Results

10—1 4

Total Matching Time (s)
+
+
+
+
+
+

2000 4000 6000 8000 10000 12000 14000
Database Size (bytes)

Figure 5.6: Contact Discovert Overall Performance The performance of the contact discovery
application, including loading of the database into the FPGA. The FPGA is approximately 30x
slower than the ARM CPU, but the two implementations follow the same scaling patterns as the
size of the database is increased.

they are aware of the basic design tradeoffs of performance vs. programmability that are required
to use our system. A more complex application design that transfers less data into the FPGA and
uses more data-parallelism in the FPGA would likely achieve better results.

The results of an alternative implementation are presented in Figure 5.8. In this implementa-
tion, the database is stored in FPGA memory, and the contacts are loaded in for each user. This
implementation takes advantage of more parallelism of the FPGA, but is limited by the amount of
memory available in the FPGA to store the database. Because of this, our experiment was limited to
a database that can have 7500 contacts at most. As shown from the data, the FPGA’s performance
time is initially higher, but increases at a much lower rate than the CPU. With more available
FPGA memory (e.g., streaming directly from system memory), or by using a different database
storage design (e.g., using SHA256 instead of SHAS512), this memory limit can be mitigated. The
performance of the FPGA would then surpass that of the ARM CPU’s for larger database sizes.

This would be ideal for Signal, as their database of users would likely be in the millions [126].

105

+ ARM Results
FPGA Results

Set Intersection Time (s)
=
o
&

++++++++++ A+ A+

2000 4000 6000 8000 10000 12000 14000
Database Size (bytes)

Figure 5.7: Contact Discovery Intersection Performance The performance of the contact dis-
covery application when only considering the performance of the set intersection of the database
and the uploaded contacts. The FPGA 1is approximately 20x slower than the ARM CPU, but is con-
sistent with all database sizes, as this measures the time to check one item in the database against
the uploaded contacts list.

5.5.2 ICAP Benchmark

We used these two implementations to benchmark the ICAP’s reconfiguration performance.
The FPGA static design that we used for these experiments contains a reconfigurable slot, and
both designs for synthesized to be partial bitstreams. Using these bitstreams, we used a C++
program to write them to the ICAP. The reconfigurable slot is approximately 50% of our device’s
available logic, so as to provide the needed memory resources to the second contact discovery
implementation.

The resulting partial bitstreams are 12 MB in size — any hardware module that is compiled for
a particular slot will be the same size as any other module, as the bitstream needs to configure the
entire area of the slot, no matter how much of it is actually utilized. After running our benchmark
for 100 trials, we determined that the ICAP can reconfigure this area in roughly 68.2 seconds,

achieving an average throughput of 173.4 KB/s with a standard deviation of 1.223 KB/s.

106

10—1 4

1072 - +

Total Matching Time (s)

+ ARM Results
+ FPGA Results

1000 2000 3000 4000 5000 6000 7000
Database Size (bytes)

Figure 5.8: Contact Discovery With Pre-loaded Database The performance of the contact dis-
covery application when the database is already loaded into the FPGA. For small database sizes,
the software implementations is faster than the FGPA, but as the data size increases, the FPGA
intersection time remains constant, but the software time increases.

Based on this performance, the ICAP will likely not be able to handle reconfigurations that
happen too often. Slots in devices implementing user space hardware are likely to be smaller
so as to increase the sharing of the FPGA, but the time slicing of the FPGA cannot achieve the
rate of software at this time. For this reason, the ICAP reconfiguration logic of user space secure
hardware will need to enforce more strict rate-limiting and minimum residence time for modules
(i.e., modules will be allowed to stay in the FPGA for at least a certain amount of time before
being at risk of preemption). This does limit the total number of modules that can practically
share the FPGA, but we do not expect this to be problematic. As discussed in Chapter 3, not
all applications are expected to want to include their own custom hardware. We expect the same
for secure hardware, and the slot system of Cloud RTR that user space secure hardware uses can
only support as many concurrent applications as there are slots, which will calibrated for the most

optimal size for each device by the system provisioners and application developers.

107

5.6 Security Analysis

The stated goals of this dissertation were to provide a means for secure hardware to be used as
a software resource and to ensure that this hardware maintains the same threat model as traditional
secure hardware. In this chapter, we have combined the systems from the previous chapters to meet
this goal. However, we have not proven that the threat model described in Chapter 2 is maintained.
In fact, there are a number of additional threat vectors that are created by our system that must be
examined.

Our analysis focuses on the two properties of secure hardware that we have identified, fixed
functionality and isolation. As secure hardware derives its protections against the rest of the system
and physical adversaries from these properties, if we can show that we still provide these properties

then we will also provide the same threat model.

5.6.1 Fixed Functionality

This property results from the fact that when an application is implemented as a physical digital
circuit in silicon, the functionality of the chip cannot be practically be changed. This means that so
long as the chip is powered, this functionality will perform the same as when it was manufactured.
However, if the hardware can be changed, i.e., if the FPGA used to execute this hardware can be
reprogrammed, we lose this property, as the functionality of the original bitstream is changed.

We do not claim that FPGAs do not operate in this manner; this functionality is the exact reason
we need to use an FPGA. Instead, we claim that this property can be provided to a developer by
ensuring that the hardware loaded into the FPGA always provides its function while it is loaded.
We argue that this claim does not need to be maintained at all times universally, and that it only
matters to applications if the hardware functionality is executing when the application is expecting
it to. Therefore, we claim that any hardware in the FPGA that is running using our system provides
this property so long as it is still running.

For static hardware in vanilla SDSHW, this means that the hardware provides this property so

108

long as the bitstream is running, and if an update is provided, this means that the functionality has
changed, not the property itself. These properties hold so long as the update mechanism cannot be
subverted by an adversary. This means that the update authorization enforced by the hardware must
be sufficient to prevent this from occurring. Requiring a signature to be verified over the update
should be required at minimum, but some form of local authorization should be required, such as
the input of a PIN from a user or the pressing of a physical button. This prevents the compromise
of the key from compromising the secure hardware, as local authorization would still be required.
However, for secure hardware that is loaded dynamically, these same properties are more diffi-
cult to provide. This is because changing the running hardware module is the intended purpose of
this system and for an application to rely on this property, the hardware must not be unloaded until
the application is ready for it to be unloaded. In theory, the application designers could encode the
times they expect the hardware to be running in the configuration metadata (e.g., always running
in the background, running when the application is running), but these conditions are difficult to
verify. For example, if an application requires a module to always be running when the application
is executing, the hardware can load the module on request, but cannot tell if the application is run-
ning since this is controlled by the operating system, which is untrusted. This could be solved by
requiring all hardware modules to be persistent, but this greatly reduces the sharing potential of the
FPGA. Instead, we present the option for authorization to be required for configuration, especially
if the reconfiguration requires for a currently running application to be unloaded. This authoriza-
tion request is presented to the user, and can be performed with a PIN entry, or preferably, a trusted
input directly to the FPGA. For example, the internal reconfiguration logic can be updated to re-
quire such an authorization when a reconfiguration would overwrite an existing module, and a user
would press a physical button on a device to approve the reconfiguration. Such physical interfaces
are already manufactured into existing devices, and can easily be made to be trusted inputs for the
FPGA, and we implement this as an optional step for authentication in our reconfiguration logic.
However, for a cloud situation where there is no user to press a physical button, a different

solution is needed. In this case, we can implement time slicing of slots that are contended, meaning

109

that no single hardware application can use them exclusively. This requires more in-depth design
of our reconfiguration logic and the applications themselves, but is achievable. To support this, a
hardware application will provide the minimum execution time it needs for a cycle along with the
preemption time required by the preemption system we described. If contention for the running
slot occurs, then the application will be allowed to run for its execution cycle and then signaled to
be unloaded, where it has opportunity to unload its state. After that, the slot is reprogrammed with
a new hardware that has the same information.

This means that all hardware has access to the slot in the face of contention. In addition, rate
limiting can be applied to contended slots to prevent a certain module from being starved. As the
hardware cannot tell absolutely if an application is executing, this is the only way to ensure that a
hardware module is running when the application needs it. Rate limiting is important, however, as
this contention over the slots will greatly decrease the system’s performance. In addition, since the
hardware cannot tell if an application has exited, these hardware modules need to be keep being
time-sliced until the FPGA reboots or receives a new signal. The hardware applications themselves
can signal they are finished after receiving a remote message or after they have complete their task
however.

These properties are enforced by the FPGA’s static configuration, but this configuration can
only be trusted if the secure fixed hardware has been properly configured and if this hardware does
not have any vulnerabilities. The provisioning step required to establish SDSHW ensures that the
system is configured properly. For our test device, this means generating a secure boot keypair,
programming this key to the secure boot one-time programmable configuration registers, setting
the bits in this configuration to require all boots to be signed by this key. The provisioning step
then signs a single configuration that is provided as the initial hardware and boot software. This
is the only software that can be booted by the device, assuming the key was generated securely
and not exfiltrated during the provisioning process. This software then disables the reconfiguration
and debug systems of the CPU to prevent observation and reprogramming of the FPGA. For our

device, the secure boot system verifies a 4096-bit RSA signature of the booted software at each

110

boot, using a key that is stored as a Keccak-384 hash in its configuration (the full key is provided
as part of the boot file). Assuming this cryptography cannot be broken and is performed correctly
and consistently, the secure boot system itself operates as designed.

So long as the system provisioner performed these steps faithfully, fixed functionality can be
provided. In essence, SDSHW and by extension, user space secure hardware, relies on the FPGA

being provisioned into a secure state.

5.6.2 Fixed Isolation

The isolation properties of user space secure hardware are provided in part by disabling debug
and reconfiguration access by the CPU, but also by designing the static bitstream and slots cor-
rectly. For vanilla SDSHW, simply disabling external access is all that is required for this property,
as there is no other way to change the FPGA state without going through these ports connected to
the CPU in our device. So long as the booted software that is loaded by secure boot disables these
ports after the trusted FPGA configuration is loaded, they will never be available to compromise
this property.

For user space secure hardware, however, the fact that hardware can be changed at any time
meant that we had to allow for hardware that is not part of the trusted static configuration. There-
fore, to maintain this property for all static hardware and all potential hardware modules, these
modules must not be able to observe the rest of the FPGA. We have therefore designed the slots so
that each reconfigurable region is an isolated sandbox with only certain interfaces to access secure
storage and data exchange with the CPU. The assumption is that once defined in this manner, the
hardware loaded into the modules cannot change the wire routing, and so is trapped. This assump-
tion holds so long as hardware cannot be designed to ‘glitch’ the FPGA somehow to cause wires
to be connected that were not intended. To our knowledge, this is not possible, but it has not be
studied by research. We leave further exploration of this subject to future work. However, short of
being able to change the FPGA’s running configuration maliciously, any hardware in the reconfig-

urable slots will be isolated from other hardware in the FPGA, thus providing fixed isolation.

111

Chapter 6

Discussion, Future Work and Conclusion

In this dissertation, we have presented our vision of user space secure hardware and provided
an implementation with complete example applications. Not only does our vision solve a prob-
lem facing developers today, in the fact that they cannot always have access to the secure silicon
features they need, but it can be directly implemented on existing devices. Here we discuss the im-

plications of our system and what future work needs to be done for all of the various components.

6.1 Discussion

Implications

With our system, applications are able to create their own implementations of hardware systems
that do not require the development and manufacture of new silicon. Furthermore, we can provide
the same security properties for this hardware as if it was implemented in silicon. This provides
many new avenues for applications to be implemented on, as it not only allows for them to design
their own custom accelerators, but allows for them to process private data and perform secret
computation that is application-specific, and protected from the rest of the system. This means that
applications can perform any computation using our system and be safe from any exploit of the

operating system or even from a physical adversary that can replace arbitrary parts of the system.

112

The clearest benefit to consumer devices is protection from theft. For example, if our system
is run on a smartphone, applications can store and process data in a secure hardware module when
the application needs to use it. If the device is stolen, even if the operating system protections
are bypassed, this data cannot be accessed and the computation provided by the secure hardware
modules cannot be changed. This is especially useful for defending against state-level threats,
as these actors, such as government and law enforcement agencies, have the ability to compel
software and hardware manufactures to disable protections. By provisioning the system the way
we do, there is no party external to the device that can be compelled to disable protections. State-

level actors instead will need to use their compulsion powers on users of devices directly.

Assumptions and Threats

Our system also relies on both a correct provisioning process provided by the system provi-
sioner and for the hardware itself to not have any vulnerabilities. In addition, applications need
to be compiled and delivered faithfully to devices by the application distributor. We show these
trust relationships in our trust model, and these are the same as current hardware. However, in our
system, this trust model only needs to be maintained by each party at one time, e.g., at provision
time or when the application is compiled.

Some of these stages are difficult to audit, such as ensuring that the hardware was manufactured
correctly or that the system was provisioned securely. However the compilation results of the
cloud compiler are simple for a developer to verify so long as the static design is open source.
The purpose of the cloud compiler is to compile hardware for all different platform versions for
different apps and to recompile when new versions are released, but if these designs are known,
any single compilation result can be independently verified. However, all of the trust relationships
in the trust model are one-time relationships, even if they cannot be audited. The system is secure
so long as these parties can be trusted at the time they perform their required actions.

The primary technologic threats are related to how hardware is updated and if the properties
of secure hardware can be circumvented. The SDSHW platform provides a means for hardware to

be updated by the developers if they chose, but if the developers implement it incorrectly or use a

113

weak authentication system, then an adversary can cause a malicious update to be accepted. We
do not require a certain set of requirements for the implementation of an update mechanism, but
we have provided suggestions to reduce the risk of the update mechanism being abused.
Essentially, this advice can be summarized as requiring authorization for an update by the
party that is using the system. For personal devices, these would mean requiring both the user
and the application developer to provide some sort of authorization, such as by pushing a physical
button and signing the update respectively. In the case of a cloud application, the developer can
implement a remote attestation system in their application that requires authorization from the
developer directly before the update will be accepted. The goal of these schemes is to prevent
the hardware from being updated without knowledge of the application user, as this violates the
property of fixed functionality, as the hardware will be executing a function that is not what is
expected by the application. Updates are allowable, but the application user needs to be aware of

when updates occur in order for this property to be maintained.

6.2 Future Work

There are still features to be implemented for all three systems we present: Cloud RTR,
SDSHW, and the complete user space secure hardware system. We would also like to explore

more applications for each of these systems to determine different usage models.

6.2.1 Cloud RTR

There are several avenues for future work in Cloud RTR. Since we did not explore the pos-
sibility of using FPGAs to achieve power savings in devices, this topic is open to be explored.
Prior research has suggested that offloading computation to the FPGA and disabling high-powered
systems can reduce the overall system draw in certain situations and is worth exploring. We would
also like to demonstrate the Cloud RTR system for other vendors and device usage contexts, such

as Altera FPGAs and use cases in data centers.

114

6.2.2 SDSHW

There are several avenues for future work for SDSHW as well. We implemented several ex-
ample applications, but we did not implement all of the possible secure hardware features that
we identified. Implementing these features would make SDSHW more practical for developers,
as developers could use them directly as libraries. In addition, there are a number of hardware
enhancements that we identified in Chapter 4 that we would like to have added to future devices.
We would also like to interact with silicon manufacturers to see if these features could be added
to augment the fixed hardware in FPGA systems so that implementing the SDSHW platform is
less complex. This includes allowing the FPGA direct access to the secure hardware, having a
dedicated storage device accessible only to the FPGA, and possibly even making the FPGA the

master of the system to allow for the coupled CPU to be used for secure computations.

6.2.3 User Space Secure Hardware

Besides the future work that is available for the Cloud RTR and SDSHW components, there are
several avenues that can be pursued for the overall vision. More applications beyond a proof-of-
concept should be explored to further explore its potential. Work also needs to be done to determine
how much interference a reconfigurable module can cause on the rest of a running FPGA bitstream,
or if it can read private data. If such interference is impossible, some of the isolation requirements
on reconfigurable slots we proposed will not be necessary. However, if it is possible, the amount
of isolation that is needed between different FPGA modules will need to be determined and our
isolation efforts will be updated with this information.

We would also like to explore better models for application-hardware communication. In the
current implementation of user space secure hardware, applications have a strong assumption that
the correct hardware is running and are given a a communication channel directly with it by the
operating system. However, the hardware has no guarantee that the software that originally loaded
the hardware is still running in the operating system. If this hardware provides some sort of secure

function for an application, it may be desirable to ensure that only this application can receive

115

the output. Currently, there is no way for the FPGA to determine what software is running on the
CPU. We would like to explore a possible method to establish such a secure channel. Currently, the
operating system is trusted to provide it. It may be possible, however, for the FPGA to verify the
operating system that is running, and based on this, either have access to a list of running software

or some other way to verify the application that is interacting with it.

6.3 Conclusion

We have proven our vision of user space secure hardware in this dissertation. Our Cloud
RTR and SDSHW systems provide the building blocks to implement user space secure hardware,
namely by levering cloud compilation to allow for applications to provide their own hardware and
self-provisioning to ensure that an FPGA is securely configured. By combining these solutions,
we are able to achieve our vision by having the FPGA take control of configuration, thus making
Cloud RTR compatible with SDSHW.

The resulting solution, user space secure hardware, demonstrates that our vision is possible.
Furthermore, we demonstrate it using existing hardware, meaning that it can be practically realized
today. We have enabled developers to design their own secure hardware and access it from their

software applications as a user space resource when run on a provisioned device.

116

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

i0OS Security - i0S 11. https ://www . apple.com/business/docs/i0S_
Security_Guide.pdf.

Fan Zhang et al. “Town Crier: An Authenticated Data Feed for Smart Contracts”. In: Proc.
ACM SIGSAC Conference on Computer and Communications Security (CCS). Vienna,
Austria, 2016.

Joshua Lind et al. “Teechain: Scalable Blockchain Payments using Trusted Execution En-
vironments”. In: CoRR abs/1707.05454 (2017). arXiv: 1707 . 05454. URL: http://
arxiv.org/abs/1707.05454.

Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications from an
Untrusted Cloud with Haven”. In: ACM Trans. Comput. Syst. 33.3 (2015).

Amazon EC2 F1 Instances: Run Customizable FPGAs in the AWS Cloud. https://
aws.amazon.com/ec2/instance-types/fl/.

Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. “FPGA PUF using pro-
grammable delay lines”. In: Information Forensics and Security (WIF'S), 2010 IEEE Inter-
national Workshop on. IEEE. 2010, pp. 1-6.

Project Catapult. https://www.microsoft.com/en-us/research/project/
project—-catapult/.

A. M. Caulfield et al. “A cloud-scale acceleration architecture”. In: [IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 2016.

Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating Large-scale Datacenter
Services”. In: Proc. Annual International Symposium on Computer Architecuture (ISCA).

2014.

CES: Intel GOes for self-driving cars. https://www.electronicsweekly.com/
news/design/ces-intel-goes-self-driving-cars-2017-01/.

117

https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://arxiv.org/abs/1707.05454
http://arxiv.org/abs/1707.05454
http://arxiv.org/abs/1707.05454
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.electronicsweekly.com/news/design/ces-intel-goes-self-driving-cars-2017-01/
https://www.electronicsweekly.com/news/design/ces-intel-goes-self-driving-cars-2017-01/

[11] Zyng-7000 All Programmable SoC. http : / / www . xilinx . com / products /
silicon—-devices/soc/zyng—7000/. URL: http://www.xilinx.com/
products/silicon-devices/soc/zyng—-7000/.

[12] Zyng UltraScale+ MPSoC. http://www.xilinx .com/products/silicon-
devices/soc/zyng-ultrascale-mpsoc.html.

[13] Victor Costan and Srinivas Devadas. Intel sgx explained. Tech. rep. Cryptology ePrint
Archive, Report 2016/086, 2016. https://eprint. iacr. org/2016/086.

[14] Secure Golden Key Boot. https://rol.im/securegoldenkeyboot/.

[15] CVE-2016-3287. Available from MITRE, CVE-ID CVE-2016-3287. July 2016. URL: https:
//www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3287.

[16] CVE-2016-3320. Available from MITRE, CVE-ID CVE-2016-3320. Aug. 2016. URL: https:
//www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3320.

[17] Altera SoCs. https://www.altera.com/products/soc/overview.html.
URL: https://www.altera.com/products/soc/overview.html.

[18] Vivado High-Level Synthesis. nttp://www.x1linx.com/products/design-—
tools/vivado/integration/esl-design/. URL: http://www.xilinx.
com/products/design-tools/vivado/integration/esl-design/.

[19] Paramvir Bahl et al. “White Space Networking with Wi-Fi like Connectivity”. In: Proc.
SIGCOMM. Aug. 2009.

[20] Nick L. Petroni Jr. et al. “Copilot - a coprocessor-based kernel runtime integrity monitor”.
In: Proc. USENIX Security Symposium. San Diego, CA, 2004.

[21] Jad Naous et al. “NetFPGA: Reusable Router Architecture for Experimental Research”.

In: Proceedings of the ACM Workshop on Programmable Routers for Extensible Services
of Tomorrow (PRESTO). Seattle, WA, USA, 2008.

[22] Teemu Rinta-aho, Mika Karlstedt, and Madhav P. Desai. “The Click2NetFPGA Toolchain”.
In: Presented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12).
Boston, MA: USENIX, 2012, pp. 77-88. 1SBN: 978-931971-93-5. URL: https://www.
usenix.org/conference/atcl2/technical-sessions/presentation/
rinta-aho.

[23] Anuj Kalia et al. “Raising the Bar for Using GPUs in Software Packet Processing”. In:

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, May 2015, pp. 409—423. 1SBN: 978-1-931971-218.

118

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://rol.im/securegoldenkeyboot/
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3287
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3287
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3320
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-3320
https://www.altera.com/products/soc/overview.html
https://www.altera.com/products/soc/overview.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rinta-aho
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rinta-aho
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rinta-aho

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

URL: https : //www . usenix . org/ conference /nsdil5 / technical -
sessions/presentation/kalia.

Sangjin Han et al. “PacketShader: A GPU-accelerated Software Router”. In: Proceedings
of the ACM SIGCOMM 2010 Conference. SIGCOMM ’10. New Delhi, India: ACM, 2010,
pp- 195-206. 1SBN: 978-1-4503-0201-2. pOoI1: 10.1145/1851182.1851207. URL:
http://doi.acm.org/10.1145/1851182.1851207.

Google Project Ara. http://www.projectara.com/.

Gerard J. M. Smit et al. “Dynamic Reconfiguration in Mobile Systems”. In: Proc. Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 2002.

Mario Barbareschi, Antonino Mazzeo, and Antonino Vespoli. “Network Traffic Analysis
Using Android on a Hybrid Computing Architecture”. In: Proceedings of the 13th Interna-
tional Conference on Algorithms and Architectures for Parallel Processing - Volume 8286.
ICA3PP 2013. Vietri sul Mare, Italy: Springer-Verlag New York, Inc., 2013, pp. 141-148.
ISBN: 978-3-319-03888-9. DOI1: 10.1007/978-3-319-03889-6_16. URL: http:
//dx.doi.org/10.1007/978-3-319-03889-6_16.

D.Koch, C. Beckhoff, and J Teich. “Recobus-builder a novel tool and technique to build
statically and dynamically reconfigurable systems for fpgas”. In: Proc. Field Programmable
Logic and Applications (FPL). 2008.

M. Majer et al. “The Erlangen Slot Machine: A Dynamically Reconfigurable FPGA-Based
Computer”. In: VLSI Signal Processing Systems. 2007.

E. Horta, J. Lockwood, and D. Parlour. “Dynamic Hardware Plugins in an FPGA with
Partial Run-time Reconfiguration”. In: Proceedings of the 39th conference on Design au-
tomation. 2002.

Orbot. https ://guardianproject . info/apps/orbot. URL: https: //
guardianproject.info/apps/orbot.

Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The Second-generation
Onion Router”. In: Proc. USENIX Security Symposium. San Diego, CA, 2004.

Yuvraj Agarwal et al. “Somniloquy: Augmenting Network Interfaces to Reduce PC Energy
Usage”. In: Proc. USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 20009.

Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. “Energy
Consumption in Mobile Phones: A Measurement Study and Implications for Network Ap-
plications”. In: Proc. ACM SIGCOMM Conference on Internet Measurement Conference
(IMC). Chicago, Illinois, USA, 2009.

119

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/kalia
https://doi.org/10.1145/1851182.1851207
http://doi.acm.org/10.1145/1851182.1851207
http://www.projectara.com/
https://doi.org/10.1007/978-3-319-03889-6_16
http://dx.doi.org/10.1007/978-3-319-03889-6_16
http://dx.doi.org/10.1007/978-3-319-03889-6_16
https://guardianproject.info/apps/orbot
https://guardianproject.info/apps/orbot
https://guardianproject.info/apps/orbot

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

K. Amiri et al. “WARP, a Unified Wireless Network Testbed for Education and Research”.
In: Proceedings of IEEE MSE. 2007.

Stephen Neuendorffer and Chad Epifanio. “Generic partially reconfigured processor sys-
tems applied to software defined radio”. In: Proc. of the Software Defined Radio Forum
(SDR). 2007.

Universal Software Radio Peripheral (USRP) by Ettus Research. http://www.ettus.
com/.

David G. Andersen et al. “Accountable Internet Protocol (AIP)”. In: Proc. ACM SIG-
COMM. 2008.

Van Jacobson et al. “Networking Named Content”. In: Proc. Conference on Emerging
Networking Experiments and Technologies (CoNEXT). Rome, Italy, 2009.

40Gbit AES Encryption Using OpenCL and FPGAs. http://www.nallatech.com/
40gbit—-aes—encryption-using-opencl-and-fpgas.

FPGA System Smokes Spark on Streaming Analytics. www . datanami . com/ 2015/
03/10/fpga—-system—smokes—-spark—-on-streaming—analytics/.

Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). San Jose, CA, 2012.

Gordon Brebner. “Circlets: Circuits As Applets”. In: Proc. IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM). 1998.

Steven A. Guccione and Delon Levi. “XBI: A java-based interface to FPGA hardware”. In:
Configurable Computing: Technology and Applications, Proc. SPIE 3526. 1998, pp. 97—
102.

Eric Lechner and Steven A. Guccione. “The Java environment for reconfigurable comput-
ing”. In: Proc. International Workshop on Field-Programmable Logic and Applications.
1997.

Gordon J. Brebner. “A virtual hardware operating system for the xilinx xc6200”. In: Proc.
International Workshop on Field-Programmable Logic (FPL). 1996.

0. Diessel and G. Wigley. Opportunities for operating systems research in reconfigurable

computing. Tech. rep. ACRC99018. Advanced Computing Research Centre, School of
Computer and Information Science, University of South Australia, 1999.

120

http://www.ettus.com/
http://www.ettus.com/
http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas
http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas
www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/
www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/

[48] J-Y. Mignolet et al. “Infrastructure for Design and Management of Relocatable Tasks in a
Heterogeneous Reconfigurable System-on-Chip”. In: Proc. of the Conference on Design,
Automation and Test in Europe (DATE). 2003.

[49] Hayden Kwok-Hay So and Robert Brodersen. “A Unified Hardware/Software Runtime
Environment for FPGA-based Reconfigurable Computers Using BORPH”. In: ACM Trans.
Embed. Comput. Syst. 7.2 (2008).

[50] Edson L Horta, John W Lockwood, and Saint Louis. PARBIT : A Tool to Transform Bitfiles
to Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs). Tech.
rep. WUCS-01-13. Dept. Comput. Sci., Washington Univ., Saint Louis MO, 2001.

[51] S.Guccione, D. Levi, and P. Sundararajan. “JBits: Java-based interface for reconfigurable
computing”. In: Proc. Conf. on Military and Aerospace Application of Programmable De-
vices and Technology. 1999.

[52] E. Keller. “JRoute: A run-time routing API for FPGA hardware”. In: IPDPS Workshops,
ser. Lecture Notes in Computer Science. Vol. 1800. 2000.

[53] C. Patterson et al. “Slotless module-based reconfiguration of embedded FPGAs”. In: ACM
Trans. Embedd. Comput. Syst. 2006.

[54] http://programmablelogicinpractice.com/?p=87.

[55] http://www.opensource.apple.com/source/CommonCrypto/CommonCrypto—
55010/Source/libtomcrypt/src/ciphers/ltc_aes/aes.c.

[56] http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.
pdf.

[57] Alex Paek and Duncan Mackay. Implementing Carrier Phase Recovery Loop Using Vivado
HLS. http://www.xilinx.com/support/documentation/application_
notes/XAPP1173-carrier—1loop.pdf. URL: http://www.xilinx.com/
support / documentation/application_notes/XAPP1173 - carrier —
loop.pdf.

[58] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for Performance Analysis”. In:
Proceedings of the 1996 Annual Conference on USENIX Annual Technical Conference.
ATEC ’96. San Diego, CA: USENIX Association, 1996, pp. 23-23. URL: http://dl.
acm.org/citation.cfm?id=1268299.1268322.

[59] Tor Source Code Hacking Documentation. https://gitweb.torproject.org/

tor.git/tree/doc/HACKING. URL: https://gitweb.torproject.org/
tor.git/tree/doc/HACKING.

121

http://programmablelogicinpractice.com/?p=87
http://www.opensource.apple.com/source/CommonCrypto/CommonCrypto-55010/Source/libtomcrypt/src/ciphers/ltc_aes/aes.c
http://www.opensource.apple.com/source/CommonCrypto/CommonCrypto-55010/Source/libtomcrypt/src/ciphers/ltc_aes/aes.c
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://www.xilinx.com/support/documentation/application_notes/XAPP1173-carrier-loop.pdf
http://www.xilinx.com/support/documentation/application_notes/XAPP1173-carrier-loop.pdf
http://www.xilinx.com/support/documentation/application_notes/XAPP1173-carrier-loop.pdf
http://www.xilinx.com/support/documentation/application_notes/XAPP1173-carrier-loop.pdf
http://www.xilinx.com/support/documentation/application_notes/XAPP1173-carrier-loop.pdf
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://dl.acm.org/citation.cfm?id=1268299.1268322
https://gitweb.torproject.org/tor.git/tree/doc/HACKING
https://gitweb.torproject.org/tor.git/tree/doc/HACKING
https://gitweb.torproject.org/tor.git/tree/doc/HACKING
https://gitweb.torproject.org/tor.git/tree/doc/HACKING

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Chen Chang, John Wawrzynek, and Robert W. Brodersen. “BEE2: A High-End Reconfig-
urable Computing System”. In: IEEE Des. Test 22.2 (2005).

Myron King, Jamey Hicks, and John Ankcorn. “Software-Driven Hardware Development”.

In: Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. FPGA °15. Monterey, California, USA: ACM, 2015, pp. 13-22. ISBN: 978-1-

4503-3315-3.DOI: 10.1145/2684746.2689064. URL: http://doi.acm.org/

10.1145/2684746.2689064.

Niranjan Soundararajan. “rSmart: The Reconfigurable (Real) Smartphone”. In: Provoca-
tive Ideas session of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (March 2013).

Andrew Putnam et al. “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services”. In: 41st Annual International Symposium on Computer Architecture (ISCA).
2014. URL: http:/ /research .microsoft .com/apps/pubs/default .
aspx?id=212001.

Kalin Ovtcharov et al. Accelerating Deep Convolutional Neural Networks Using Special-
ized Hardware. 2015. URL: http://research.microsoft.com/apps/pubs/
default.aspx?id=240715.

Intel Altera Acquisition. https://newsroom. intel.com/news—releases/
intel-completes—-acquisition-of-altera/.

Prabhat K. Gupta. “Xeon+FPGA Platform for the Data Center”. In: The Fourth Workshop
on the Intersections of Computer Architecture and Reconfigurable Logic (CARL) (June
2015).

OpenCL. https://www.khronos.org/opencl/.

Intel OpenCL SDK. https://software.intel.com/en-us/intel-opencl.

Qualcomm Adreno GPU SDK. https://developer.qualcomm.com/software/
adreno—-gpu-sdk/tools.

ARM Mali OpenCL SDK. http:/ /malideveloper .arm.com/ resources/
sdks/mali-opencl-sdk/.

GPGPU OpenCL API. http : / /www . vivantecorp . com/ index . php/en/
technology/gpgpu.html.

PowerVR SDK. https://community.imgtec.com/developers/powervr/.
Puzzlephone. http://www.puzzlephone.com/.

122

https://doi.org/10.1145/2684746.2689064
http://doi.acm.org/10.1145/2684746.2689064
http://doi.acm.org/10.1145/2684746.2689064
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://research.microsoft.com/apps/pubs/default.aspx?id=212001
http://research.microsoft.com/apps/pubs/default.aspx?id=240715
http://research.microsoft.com/apps/pubs/default.aspx?id=240715
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://www.khronos.org/opencl/
https://software.intel.com/en-us/intel-opencl
https://developer.qualcomm.com/software/adreno-gpu-sdk/tools
https://developer.qualcomm.com/software/adreno-gpu-sdk/tools
http://malideveloper.arm.com/resources/sdks/mali-opencl-sdk/
http://malideveloper.arm.com/resources/sdks/mali-opencl-sdk/
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
https://community.imgtec.com/developers/powervr/
http://www.puzzlephone.com/

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Fairphone. nttps://www.fairphone.com/.
LG G5. http://www.lg.com/us/mobile-phones/gb.

Android On Zynq Getting Started Guide. http : / / www . wiki . xilinx . com/
Android+On+Zyng+Getting+Started+Guide.

Android 4.2.2 On Zynq Getting Started Guide. http://www.wiki.xilinx.com/
Android+4.2.2+0n+Zyng+Getting+Started+Guide.

Zedroid - Android (5.0 and later) on Zedboard. http://www.slideshare.net/
noritsuna/zedroid—-android-50-and-later—-on-zedboard.

Intel Software Guard Extensions (SGX): A Researcher’s Primer.https://www.nccgroup.
trust /uk/about —us/newsroom—and-events/blogs/2015/ january/
intel-software-guard-extensions-sgx—-a-researchers—-primer/.

Intel Software Guard Extensions. https://software.intel.com/en—-us/sgx.

Ferdinand Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are Practical”. In:
11th USENIX Workshop on Offensive Technologies (WOOT 17). Vancouver, BC: USENIX
Association, 2017. URL: https://www.usenix.org/conference/wootl7/
workshop-program/presentation/brasser.

Michael Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache At-
tacks”. In: CoRR abs/1702.08719 (2017). URL: http://arxiv.org/abs/1702.
08719.

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems”. In: Security and Privacy (SP),
2015 IEEE Symposium on. IEEE. 2015, pp. 640-656.

Samuel Weiser and Mario Werner. “SGXIO: Generic Trusted I/O Path for Intel SGX”. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy. CODASPY ’17. Scottsdale, Arizona, USA: ACM, 2017, pp. 261-268. ISBN: 978-
1-4503-4523-1. DOI: 10.1145/3029806.3029822. URL: http://doi.acm.
org/10.1145/3029806.3029822.

Nico Weichbrodt et al. “AsyncShock: Exploiting synchronisation bugs in Intel SGX en-
claves”. In: European Symposium on Research in Computer Security. Springer. 2016,
pp. 440-457.

Victor Costan, Ilia A Lebedev, and Srinivas Devadas. “Sanctum: Minimal RISC Extensions

for Isolated Execution.” In: JACR Cryptology ePrint Archive 2015 (2015), p. 564.

123

https://www.fairphone.com/
http://www.lg.com/us/mobile-phones/g5
http://www.wiki.xilinx.com/Android+On+Zynq+Getting+Started+Guide
http://www.wiki.xilinx.com/Android+On+Zynq+Getting+Started+Guide
http://www.wiki.xilinx.com/Android+4.2.2+On+Zynq+Getting+Started+Guide
http://www.wiki.xilinx.com/Android+4.2.2+On+Zynq+Getting+Started+Guide
http://www.slideshare.net/noritsuna/zedroid-android-50-and-later-on-zedboard
http://www.slideshare.net/noritsuna/zedroid-android-50-and-later-on-zedboard
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://software.intel.com/en-us/sgx
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
http://arxiv.org/abs/1702.08719
http://arxiv.org/abs/1702.08719
https://doi.org/10.1145/3029806.3029822
http://doi.acm.org/10.1145/3029806.3029822
http://doi.acm.org/10.1145/3029806.3029822

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Guy Gogniat et al. “Reconfigurable hardware for high-security/high-performance embed-
ded systems: the SAFES perspective”. In: IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 16.2 (2008), pp. 144-155.

Microsemi FPGA & SoC Security. https://www.microsemi.com/products/
fpga-soc/security.

Andrew Baumann. “Hardware is the New Software”. In: Proc. Workshop on Hot Topics in
Operating Systems (HotOS). Whistler, BC, Canada, 2017, pp. 132—-137.

Intel Intel. “and IA-32 Architectures Software Developers Manual”. In: Volume 3A: System
Programming Guide, Part 1.64 (64).

Trusted Computing Group. Trusted Platform Module Main Specification (TPM1.0). http:
//www.trustedcomputinggroup.org/resources/tpm_main_specification.
2011.

Trusted Computing Group. Trusted Platform Module Library Specification (TPM2.0). http:
//www.trustedcomputinggroup.org/resources/tpm_library_specification.
2013.

The Chromium Projecst: TPM Usage. URL: http://www.chromium.org/developers/
design-documents/tpm-usage.

Overview of BitLocker Device Encryption in Windows 10. 2017. URL: https://docs.
microsoft.com/en-us/windows/device—-security/bitlocker/bitlocker—
device-encryption-overview-windows—10.

Sandeep Tamrakar et al. “Applications of Trusted Execution Environments (TEEs)”. In:
(2017).

Himanshu Raj et al. “fTPM: A Firmware-based TPM 2.0 Implementation”. In: Microsoft
Research (2015).

ARM TrustZone. https ://www.arm.com/products/security—-on—-arm/
trustzone.

Jingfei Kong et al. “Deconstructing new cache designs for thwarting software cache-based
side channel attacks”. In: Proceedings of the 2nd ACM workshop on Computer security
architectures. ACM. 2008, pp. 25-34.

Zhenghong Wang and Ruby B Lee. “New cache designs for thwarting software cache-
based side channel attacks”. In: ACM SIGARCH Computer Architecture News. Vol. 35. 2.
ACM. 2007, pp. 494-505.

124

https://www.microsemi.com/products/fpga-soc/security
https://www.microsemi.com/products/fpga-soc/security
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.chromium.org/developers/design-documents/tpm-usage
http://www.chromium.org/developers/design-documents/tpm-usage
https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/device-security/bitlocker/bitlocker-device-encryption-overview-windows-10
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Fangfei Liu et al. “Catalyst: Defeating last-level cache side channel attacks in cloud com-
puting”. In: High Performance Computer Architecture (HPCA), 2016 IEEE International
Symposium on. IEEE. 2016, pp. 406—418.

Siddhartha Chhabra et al. “SecureME: a hardware-software approach to full system se-
curity”. In: Proceedings of the international conference on Supercomputing. ACM. 2011,
pp- 108-119.

Ming-Wei Shih et al. “T-SGX: Eradicating controlled-channel attacks against enclave pro-
grams”. In: Proceedings of the 2017 Annual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA. 2017.

Ferdinand Brasser et al. “DR. SGX: Hardening SGX Enclaves against Cache Attacks with
Data Location Randomization”. In: arXiv preprint arXiv:1709.09917 (2017).

Yangchun Fu et al. “SGX-LAPD: thwarting controlled side channel attacks via enclave
verifiable page faults”. In: International Symposium on Research in Attacks, Intrusions,
and Defenses. Springer. 2017, pp. 357-380.

Daniel Gruss et al. “Strong and efficient cache side-channel protection using hardware
transactional memory”. In: USENIX Security Symposium. 2017.

Olga Ohrimenko et al. “Oblivious Multi-Party Machine Learning on Trusted Processors.”
In: USENIX Security Symposium. 2016, pp. 619-636.

Andrew Ferraiuolo et al. “Komodo: Using Verification to Disentangle Secure-enclave Hard-
ware from Software”. In: Proc. Symposium on Operating Systems Principles (SOSP).
Shanghai, China, 2017.

Samuel Weiser and Mario Werner. “SGXIO: Generic Trusted I/O Path for Intel SGX”. In:
Proc. ACM on Conference on Data and Application Security and Privacy (CODASPY).
Scottsdale, Arizona, USA, 2017.

G Edward Suh et al. “AEGIS: architecture for tamper-evident and tamper-resistant pro-
cessing”. In: Proceedings of the 17th annual international conference on Supercomputing.
ACM. 2003, pp. 160-171.

David Lie et al. “Specifying and verifying hardware for tamper-resistant software”. In:
Security and Privacy, 2003. Proceedings. 2003 Symposium on. IEEE. 2003, pp. 166—177.

David Champagne and Ruby B Lee. “Scalable architectural support for trusted software”.
In: High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sym-
posium on. IEEE. 2010, pp. 1-12.

125

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Jakub Szefer and Ruby B Lee. “Architectural support for hypervisor-secure virtualization”.
In: ACM SIGPLAN Notices. Vol. 47. 4. ACM. 2012, pp. 437-450.

Dmitry Evtyushkin et al. “Iso-x: A flexible architecture for hardware-managed isolated
execution”. In: Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society. 2014, pp. 190-202.

Thomas Wollinger, Jorge Guajardo, and Christof Paar. “Security on FPGAs: State-of-the-
art Implementations and Attacks”. In: ACM Trans. Embed. Comput. Syst. 3.3 (Aug. 2004),
pp. 534-574. 1SSN: 1539-9087.

A. J. Elbirt et al. “An FPGA-based performance evaluation of the AES block cipher can-
didate algorithm finalists”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 9.4 (2001), pp. 545-557.

Andreas Dandalis and Viktor K. Prasanna. “An Adaptive Cryptographic Engine for Internet
Protocol Security Architectures”. In: ACM Trans. Des. Autom. Electron. Syst. 9.3 (2004),
pp. 333-353.

Dino Oliva, Rainer Buchty, and Nevin Heintze. “AES and the Cryptonite Crypto Proces-
sor”’. In: Proceedings of the 2003 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. CASES 03. San Jose, California, USA, 2003, pp. 198-
209. 1SBN: 1-58113-676-5.

A. Hodjat and 1. Verbauwhede. “High-throughput programmable cryptocoprocessor”. In:
IEEE Micro 24.3 (2004), pp. 34-45.

MicroBlaze Soft Procesor Core. URL: https://www.xi1linx.com/products/
design-tools/microblaze.html.

Daniel J Bernstein et al. “High-speed high-security signatures”. In: Journal of Crypto-
graphic Engineering (2012), pp. 1-13.

Paul Selkirk and Joachim Strmbergson. 2015. URL: https://trac.cryptech.is/
browser/core/rng/trng.

Introducing the Intel Software Guard Extensions Tutorial Series. https://software.
intel.com/en—-us/articles/introducing—-the—-intel-software—

guard-extensions—-tutorial-series.

Moxie Marlinspike. Technology preview: Private contact discovery for Signal. Signal,
2017. URL: https://signal.org/blog/private-contact-discovery/.

126

https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://trac.cryptech.is/browser/core/rng/trng
https://trac.cryptech.is/browser/core/rng/trng
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://signal.org/blog/private-contact-discovery/

[124]

[125]

[126]

Exploiting the DRAM rowhammer bug to gain kernel privileges. https://googleprojectzero.
blogspot.com/2015/03/exploiting—dram—-rowhammer—-bug-to—-gain.
html.

S.M. Trimberger and J.J. Moore. “FPGA Security: Motivations, Features, and Applica-
tions”. In: Proceedings of the IEEE 102.8 (2014), pp. 1248-1265. 1SSN: 0018-9219. DOTI:
10.1109/JPROC.2014.2331672.

Here Are the Most Popular Apps for Secure Messages. http://fortune.com/2017/
01/17/most-popular—-secure—apps/.

127

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1109/JPROC.2014.2331672
http://fortune.com/2017/01/17/most-popular-secure-apps/
http://fortune.com/2017/01/17/most-popular-secure-apps/

	Introduction
	Parties, Trust and Threats
	Secure Hardware Properties
	Secure Hardware Threat Model
	Definition of Roles
	Secure Hardware Trust Model

	Cloud RTR: Enabling User Space Hardware
	Introduction
	Motivation (Why an FPGA)
	Architecture enhancements
	Software-defined Radio
	Cryptographic and Parallel Processing

	Past Attempts
	Why is sharing an FPGA difficult?
	Soln. 1: runtime Place and Route
	Soln. 2: Slot-based Reconfiguration

	Cloud RTR: A Practical Approach For Sharing the FPGA
	High-level Overview
	Static (Phone) Design Architecture
	Reconfigurable (App) Module Architecture
	Cloud Compiler (in the App Store)

	Dynamic Module Loading Service
	Evaluation
	Application Performance Acceleration
	Cloud Compilation Resources Needed

	Case Study: Orbot Tor Client
	Related Work

	SDSHW: Enabling (Programmable) Secure Hardware
	Introduction
	Related Work
	Software-based Solutions
	Secure Coprocessors
	Trusted Execution Environments
	Hardware-based Re-designs
	Programmable Co-processors and FPGA Solutions

	Architecture
	Fixed Hardware Requirements
	SDSHW Platform
	SDSHW Threat Model

	SDSHW Platform Implementation
	Self-Provisioning
	Secure Storage
	Secure Update System

	Secure Filesystem
	Secure Coprocessor with Remote Attestation
	Hardware Design
	SDK
	Password Manager Application

	Evaluation
	Secure Filesystem
	Enclave Performance Benchmarks

	Discussion
	Trust Anchors
	Ideal Hardware Support

	User Space Secure Hardware
	Introduction
	Challenges
	Secure Slot Architecture
	Internal Reconfiguration
	Slot Isolation
	Slot Preemption
	Secure Storage Access
	Combining Solutions

	Implementation
	Secure Slots
	Secure Storage Proxy
	Secure Loading

	Evaluation
	Contact Discovery Performance
	ICAP Benchmark

	Security Analysis
	Fixed Functionality
	Fixed Isolation

	Discussion, Future Work and Conclusion
	Discussion
	Future Work
	Cloud RTR
	SDSHW
	User Space Secure Hardware

	Conclusion

	References

