
Cloud RTR: Cloud Infrastructure for Apps with Hardware

by

A.Y. Ismail

B.S., Penn State University, 2013

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science

Department of Electrical, Computer, and Energy Engineering

2015

This thesis entitled:
Cloud RTR: Cloud Infrastructure for Apps with Hardware

written by A.Y. Ismail
has been approved for the Department of Electrical, Computer, and Energy Engineering

Eric Keller

Prof. Dirk Grunwald

Prof. Pavol Cerny

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Ismail, A.Y. (M.S., Computer Engineering)

Cloud RTR: Cloud Infrastructure for Apps with Hardware

Thesis directed by Prof. Eric Keller

There has been a great deal of innovation in the software space for smart phones, however,

there has been virtually no room to innovate in the architecture space. By introducing a Field

Programmable Gate Array (FPGA) on mobile phone platforms, developers are able to produce

hardware that their applications can use. We call re-programmable hardware on mobile phones

mōbware. In order to introduce mōbware to mobile platforms, we leverage technology that contains

a processor (ARM) coupled with FPGA so we can introduce reconfigurable logic to smart phones,

expose the hardware to applications, and extend a mobile operating system to allow for software

control of the current hardware configuration. There are obstacles with deploying mōbware so any

phone can simply download it and deploy it on their FPGA. This dynamic loading of mōbware

is called run-time reconfiguration (RTR). Achieving RTR of hardware requires tool support and a

deployment infrastructure to efficiently implement it. We present a cloud RTR deployment model

that allows for the production and distribution of mōbware. The deployment models converges

the phone manufacturer, the application and mōbware developer, and user. With these parties

converged, this allows for the sustainable production and deployment of mōbware.

Dedication

I dedicate this work to mom and dad, the people who supported me from day one.

v

Acknowledgements

I’d like to thank my advisor Eric Keller. He provided many resources and insights that lead

to the success of this project. I thank Michael Coughlin, who worked primarily on the end-system

section of this project. He provided a lot of support, especially the times when there never seemed

to be a solution. I thank Phil James-Roxby and Derrick Woods, from Xilinx Inc. They provided

a lot of technical support and advice on how to build this system. Also, I would like to thank

AppFigures for providing last years upload figures for the Google Play Store.

vi

Contents

Chapter

1 Introduction 1

2 Motivation 4

2.1 FPGA Power Reduction . 4

2.2 FPGA Performance Improvement . 6

3 Background 9

3.1 Phone Manufacturer . 9

3.2 Application and Hardware Developer . 10

3.3 User . 10

4 RelatedWork 12

4.1 Non-general RTR . 12

4.2 Academic Approaches . 13

4.2.1 Run-time Place and Route . 13

4.2.2 Slot-based . 15

4.3 The Time is Now . 16

5 Cloud RTR Approach 18

5.1 Brute Force Compilation . 19

5.2 Xilinx Parital Reconfiguartion . 20

vii

5.2.1 Define Static Design . 20

5.2.2 Static Design Black Box Instantiation . 22

5.2.3 Base PR . 26

5.2.4 Dynamic PR . 28

6 Evaluation 30

6.1 How many RPs will be available to the developer? 30

6.1.1 Experiment 1 . 31

6.2 Is the brute-force compilation method practical? . 38

6.2.1 Experiment 2 . 38

6.2.2 Experiment 3 . 41

6.2.3 Cloud RTR Resource Requirements . 45

7 Future Work 50

8 Conclusion 52

Bibliography 53

viii

Tables

Table

6.1 Slice Logic Resource . 32

6.2 Synthesis resource utilization for FFT RM. 34

6.3 Implementation resource utilization for reset hardware. 35

6.4 Implementation resource utilization for Direct Memory Access (DMA) hardware. . . 36

6.5 Execution times and memory usage for base PR compilation. 39

6.6 HLS synthesis execution times and memory usage of C defined FFT. 42

6.7 Vivado synthesis execution times and memory usage of FFT IP. 42

6.8 Execution times and memory usage for dynamic PR compilation 42

6.9 Google Play Store app upload figures provided by AppFigures. 46

6.10 Compilation components for dyamic PR and RM synthesis. 46

6.11 Daily throughput of apps compiled per day. 46

6.12 Compilation components for dyamic PR and RM synthesis for 2 RPs. 48

6.13 Compilation components for dyamic PR and RM synthesis for 6 RPs. 49

ix

Figures

Figure

2.1 Power reduction achieved by the accelerators compared to software only execution [1]. 6

2.2 Speedup achieved by the accelerators compared to software only execution [1]. . . . 6

2.3 Execution cycles of the four versions of Gaussian Elimination. The x-axis represents

the dimensions of the computation grid. Note that the y-axis is a log scale[2]. 8

2.4 Execution cycles of the four versions of Needleman-Wunsch. Note that the y-axis is

a log scale[2]. 8

3.1 Mobile hardware deployment scenario. 11

5.1 Cloud RTR approach to the generation and deployment of mōbware. 19

5.2 Static design that accommodates partial reconfiguration. 23

5.3 Floorplanning of reconfigurable partitions. 27

6.1 Zynq FPGA resources layout . 33

6.2 Zynq FPGA resources layout filled with FFT hardware modules. 37

6.3 Execution times for performing base PR for 2 to 8 RPs. 41

6.4 Execution times for performing dynamic PR for 2 to 6 RPs. 45

Chapter 1

Introduction

While there’s a great deal of innovation in the software space for smart phones, there’s rela-

tively limited ability to innovate in the architecture space. Only the large vendors and a very few

semiconductor companies are able to introduce new advances, whereas anyone can write software.

There are many different examples of new technologies that greatly benefit from hardware support,

including new wireless spectrum protocols, hardware-accelerated encryption and transparent scan-

ning of memory or network packets. Many of these technologies can be demonstrated in laboratory

environments using powerful PC or Field Programmable Gate Array (FPGA)-based platforms, or

even custom silicon, but face significant hurdles to general deployment.

We have explored an alternative architecture to today’s processor-centric mobile devices that

introduces reconfigurable logic to smart phones, exposes the hardware to applications, and extends

a mobile operating system to allow for software control of the current hardware configuration. A

processor coupled with programmable logic (PL), such as an FPGA, along with operating system

and development support, would open possibilities for developers to introduce new hardware as

easily as they are able to introduce new software.

With the ability to expose re-programmable hardware to mobile phone applications, develop-

ers gain new hardware functionality. Technologies such as software-define radio (SDR), hardware-

accelerated encryption (AES and RSA), and digital signal processing (FFT and FIR) can be im-

2

plemented on the FPGA. The applications can utilize these hardware technologies to give them

even greater functionality. In addition, FPGA’s have proven to increase performance and reduce

power consumption [1][2][3][4]. Mobile applications can take advantage of the benefits of FPGAs

to increase their performance and reduce their power footprint. With this realization, it is advan-

tageous to produce a deployment model that gives developers the ability to produce hardware that

applications can use and a way to deploy their mōbware (hardware utilized by mobile applications).

The greatest obstacle to introducing an FPGA to mobile phones is supporting the diversity

of hardware modules required by different applications. It is not trivial to insert and replace hard-

ware modules onto the FPGA as the hardware requirements for applications change. For example,

application A utilizes an FFT and application B utilizes an AES hardware module. Between these

two hardware modules, assume they take up the entire FPGA area. Application A is closed down

and application C starts and it requires a FIR filter. Since there is no more room on the FPGA,

the operating system would remove the FFT and replace it with the FIR filter. This process of

swapping newly introduced hardware modules in and out of the FPGA at run-time is known as

run-time reconfiguration (RTR). In addition, there is the more difficult scenario of general RTR,

where, it is not known at compile-time what hardware modules will be swapped in and out.

There are many technical limitations to general RTR and the tools provided by FPGA vendors

that have not met the demand for it, forcing the research community[5] [6][7][8][9] [10][11][12][13][14]

[15] to develop their own tools and hardware. Fast forwarding to today, the hardware and tools

introduced by the research community have not been adopted. The tools provided by FPGA ven-

dors are finally able to accommodate specific scenarios of RTR with minimal support. These tools

can be leveraged to implement general RTR in mobile phones and develop tools to automate the

process so we can accommodate a deployment that allows developers to upload hardware designs,

phone manufacturers to upload their base hardware configuration, and users to download mōbware.

3

We present a cloud-based deployment infrastructure that relies on the Xilinx tools for RTR

and automation. We also leverage the application deployment model, in which applications are dis-

tributed through a cloud provider. This allows us to implement general RTR using only mainstream

vendor tools, since all compilation can be done within the cloud. This cloud-based deployment in-

frastructure creates an environment that allows phone manufacturers to define and configure the

base hardware, developers to design and upload mōbware, and users to download this hardware

without being burdened by compilation.

The contributions of this thesis is an infrastructure and process for leveraging available tech-

nology to accommodate mōbware. Section 2 describes the motivation for introducing FPGAs to

mobile phones. Section 3 describes the deployment scenario we want to accommodate. Section 4

describes the academic approach for general RTR. Section 5 describes our approach for achieving

general RTR to support the deployment scenario. Section 6 is an evaluation of the tools of our

approach. Section 7 describes work to continue in the future and section 8 concludes the work.

Chapter 2

Motivation

There is much to gain by coupling CPU’s with FPGA’s. A computationally intensive work-

load can be offloaded to the FPGA and computed at lower power and greater performance. FPGA’s

run at much lower frequencies than CPUs, allowing for lower power consumption. It also provides

the ability for hardware parallel computation, allowing for more work to be accomplished per unit

time. The benefits of FPGA’s have not gone unnoticed, thus, industry and researchers have spent a

lot of effort investigating the advantages of utilizing FPGAs to offload work from CPUs to increase

performance and reduce power consumption [1][2][3][16][17][18][31].

2.1 FPGA Power Reduction

Since the late 1990’s and early 2000’s, CPU’s have hit a power wall. As clock frequencies

started to climb, power consumption climbed with it. The solution to the power wall was to reduce

clock frequency, but, at the same time, increase throughput[19]. The way to do this is through

parallelization.

FPGA’s are an excellent way to achieve parallelization that would allow for lower clock fre-

quencies, while increasing throughput. It has been a standard misconception that large FPGA

designs have a strong relationship with power consumption, however, this is not true. It is true

that power increases with larger designs, but the effect of design size on power consumption is not as

5

great as the clock frequency. FPGA’s have two sources of power consumption, static and dynamic

power consumption. Static power consumption refers to power consumed as a result of current

leaking from the FPGA’s transistors. Dynamic power consumption refers to power consumed from

current flow through transistors as they switch states [16]. The greater the frequency, the more

power that is consumed. Designers have found that they can take advantage of these relationships

to reduce power. The idea is simple, utilize more of the FPGA hardware to increase throughput at

lower frequencies.

Possa et al. [1] explored the increased performance and reduced power consumption abilities

of FPGA’s when used as accelerators. They utilized a System-on-a-Programmable-Chip (SoPC),

which contained a Nios II 32-bit RISC embedded processor and Altera’s Cyclone III FPGA. They

implemented a 15th order FIR filter in both software and hardware. They compared the power

consumption of the processor that utilized a software FIR filter to the combination of the processor

and hardware FIR filter. They implemented five different hardware accelerators, each differing by

how they interface with the CPU. Figure 2.1 shows the power reduction achieved by the acceler-

ators. The different colored bars correspond to the mode of the processor, such as, fast (green),

economic (blue), and standard (red). After measuring power for each case, all of their hardware

implementations were able to achieve power reduction in the range of 83 % to 93 %.

It is also interesting to note that they achieved 83 % power reduction utilizing a hardware

block they designed using the C programming language. Being able to describe hardware in a

high-level programming language such as C and achieve 83% power reduction means developers

can achieve FPGA power reduction without the burden designing hardware in HDL. This work

is an early indicator that high-level synthesis tools that convert high-level languages to RTL are

promising and can provide the power-saving benefits of FPGA’s.

6

Figure 2.1: Power reduction achieved by the accelerators compared to software only execution [1].

2.2 FPGA Performance Improvement

In addition to power reduction, many studies have been done to quantify the performance

increases of FPGA’s when they are used as accelerators. As discussed earlier, Possa et al. mea-

sured the performance of the software and hardware implementations of the 15th order FIR filter.

Figure 2.2 shows the speedup achieved by the hardware accelerators. All five hardware accelerators

achieved speedup, however, there was a much wider range of speedup, from 5x to 117x. Nonethe-

less, speedup was achieved by offloading a CPU workload to an FPGA.

Figure 2.2: Speedup achieved by the accelerators compared to software only execution [1].

7

Cullinan et al. [3] did a comparative study of CPU’s, GPU’s and FPGA’s. They utilized two

Intel Xeon 5650 CPUs, Xilinx Virtex-5 FPGA and NVIDIA’s GeForce GTX460 and 9600 GTX+

GPU. They tested the performance of each platform using a wide range of benchmarks. In their

research, they implemented a Fast Fourier Transform (FFT) in each platform and compared exe-

cution times. They found the FPGA to be 10.76 times faster than the CPU and 26.67 times faster

than the GPU (when including transfer time for the GPU to send and receive data).

An even more extensive study was done by Che et al. [2]. They compared the performance

of GPU’s and FPGA’s when doing computational intensive work for CPUs. They utilized the

Intel Xenon CPU, Xilinx Virtex-II Pro FPGA, and NVIDIA’s GeForce 8800 GTX GPU. They

implemented and analyzed three applications for each platform, Gaussian Elimination, DES, and

Needle-Wunsch. More specifically, Gaussian Elimination is a linear algebra computation that solves

for all variables in a linear system. DES is a cryptographic algorithm that does mostly bit-wise op-

erations. Needle-Wunsch is a dynamic programming algorithm used for DNA sequence alignment.

For each platform, they measured the clock cycles to complete each application. Figure 2.3 and 2.4

shows the performance for all three computation platforms for the Gaussian and Needleman-Wunsh

computations, respectively. The FPGA outperformed the CPU and GPU for all of the applications.

They did not even bother to graph the results from the DES application because the FPGA took

only 83 cycles, while the GPU took 5.8 x 105 cycles. For Gaussian Elimination computation, the

GPU started to catch up to the FPGA for input sizes larger than 2048.

The conclusion of this work is that FPGA’s can complete many applications in significantly

less cycles than CPUs and GPUs. Note that the CPU, FPGA, and GPU are clocked at different

frequencies, therefore, their cycle times differ. FPGAs run at the slowest frequency, therefore, they

take the longest time per clock cycle. Also, they may have the longest cycle, but they generally

take the least amount of cycles to complete the computations. This suggests comparable execution

times to the GPU and CPU. It also suggests that with comparable performance, FPGAs reduce

8

power consumption since they run at lower frequencies. Based on these performance studies, it is

clear that CPUs can gain tremendous performance increases when coupled with an FPGA.

Figure 2.3: Execution cycles of the four versions of Gaussian Elimination. The x-axis represents
the dimensions of the computation grid. Note that the y-axis is a log scale[2].

Figure 2.4: Execution cycles of the four versions of Needleman-Wunsch. Note that the y-axis is a
log scale[2].

Chapter 3

Background

The case studies described in section 2 reflect the benefits that can be gained by introducing

FPGAs to mobile phone platforms. The only obstacle is general RTR, which provides the ability

to introduce new hardware and partially re-configure an FPGA at run-time to meet our mobile

hardware deployment scenario. Before describing the potential solutions for general RTR, it is

important to understand the deployment model and why it requires general RTR. There are three

parties involved that make up the deployment scenario, the phone manufacturer, the application

and hardware developer, and the user.

3.1 Phone Manufacturer

The mobile phone market is very large and there are a variety of phone architectures that

include Apple’s Iphone 6, Samsung’s Galaxy S5, LG G3, and many more. If an FPGA is going

to be placed in a mobile phone, it will be done by the phone manufacturer. They will specify

the best FPGA architecture that suites their CPU architecture. Based on this, there is the likely

possibility that there could be many hardware architectures. If developers want to design hardware

for their applications, they will have to keep in mind the hardware architectures they are designing

for. If there is to be any deployment model for hardware applications, there needs to be support

for various hardware architectures defined by the phone manufacturer.

10

3.2 Application and Hardware Developer

The application and hardware developer, like any application developer, are unlikely to be

directly associated with the phone manufacturer. The application and hardware developer could

belong to Twitter, Facebook, Quora, etc. Since they are unrelated to the phone manufacturer, they

need support for their hardware definitions and the type of hardware architectures they are loaded

on. It can be very cumbersome for the developer to consider multiple hardware architectures and to

design accordingly. They also need a way to deploy their mōbware so that the users (end-system)

can download and use them. There needs to be support to allow developers to efficiently and

quickly deploy their mōbware.

3.3 User

The user, which is also the end-system, is independent of the phone manufacturer and devel-

oper. They decide which applications and hardware they would want to run. They need support

for application and hardware handling. They also need a way to explore and download mōbware

onto their phones.

A basic representation for the hardware deployment scenario is shown in figure 3.1. The

phone manufacturer is providing an FPGA base hardware design. This base design contains sup-

portive hardware to allow modules to be reconfigured in a specified area on the FPGA. The areas

that accept these reconfigurable modules (RM) are referred to as reconfigurable partions (RP).

The base design also contains hardware that allows for efficient communication between the

processor and FPGA. This base design is then compiled into a static design. A static design is

a place and routed hardware design with static hardware, hardware that is not reconfigurable,

and RPs, areas fixed in the FPGA that house RMs. The phone manufacturer would upload their

static design to the cloud. In parallel with the phone manufacturers, there are developers designing

11

hardware for their applications. These RMs must be compatible with the static design defined by

the phone manufacturer. In figure 3.1, the static design and RM are uploaded to the cloud and

compiled together. Once compiled and packaged together, the mōbware is now compatible with

the users phone and can be deployed by the cloud.

The foundation of this deployment model is general RTR. It is not known what designs the

developers will develop. The design must be compiled for the hardware architecture. We must also

not forget about the user. They are consuming the hardware and cannot be kept waiting for that

compilation. This is a unique scenario and we look to the tools and past academic work that could

provide an architecture to support this scenario.

Figure 3.1: Mobile hardware deployment scenario.

Chapter 4

RelatedWork

There have been many attempts to achieve general RTR by the academic community and

industry. Currently, the tools provided by FPGA vendors support only non-general RTR. In this

section, we describe the current supported scenario of non-general RTR and the academic attempts

at achieving general RTR. We also describe the tools made available by industry that support only

non-general RTR and why today we can leverage those tools to support our deployment model.

4.1 Non-general RTR

The current supported scenario of RTR is non-general. Everything is known at compile-time

and the hardware developer is the only party involved. They are responsible for defining the static

design, designing the RMs, execution of Xilinx’s partial reconfiguration tool flow, and managing

the swapping of RMs in the end-system. For example, the hardware designer has a static design

that utilizes a 15th order FIR filter. They find that they want to process their data, instead, with a

20th order FIR filter. They also want the flexibility of swapping the FIR filters at run-time. Using

Xilinx’s partial reconfiguration technology and tools, they can get this functionality. They can

allocate an RP on the FPGA to house either FIR filter. The filters are then compiled for that RP

and become RMs. The tools then generate partial bitstreams, which are files that can configure

the RP with an RM. With the partial bitstreams, they can load either into the RP, giving them

the flexibility of swapping the filters at run-time. All in all, Xilinx partial reconfiguration is a very

useful technology, however, it does not provide the multi-party support required by our deployment

13

scenario. It also requires knowledge of designs at compile-time, making general RTR difficult to

achieve.

4.2 Academic Approaches

There are two main approaches that have developed to support general RTR. They are the

run-time place and route and slot-based approaches.

4.2.1 Run-time Place and Route

The general approach for run-time place and route is simple. The designer provides a source

of hardware they want reconfigured into the FPGA. The form of the source can vary. It can be

a hardware description language (HDL), netlist, or a partial bitstream, which is a stream of data

that can configure portion of an FPGA. Next, the source is preprocessed at compile-time and then

placed and routed onto the FPGA at run-time. To achieve fast run-time place and route, many

tools have been built to manipulate already generated full bitstreams and change only the sections

that correspond to the preprocessed source introduced at compile-time.

Guccione et al. [7] created the JBits software, an API to access Xilinx FPGA bitstream. Us-

ing JBits, a developer has the ability manipulate FPGA resources such as look-up-tables (LUTs),

routing, and flip-flops (FFs). The API abstracts out manually setting or clearing bits in an FPGA

bitstream, making resource configuring simpler. Also, the API handles all devices in the XC4000

and Virtex family. Finally, JBits manages the device bitstream and supports the reading and writ-

ing of bitstreams. By providing this functionality, JBits can support general RTR. After the source

has been preprocessed, a full bitstream can be partially re-configured with the preprocessed source,

at run-time. There are limitations to JBits, the most important being all bitstream configuration

is done manually. All resources are explicitly stated and this can become a very cumbersome task,

making general RTR very slow. Also, the hardware designer is forced to be very familiar with the

14

FPGA architecture. In our scenario, it is unreasonable to expect application developers to learn

the the nuances of FPGAs and their underlying architecture.

To solve the limitations of JBits, Keller [8] introduced JRoute, an API for routing Xilinx

FPGA devices. Using JBits as a foundation, JRoute can handle routing of resources at many levels

of control, from single connection to auto-routing of a bus connection. There is also support for

parameterizable hardware cores, making it even easier for users to simply define ports and rout-

ing happens automatically. JRoute eliminates the JBits limitations of manual routing and strong

familiarity of the FGPA device. JRoute also contained support for unrouting. When a route is

unneeded or routes have changed, the API frees the resources and updates accordingly. This makes

general RTR much less difficult and time consuming, however, there are still limitations. JRoute,

a great effort, still proved to be inefficient to support a robust general RTR. Routing, at times,

took too long or unable to make the routes. In addition, routing was not optimal, causing the

performance of the hardware to plummet.

Patterson et al. [13], using the same run-time place and route approach, introduced a slot-

less module-based reconfiguration software. At compile-time, the software precompiles hardware

modules, by providing them with external and internal communication interfaces. The modified

modules are then compiled into a module bitfile (partial bitstream). At run-time, this module bit-

file is placed within a sand boxed region on the FPGA, allocated routing channels, and connected

to other modules. Like JRoute, this software uses a bitstream manipulation tool (BitShop) to

retrofit partial bitstreams onto the FPGA and connect them to other other modules and the static

design. The advantage of this slotless module-based reconfiguration approach is they are optimally

placing the modules, allowing for efficient routing. They also fix all communication, internally and

externally, simplifying routing between modules and the static design. Like the fate of JRoute, this

software was never adopted, due to not offering the robustness and usability required by hardware

designers. Also, this work only supported a single device family.

15

4.2.2 Slot-based

Slightly more successful than the run-time place and route approach, the slot-based approach

uses predefine reconfigurable partitions on the FPGA to load hardware modules. At compile-time,

a source design is converted into a partial bitstream. The partial bitstream is then retrofitted into

the predefined slots using a bitstream manipulation tool. The advantage of predefined slots is the

reduction of work at run-time. Since a partial bitstream is being placed in a slot in the fabric,

configuration has already been defined. There is no need to place and route an entire source design

at run-time. Only minor modifications must be made to the full bitstream to accommodate the

partial bitstreams into one of its slots.

Horta et al. [20] introduced the Dynamic Hardware Plugin (DHP), a module that can be

loaded into or removed from an FPGA without disturbing the rest of running hardware. In order to

realize DHPs, they utilize a tool called PARBIT that is able to modify and restructure bitstreams.

When a DHP is compiled, PARBIT can dynamically place the module into any region of the FPGA.

The next step is to isolate regions in the FPGA to house the DHPs. They use special wires called

gasket antennas that fix communication between the non-reconfigurable part of the FPGA and

the DHPs. Routing within an isolated area is restricted to only routing within that area and can

only connect to rest of FPGA from antennas. This constraint is supported by a modified router.

Finally, they wrap the VHDL module, soon to be DHP module, to contain the antennas and add

constraints to synthesis, place, and routing to place the DHP modules and mitigate any routing

through the DHP site. The main disadvantage with this technology is that it only supports a single

device from the Xilinx Virtex-E family. It requires a lot of preprocessing of modules and bitstream

manipulation, which all can be time consuming to do at compile and run-time, respectively.

Like the slot-based approach of Horta, Majer et al. [12] developed a dynamically reconfig-

urable FPGA-based computer (The Erlangen Slot Machine) with a slot-based architecture that

16

mitigated the limitations of general RTR. An FPGA is broken down into slots and constrained so

no signals feed-through the modules. Each slot contains resources for inter-module communica-

tion, access to external shared memory, and access to all available peripherals. Since each slot has

access to every available resource, hardware modules can be loaded into each slot and the proper

connections are made that will give the module all the resources it requires. This also eliminates

feed-through signals since all slot interfaces are fixed and external to all other slots. In addition,

just like the other attempts at general RTR, a bitstream modifier tool is required to manipulate the

fabric to accommodate the new hardware module. The Erlangen Slot machine uses a hardware re-

configuration manager to handle scheduling of loading modules, slot segmentation and partitioning,

loading, unloading, and relocation of modules in slots. Similarly, just like the DHPs, the Erlangen

slots are designed for a specific Xilinx FPGA device and requires multiple FPGA’s for slot area

and slot management.

4.3 The Time is Now

Both approaches, run-time place and route and slot-based, attempted to solve many of the

same issues that surround RTR by constraining wire routing and modifying bitstreams to accom-

modate a diverse set of hardware in the same fabric location. Today, RTR is supported by Xilinx

partial reconfiguration (PR), however, it is non-general. Fortunately, with the support of Xilinx

PR, there are other tools and technology that can be leveraged to implement general RTR required

by our mobile hardware deployment scenario described in figure 3.1, such as, Vivado High-Level

Synthesis (HLS) [21] and the Xilinx’s Zynq 7000 series system-on-chip (SoC) [22].

Partial reconfiguration is in mainstream tools: As discussed in the previous section,

there has been lack of support in the mainstream tools for general RTR. Researchers were forced

to develop their own tools and hardware to support an efficient and automated run-time recon-

figuration of FPGA’s. We have shown how researchers [23][8][7] were reverse-engineering and/or

17

altering full bitstreams generated by an FPGA vendors tools to accommodate fast RTR. Todays

mainstream tools (those provided by the FPGA vendors) have full support for PR. They contain

simple PR tool flows that handle floor planing and constrained placement and routing [24].They

also contain a Tcl interface that we can leverage to make partial reconfiguration automated .

High level synthesis tools are available: It has been a long-held belief by many that

developing hardware is hard (when compared to developing software). We have seen that a lack

of usability leads to a tool not being adopted. For this reason, it is a requirement for application

developers to design hardware in a high-level language, otherwise, developers would never attempt

to design mōbware. Fortunately, high-level synthesis tools exist. They can accept the C/C++

language and convert it into an RTL design. Today, Xilinx (with Vivado’s C and C++ based com-

pilation [21]) provides high-level synthesis tools as a main design flow and are seeing commercial

success. This tool provides libraries to instantiate hardware intellectual property (IP) in C/C++

design. They contain testing support, where designers can write test benches for their C/C++

defined hardware. Also, modules are easily exported from Vivado HLS to Vivado for partial recon-

figuration.

FPGAs have embedded ARM Cortex A9: The main event that makes now the right

time is that there exists a commercial off-the-shelf FPGA coupled dual-core embedded ARM Cortex

A9 processor [22]. The ARM Cortex A9 (or its successor) is the same processor that is used in

many smart phones today. With this, the FPGAs can be a drop-in replacement and be compatible

with little or no changes to software today (in fact, these FPGAs can turn off the FPGA logic,

making them simply a dual-core ARM processor, further illustrating the point).

Chapter 5

Cloud RTR Approach

The run-time place and route and slot-based approaches failed to provide an efficient general

RTR that supports the deployment scenario described in section 3. Fortunately, the tools of

today can be leveraged to create a new approach to achieve efficient and automated general RTR

that allows mobile phone applications to have access to hardware. The approach is called the

cloud RTR approach. Figure 5.1 shows the complete cloud RTR approach that converges the

three parties described in section 3 (refer back for a detailed description of each party). The

phone manufacture provides the static design to the cloud. The developer provides an Android

application and C defined hardware to the cloud. The cloud compiler takes the hardware defined

by the user, synthesizes it into a netlist, and compiles it for each RP in the phone manufacturer’s

static design. Once each RP is compiled, partial bitstreams are created for each RP, which later

can be swapped in or out of their respective RP. The application and partial bitstreams are placed

into the app store. A user can then download the application and hardware bitstreams required by

that application. Android then chooses a RP to place the hardware and loads it with the respective

partial bitstream.

As mentioned earlier, the tools and technologies of today are leveraged to implement the

cloud RTR approach. More specifically, Xilinx PR is used to achieve RTR. HLS is used to convert

C defined hardware into an RTL design that is later synthesized into a netlist and loadable into a

RP. Finally, the deployment model of mōbware is leveraged to achieve the general RTR.

19

Figure 5.1: Cloud RTR approach to the generation and deployment of mōbware.

5.1 Brute Force Compilation

The Xilinx tools alone do not achieve general RTR. They support a very specific deployment

scenario where all is known at compile-time. As described in section 4.1, their scenario also only

supports a single party (Hardware Developer) that wishes to achieve more functionality without

using up more space of the FPGA. We also described an example of different ordered FIR filters

that could be accommodated in an RP.

The example shows that any time a new RM is introduced, it must be compiled for an RP

so it can become swapped in and out at the developers convenience. If there are multiple RPs and

the developer wanted an RM to be placeable in all RPs, then they would compile the RM into each

RP. This brute-force method could allow all RMs to be compatible for all RPs allocated onto the

FPGA. By compiling each RM for each RP, this provides the general RTR that is required by the

cloud RTR deployment model.

More specifically, Xilinx’s PR technology can be used to implement general RTR in the

cloud-based deployment infrastructure by brute-force compiling the RMs, that are uploaded by

20

developers, on all the static designs provided by the phone manufactures. Since the cloud RTR

approach converges the phone manufacturer, developer, and user, the brute-force method can be

implemented in the cloud. The only potential limitations are the computational requirements to

support brute-force compilation of RMs. It could take too long and too many machines to service

a reasonable amount of RMs. These potential limitations are investigated later.

5.2 Xilinx Parital Reconfiguartion

Since we can leverage Xilinx’s PR to achieve general RTR through brute-force compilation,

we had to learn how to implement and automate partial reconfiguration. The first step is to

define a static design. The static must contain hardware to support communication between the

processing system (PS) (i.e. the processor) and PL. It must also contain hardware to support

partial reconfiguration. Next, the static design is fitted with N black boxes. Black boxes are

simply a defined module interface with no hardware logic. The next step is to complete base PR.

Base PR is creating a base static design where the static region has been routed and RPs have been

floor planned and are empty. With this static routed design, we can compile any RM for any RP,

assuming it meets the PR requirements that we will describe later. The process of compiling RMs

using the base PR design is called dynamic PR. RMs are dynamically compiled for every RP and

partial bitstreams are created. These four tasks represent the nuances of partial reconfiguration

and, with brute-force compilation, allowing for general RTR.

5.2.1 Define Static Design

Figure 5.2 is the static design we designed to accommodate partial reconfiguration and PS

to PL communication. The PS block configures the ARM cores. It sets how the ARM cores com-

municate with the PL and which hardware modules it drives. There are many ways that the PS

can communicate with the PL, most of which utilize the AXI4 communication protocol. AXI4 is a

master/slave communication protocol and contains three interfaces.

21

• AXI4 - for high-performance memory-mapped requirements.

• AXI4-Lite - for simple, low-throughput memory-mapped communication (for example, to

and from control and status registers).

• AXI4-Stream - for high-speed streaming data [25].

The PS can only communicate through AXI4 or AXI4-Lite, suggesting that all communica-

tion transactions between the PS and PL are memory mapped. If an RM is not memory mapped,

then a DMA is coupled with the RM to make it memory mapped. When the PS needs data pro-

cessed by a streaming RM, it communicates an address to the DMA, the DMA extracts the data

and sends it to the RM. The data is processed and returned to the DMA. The DMA then places the

processed data in an area in memory that the PS can access. For this reason, we place a DMA next

to every RM. This ensures that if the RM is stream-only hardware, the PS can still drive it. If the

RM is memory-mapped, then the PS can directly communicate with the RM via the interconnect,

shown in figure 5.2.

In addition, the AXI4 protocol is very flexible in that a master can drive multiple slaves using

an AXI interconnect. An AXI interconnect gives the PS (master) control over all hardware in the

PL, as long as they are connected to the interconnect as slaves. All hardware blocks to the right of

the interconnect block, in figure 5.2, are slaves to the PS. The static design also contains a GPU

that handles graphics for the Android OS. This block will be unneeded in practice, since mobile

phones have dedicated GPUs to handle graphics, however, we need this block to display graphics

on our emulation platform.

Finally, the static design contains a reset hardware block. When an RM is swapped with

another RM, the new RM must reset. This ensures that the new RM starts in a good starting

state and will function correctly. It also clears the hardware that may contain unwanted values

that would disrupt function of the new RM. Normally, this is handled by the hardware itself. A

22

property known as RESET AFTER RECONFIG can be placed on every RM, forcing a reset after

reconfiguration. Unfortunately, this did not meet the requirements for our static design.

All RMs have an AXI interface, meaning the state of the transactions between the AXI mas-

ter driving the original RM remains even after reset of the new RM. During the first attempts

at partial reconfiguration, loading of a partial bitstream by the PS would hang. To mitigate this

issue, a reset block was implemented to put AXI communication of the RM into reset. When

this happens, the PS notices that the RM communication interface is in reset and resets its own

communication with the RM. Once communication on both sides have been reset, the original RM

can be replaced by the new RM, without hanging the PS during loading of the partial bitstream.

Note that the PS is driving the reset block. When partial bitstream is to be loaded, the PS first

resets the RMs AXI communication.

Note the thin box around the RM, reset, and DMA hardware blocks. This is to signify that

these blocks are based on the number of RMs that are defined in the static design. A reset and

DMA block are needed for each RM. We later will discuss the resources utilized by the support

hardware and its impact on the number of RPs we can place in the FPGA.

5.2.2 Static Design Black Box Instantiation

When defining the static design, we must place an N amount of black boxes to serve as place

holders for RPs. Black boxes are hardware modules with only an interface and no internal logic.

When a black box is synthesized, the tools recognize it as a black box and allow partial reconfig-

uration properties to be applied to it. Note that static design in figure 5.2 is designed in Vivado

as a block design. Block designs are one level of abstraction above HDL. When a block design is

compiled, it is converted into HDL. Once the block design has all the components in figure 5.2, N

amount of hardware modules are added to serve as place holders for the black boxes. Since the

HDL contains instantiations of N actual hardware modules, we must modify the HDL to reflect N

23

Figure 5.2: Static design that accommodates partial reconfiguration.

black boxes.

1 s y s t em s imp l e f f t 0 0 s imp l e f f t 0

2 (. ac lk (sys 100m clk) ,

3 . ap s t a r t (GND 1) ,

4 . a r e s e tn (r e s e t a x i 0 r e s e t o u t) ,

5 . in r TDATA(axi dma 0 M AXIS MM2S TDATA) ,

6 . in r TREADY(axi dma 0 M AXIS MM2S TREADY) ,

7 . in r TVALID (axi dma 0 M AXIS MM2S TVALID) ,

8 . out r TDATA(simple f f t 0 out r TDATA) ,

9 . out r TREADY(simple f ft 0 out r TREADY) ,

10 . out r TVALID (s imple f f t 0 out r TVALID)) ;

The verilog code snippet above is an instantiation of an FFT in a top-level design (static design).

This snippet is also HDL that was generated from a block design. This top-level design does not use

all of the ports of the FFT. If this FFT instantiation was turned into a black box and then an RP,

all RMs compiled for that RP would be restricted to that interface. By using a reference design as

a place holder, there is the risk that the reference interface can be shortened if the top-level design

24

does not use these ports. There are two solutions for this problem. The first is to add the missing

ports before moving further in the PR tool flow. The second is to ensure that the RMs loaded into

this eventual RP have the same interface. The latter is optimal since the top level design does not

use these ports. For the sake of simplicity and efficiency, we do the former because it is less work

to add missing ports than to modify the original design.

We have developed a tool that scans the top-level design for the reference design instantiations

and adds the missing ports. It is given a top-level design HDL file and a reference design interface

that defines what the interface should be and makes changes accordingly. The code snippet below

shows the updated FFT instantiation. It now contains three added ports, ap ready, ap done, and

ap idle, which are absent from the original definition of the FFT hardware module.

To make this instantiation a black box, the module instantiation in the code below must

be placed at the end of the top-level file. This will indicate to the Vivado that this module is a

black box module and can be given partial reconfiguration properties. Note that there must be a

module instantiation for each black box. In the code below, both instantiations would lead to a

single black box. To accommodate more black boxes, we would add another FFT interface and

FFT module instantiation. The tool described above also adds these module instantiations to the

top-level design once it finishes adding the missing ports.

Interface matching between RMs and the static design is a requirement for PR to work. All

RMs do not make any assumptions on the top-level environment. They are synthesized separately

from the top-level design, which is known as out-of-context (OOC) synthesis. If the static design is

to accommodate RMs, it must contain the correct interface, even if some of the ports are unused.

For example, if the FFT with an interface below was OOC synthesized, all the ports would be

visible in the generated netlist. If this FFT was placed in an RP that was defined by the interface

above, PR of the FFT onto the FPGA would fail.

25

1 //Updated FFT i n t e r f a c e

2 s y s t em s imp l e f f t 0 0 s imp l e f f t 0

3 (. in r TVALID (axi dma 0 M AXIS MM2S TVALID) ,

4 . in r TREADY(axi dma 0 M AXIS MM2S TREADY) ,

5 . in r TDATA(axi dma 0 M AXIS MM2S TDATA) ,

6 . out r TVALID (s imple f f t 0 out r TVALID) ,

7 . out r TREADY(simple f ft 0 out r TREADY) ,

8 . out r TDATA(simple f f t 0 out r TDATA) ,

9 . a r e s e tn (r e s e t a x i 0 r e s e t o u t) ,

10 . ac lk (sys 100m clk) ,

11 . ap s t a r t (GND 1) ,

12 . ap ready (ap ready0) ,

13 . ap done (ap done0) ,

14 . a p i d l e (ap i d l e 0)) ;

15

16 //Module i n s t a n t i a t i o n placed at the end o f top l e v e l f i l e

17 module s y s t em s imp l e f f t 0 0

18 #(parameter

19 RESET ACTIVE LOW = 1

20) (input in r TVALID ,

21 output in r TREADY ,

22 input [32 − 1 : 0] in r TDATA ,

23 output out r TVALID ,

24 input out r TREADY ,

25 output [32 − 1 : 0] out r TDATA ,

26 input a r e s e tn ,

27 input ac lk ,

28 input ap s t a r t ,

29 output ap ready ,

30 output ap done ,

31 output ap i d l e) ;

26

5.2.3 Base PR

Base PR refers to building the base static design with RPs, so that new RMs can be compiled

and partial bitstreams generated. The base partial reconfiguration tool flow executes the following:

(1) Convert black boxes of a synthesized static design into floor-planned RPs

(2) Fill the RPs with a reference design and place and route (i.e. implement the design)

(3) Save reference implementation for verifying future implementations

(4) Remove the RMs from the referent implementation

(5) Save static routed implementation for future implementation of RMs

(6) Generate a full bitstream

More specifically, the first step of base PR is configuring black boxes as reconfigurable. This

is easily done by applying the following Tcl command to each black box:

1 s e t p r ope r t y HD.RECONFIGURABLE true [g e t c e l l s <Black Box Module Name>]

Once each black box has been configured as reconfigurable, they are loaded with an RM. This

is done to floor plan each black box. By loading hardware into the black boxes, the tools can then

determine the correct amount of resources that would be required by that RM. Figure 5.3 shows

the process of floor planning of black boxes into RPs, known to the tools as pblocks. Each square,

outlined in purple, are a section of resources of the FPGA that are dedicated to any RM that is

loaded into that RP. Also, the RPs are placed on clock boundaries (boxed in red). When an RM

is removed from an RP and replaced with another, the new RM will reset itself. This is configured

by placing the RP clock boundary and the following Tcl command:

1 s e t p r ope r t y RESET AFTER RECONFIG true [g e t pb l o ck s <pblock Name>]

27

We briefly mentioned the RESET AFTER RECONFIG property in section 5.2.1. This indicates to

the tools that we want reset to occur after reconfiguration. Setting the RP on the clock boundary

is a prerequisite. It is imperative to have this property, otherwise, will have to manually reset the

entire RM. Even though there is a manual reset for AXI transactions, it does not reset the entire

RM.

Figure 5.3: Floorplanning of reconfigurable partitions.

Once floor planning is finished, the entire design is placed and routed. This is done to create

a base implementation that can be used to verify future implementations with different RMs loaded

into the static design. Next, the RMs are carved out of the RPs and this base design is saved as a

checkpoint. At this point, we have a checkpoint that has routed all of the static design and contains

empty partitions for other RMs. This checkpoint can be used to compile other RMs. There is no

need for floor planning and defining black boxes as reconfigurable for RMs we wish to compile in

the future. Finally, we generate a full bitstream. This full bitstream will serve as the out-of-the-box

configuration for the FPGAs in the mobile phones.

In addition, base PR is generally only run once. If there are updates to the static design,

then it must be done again. With respect to our cloud RTR approach, we expect this to happen

28

infrequently. Also, to support the case of static design updates, we have automated this process.

We developed a tool that contains the parameters for floor planning and looks in a specific directory

for an RM to place in the newly defined RPs.

5.2.4 Dynamic PR

Dynamic PR refers to the partial reconfiguration tool flow when a new RM is introduced and

must be compiled for every RP in the FPGA. This process is very similar to base PR and executes

the following:

(1) Lock the design

(2) Load each RM into every RP

(3) Place and route (i.e. implement the design)

(4) Verify

(5) Generate partial bitstreams

More specifically, dynamic PR starts with the checkpoint created by base PR, a routed static

design with RPs. First, the routing in the check point is locked down with the following command:

1 l o c k d e s i gn − l e v e l rout ing

This provides routing consistency when new RMs are compiled for each RP. The next step is to

load the new RM into every RP and then placed and routed. Now that the design with the new

RM has been implemented, it can be compared to the implementation from base PR. If there is

any inconsistencies, there has been an error in the partial reconfiguration tool flow. If verification

passes, bitstreams are generated. A partial bitstream is generated for each slot. To load the RM

29

into a slot, it’s respective partial bitstream must be loaded in.

In addition, in order to load an RM into the RP, it must be synthesized OOC. When hard-

ware is uploaded to the cloud, it comes in the form of the C language. The C defined hardware

must be synthesized by HLS, so it can be placed into the RPs. This adds to the overall overhead

of dynamic PR. This overhead will also vary depending on the size of the RM.

Similarly, like base PR, we have automated this process. Our tool generates the script to

compile an RM for each of the available RP’s defined in the static routed design. It verifies against

the base PR implementation and generates the partial bitstream. All in all, the tool expects the

OOC synthesized RM and the static routed checkpoint to complete dynamic PR.

Chapter 6

Evaluation

By building tools to complete base and dynamic PR, we have the tools needed to support

the cloud RTR deployment infrastructure shown in figure 5.1. We have implemented the cloud

RTR approach and ran three experiments to answer two fundamental questions. The first question

is, how many RPs will be available to the developer/user? Throughout this paper, we refer to

N RPs and never an actual fixed amount. The second question is, is the brute-force method

practical? What throughput is achievable using the brute-force RM compilation method and can

this throughput handle daily RM uploads? In this section, we describe the three experiments and

the answers to the two fundamental questions.

6.1 How many RPs will be available to the developer?

So far in this work, we have not described how many RPs will be available to the developer-

s/users. This is a very difficult question to answer without a reference, therefore, we developed a

hardware module to gain insight on its resource utilizations. Using this information, we determined

how many reference hardware modules can be placed onto the fabric. With this information, we

learned more about how many and where to place RPs.

31

6.1.1 Experiment 1

6.1.1.1 Experiment 1 Setup

The first experiment is aimed at determining how many RPs can be placed on an entire

FPGA using a reasonably useful hardware design. We developed an FFT hardware with the

following characteristics:

• 1024 samples/frame

• single channel

• 16-bit data width

We placed as many FFT’s on the FPGA fabric to get an idea of how many RPs can be

accommodated for reasonable hardware designs uploaded by developers. An FFT hardware module

is a very useful hardware module for digital signal processing. It is also a common benchmark

used when testing for performance and power reduction [3]. We manually execute the base PR

approach described in section 5.2.3. We instantiated eight black boxes with our FFT’s interface.

We synthesized the design and floor planned RPs for each of the black boxes. Note that instantiating

eight boxes is an educated guess. At this point, we do not know how many FFT’s can be placed.

We will not know until the FFT is loaded into each black box and RPs are allocated based on

the resource requirements for the FFT. We then do this and exhaust all available resources on the

FPGA.

6.1.1.2 FPGA Resources

FPGA resources can be broken down into the following categories:

• Slice Logic

• BRAM

• DSP

32

Table 6.1 shows the amount of resources available for each category. Each slice is comprised

of look-up tables (LUT), multiplexers (Muxes), adder logic, and registers. Memory is comprised

of block RAM tiles. Each tile contains two 18 Kb RAM components. Also, there are also DSP

components specifically designed for signal processing applications.

Site Type Available

Slice LUTs 53200

LUT as Logic 53200

LUT as Memory 53200

Slice Registers 106400

Registers as Flip Flop 106400

Registers as Latch 106400

F7 Muxes 26600

F8 Muxes 13300

Block RAM Tile 140

RAMB36/FIFO 140

RAMB18 280

DSPs 220

Table 6.1: Slice Logic Resource

All three types of resources are utilized by the FFT. This limits the placement for the RPs

to areas on the FPGA with all three resources. Figure 6.1 shows the layout of FPGA. The red

columns are the BRAM components, the green columns are the DSP components, and the blue

are the slice components. When allocating RPs, as done in figure 5.3, the block must encapsulate

enough of all three resources to satisfy the requirements for the FFT. If it does not, a design rule

check will fail and give an error.

33

Figure 6.1: Zynq FPGA resources layout

Table 6.2 shows all the resources required by the FFT. Based on these values, we have a

rough idea on how large the RP’s must be to accommodate the FFT. Keeping in mind the clock

boundaries, FFTs do not require spanning multiple clock boundaries. They can be safely placed

within a single clock boundary and widened until they have the correct amount of resources. The

clock boundaries are the colored horizontal lines in figure 6.1. They serve as a constraint to how

to place the RPs vertically.

We discussed earlier the need for hardware support for RMs. We introduced the need for reset

hardware and a DMA for each RM. This suggests that as the number of RMs grow, the number of

34

reset and DMA modules grow. We measured their resource utilizations and we have better idea on

the number of FFTs that can be placed as RPs. Tables 6.3 and 6.4 show the resources required by

the reset and DMA hardware, respectively. The reset block hardly uses any resources, therefore,

it is negligible. The DMA uses 2.21 % of the Slice LUTs, 1.51 % of Slice Registers, and 1.42 % of

the BRAM. We must add these utilizations to the FFT, since they are added for each RM.

Note that the resource utilizations for the DMA and reset hardware are more accurate than

the FFT resource utilizations. When laying out RPs, they are based on the synthesized estimates

of the FFT. Synthesized estimates overestimate the usage of the slice resources. We present the

FFT’s synthesized estimates because this is what floor planning is based on. The DMA and reset

utilizations presented were measured after optimization, placement, and routing of the netlist.

Site Type Used Available Util %

Slice LUTs 3258 53200 6.12

LUT as Logic 2055 53200 3.86

LUT as Memory 1203 53200 6.91

Slice Registers 5018 106400 4.71

Registers as Flip Flop 5018 106400 4.71

Registers as Latch 0 106400 0.00

F7 Muxes 66 26600 0.24

F8 Muxes 32 13300 0.24

Block RAM Tile 1.5 140 1.07

RAMB36/FIFO 0 140 0

RAMB18 3 280 1.07

DSPs 12 220 5.45

Table 6.2: Synthesis resource utilization for FFT RM.

35

Site Type Used Available Util %

Slice LUTs 40 53200 0.07

LUT as Logic 40 53200 0.07

LUT as Memory 0 53200 0.00

Slice Registers 72 106400 0.06

Registers as Flip Flop 72 106400 0.06

Registers as Latch 0 106400 0.00

F7 Muxes 0 26600 0.00

F8 Muxes 0 13300 0.00

Block RAM Tile 0 140 0.00

RAMB36/FIFO 0 140 0

RAMB18 0 280 0.00

DSPs 0 220 0.00

Table 6.3: Implementation resource utilization for reset hardware.

36

Site Type Used Available Util %

Slice LUTs 1178 53200 2.21

LUT as Logic 1139 53200 2.14

LUT as Memory 39 53200 0.22

Slice Registers 1612 106400 1.51

Registers as Flip Flop 1612 106400 1.51

Registers as Latch 0 106400 0.00

F7 Muxes 0 26600 0.00

F8 Muxes 0 13300 0.00

Block RAM Tile 2 140 1.42

RAMB36/FIFO 2 140 1.42

RAMB18 0 280 0.00

DSPs 0 220 0.00

Table 6.4: Implementation resource utilization for Direct Memory Access (DMA) hardware.

Figure 6.2 shows the FFT’s placed onto the FPGA as reconfigurable modules. The purple

outlines are the resource boundary for each FFT. The blue are the routed resources used by that

FFT. Anything blue outside of the purple outlines are the resources used by the static design. At

this point it is clear to see that a majority of the FPGA resources are being used up. There are 8

purple boxes, meaning 8 FFTs have been accommodated into this design.

37

Figure 6.2: Zynq FPGA resources layout filled with FFT hardware modules.

6.1.1.3 Discussion

Experiment 1 has lead to development of a few design rules to consider when allocating

RPs. We recommend that the phone manufacturer allocate all three resources to all RPs. This

ensures that each slot can accommodate a wide variety of designs. Since the design is not known

at compile-time, they must anticipate a diverse set of hardware and allocate all types of resources

to accommodate the hardware diversity. We also recommend using less and larger RPs. We do

not anticipate that a phone will be utilizing eight applications that utilize eight different hardware

designs. It is more likely that there will be less amount of applications at one time using hardware,

such as, two or three. With this realization, reducing the number of RPs and increasing their area

38

suggests larger hardware designs can be accommodated with out reducing functionality require-

ments.

In addition, the less RMs that are placed, the less overhead incurred by adding DMA hardware

blocks. Area of the FPGA can be conserved using less RPs and more area of the FPGA can be

dedicated to the RM. Based on the resource utilizations, the slices seem to be the most sought.

The DMA modules primarily use slices and using less of them frees this resource. It also possible

that DSPs and BRAM can be a bottleneck, specifically because of their location on the FPGA.

Since they are so close to each other, large RPs would consume BRAM and DSP components that

it might not even use. This waste can potentially limit the number of RPs that can be placed on

the FPGA and the types of designs that can loaded in the partitions.

6.2 Is the brute-force compilation method practical?

In order to achieve general RTR, we are using a cloud deployment model to brute-force

compile every loaded RM into every RP in the static design(s). If brute-force compilation takes

too long, it is not practical to implement the cloud RTR deployment model. We must determine

how much mōbware can be serviced each day and compare to the actual mobile uploads to an

application cloud such as Google’s Play Store.

6.2.1 Experiment 2

6.2.1.1 Experiment Setup

The second experiment is aimed at determining the elapsed time, CPU time, and memory

usage for brute-force compilation of RMs during the base PR automated tool flow. Since we have

determined we can have up to eight RPs with the FFT, we test brute-compilation for 2 to 8 RPs.

We use the same FFT from the first experiment as our RM for base PR.

39

For this experiment we use the following hardware:

• Intel Xenon CPU 2.1 GHz (6 cores with 48 GB RAM)

6.2.1.2 Results

of RPs Elapsed Time (m:s) CPU Time(m:s) Memory Usage (MB) Tcl Generation (s)

2 7:55 11:48 1986 0.128

3 11:56 18:19 2088 0.127

4 16:03 22:27 2187 0.127

5 22:15 29:37 2300 0.128

6 28:39 38:10 2391 0.123

7 36:00 45:59 2477 0.128

8 46:03 60:14 2584 0.128

Table 6.5: Execution times and memory usage for base PR compilation.

6.2.1.3 Discussion

Table 6.5 shows the execution times and memory usage required to compile an FFT RM into

2 to 8 RPs. Memory usage is in the range of 1.9 to 2.6 GB. Our system has 48 GB of RAM, which

is more than enough memory to accommodate the base PR tool flow, no matter the number of

RPs. Since at most 2.6 GB is needed for base PR, memory usage will not be a bottleneck of the

execution of base PR in the cloud. Also, the process of generating the Tcl scripts that automate

the base PR process is negligible. It takes less than a second to generate the scripts for up to 8

RPs, therefore, automation will not affect the elapsed time of base PR.

Similarly, table 6.5 shows the elapsed and CPU times for base PR. The Vivado tool that ex-

ecutes base PR is primarily single threaded, however, it spawns multiple threads during execution

when work can done parallel, such as, when completing design rule checks. The multi-threaded

40

element of Vivado has a significant impact on elapsed time, as shown in table 6.5. For 8 RPs, more

than eight minutes was shaved off the elapsed time. Even for two RPs, more than 3 minutes are

shaved off. This time is precious and can be used towards compiling more RMs.

Elapsed time is the strongest indicator for the viability of base PR, however, there is a lot of

flexibility in how long base PR can take. As discussed earlier, base PR is not executed many times.

It needs to only run once to obtain the static routed design for dynamic PR. If there are updates

to the static design, which happens infrequently, then it would need to be run again. 46 minutes

of compilation time a few times a year is not a significant cost. A low cost for compilation of RMs

of most of the FPGA resources suggest that 46 minutes is roughly the cost for compiling over the

entire area of the FPGA. If the number of RPs were reduced, but their areas were increased, it

should roughly take 46 minutes to compile.

Figure 6.3 shows the elapsed times of base PR for 2 to 8 in bar graph form. Notice that the

trend is mostly linear, with the largest gap between 7 to 8 RPs. During the process of base PR, we

noticed most of the time was consumed by routing each of the RMs. The more FPGA resources

used, the more contention there is for routing resources. We also noticed that depending on where

the RPs are placed, routing contention can increase or decrease for the same amount of area. For

example, when executing base PR for 4 RPs, the elapsed time went past an hour. We then moved

one of the RPs to a new location and the time went down to approximately 12 minutes. If RPs are

optimally placed, routing can significantly be reduced. Since routing is the longest task, reducing

its elapsed time would significantly reduce the overall elapsed time.

41

Figure 6.3: Execution times for performing base PR for 2 to 8 RPs.

6.2.2 Experiment 3

6.2.2.1 Experiment Setup

The third experiment is aimed at determining the elapsed time, CPU time, and memory

usage for brute-force compilation of RMs during the dynamic PR automated tool flow. Since we

have determined we can have up to eight RPs with the FFT RM, we test brute-compilation for 2

to 8 RPs. We use the same FFT from the first experiment as our RM for dynamic PR. We also

measure the execution times for synthesis and memory usage required to convert the C defined

FFT into an IP and synthesized. Dynamic PR is the tool flow that is continuously run, therefore,

the overhead of its compilation will dictate if it is sustainable.

For this experiment we use the following hardware:

• Intel Xenon CPU 2.1 GHz (6 cores with 48 GB RAM)

42

6.2.2.2 Results

Elapsed Time(s) CPU Time (s) Memory Usage (MB)

48.56 61.532 67

Table 6.6: HLS synthesis execution times and memory usage of C defined FFT.

Elapsed Time(s) CPU Time (s) Memory Usage (MB)

174 177 1316

Table 6.7: Vivado synthesis execution times and memory usage of FFT IP.

of Slots Elapsed Time (m:s) CPU Time(m:s) Memory Usage (MB) Tcl Generation (s)

2 8:13 11:29 2445 0.128

3 11:14 15:34 2532 0.127

4 15:19 21:05 2656 0.127

5 20:32 27:32 2811 0.127

6 24:57 33:26 2987 0.127

7 > 120:00 > 120:00 3088 0.122

8 > 120:00 > 120:00 3201 0.127

Table 6.8: Execution times and memory usage for dynamic PR compilation

6.2.2.3 Discussion

Every time a C defined hardware module is uploaded to the cloud, it must be converted into

an IP. Once an IP, it can be synthesized by Vivado and is loadable in RPs. Table 6.6 shows the

elapsed time, CPU time and memory usage for synthesizing and exporting a C defined FFT in HLS.

Not much memory is required for this process, therefore, it is negligible. Like Vivado, HLS utilizes

multiple threads when work can be distributed. It reduces time by roughly 12 seconds, which is

43

significant since the entire process only takes 49 seconds. The elapsed time is short, however, it

cannot be ignored. We must add this time to the total overhead of dynamic PR.

After HLS has synthesized and exported the IP, Vivado synthesizes the IP OOC. Table 6.7

shows the elapsed time, CPU time and memory usage for synthesizing the exported IP in Vivado.

This process required 1.32 GB of memory usage. More than enough memory is available and,

like base PR, memory will not be a bottleneck. As mentioned earlier, Vivado can utilize multiple

threads, however, it did not help much with reducing the elapsed time. Synthesis of the FFT IP

took 174 minutes and this will also have to be added to the overall overhead of dynamic PR, since

every new C device loaded to the cloud must go through this process.

Table 6.8 shows the execution times and memory usage required to compile an FFT RM into

2 to 8 RPs. Memory usage is in the range of 2.4 to 3.2 GB, which is 0.6 GB more than what is

required by base PR. Even though it takes more memory than base PR, the 48 GB RAM available

is still more than enough to accommodate the memory requirement. Memory still will not be a

bottleneck. Also, the process of generating the Tcl scripts that automate the dynamic PR process

still remains negligible. It still takes less than a second to generate the scripts for up to 8 RPs,

therefore, automation will not affect the elapsed time of dynamic PR.

Similarly, table 6.8 shows the elapsed and CPU times for dynamic PR. The multi-threaded

element of Vivado has a significant impact on elapsed time, as shown in table 6.8. For 6 RPs, more

than eight minutes was shaved off the elapsed time. Even for 2 RPs, more than 3 minutes are

shaved off. Since dynamic PR is run every time a new RM is introduced, time is very precious.

Reducing elapsed time will increases the number of RMs that can be serviced each day.

Elapsed time is the strongest indicator for the viability of dynamic PR, unlike base PR, there

is no flexibility in the execution of this tool flow. The longer dynamic PR takes, the less RMs

44

that can be serviced. If the elapsed time is too large, then the entire cloud RTR approach is not

feasible. The elapsed times for 7 and 8 RPs are listed as greater than 120 minutes, as shown in

table 6.8. Routing the resources for 7 to 8 RPs takes a significant amount of time because the nets

are fighting for routing resources. It is likely a result of locking down the static design. There are

much less routing resources and this causes great contention of those resources when routing the

RMs. The contention becomes too great and the FPGA takes too much time to route the nets.

Based on this, it is wise to only use up to 6 RPs of the FPGA, which is approximately 80% of the

FPGA. Using too much area of the FPGA increases the time for routing to complete and it reduces

the tool’s throughput.

Even with a limit of 6 RPs (i.e. 80% of the FPGA), the elapsed time to compile 6 RPs is

approximately 25 minutes. This is a promising result, in that many RMs can be serviced in a 24

hour period. Figure 6.4 shows the execution times of dynamic PR for 2 to 6 RPs in graph form.

The elapsed times for dynamic PR execution was very similar to base PR. It has a linear trend

and takes slightly less time. Even though there is a verification step in dynamic PR, routing of

the static design in base PR is more expensive. At this point, we have determined the latency for

dynamic PR and can calculate its throughput. Using its throughput, we can compare to workloads

and conclude if it can service these workloads. With this information, we can determine if the

brute-force method is practical.

In addition, not all RPs are created equal. Depending on where RPs are floor planned, the

time to route resources can vary, just like in the base PR tool flow. To mitigate this issue, we

could use a larger FPGA. By introducing an FPGA with more resources, routing contention would

be much less. We could accommodate larger designs and spend less time on routing. It would

also be advantageous to experiment with different slot placements to optimize the time to route

the resources. We also hope to investigate the way resources are routed to find ways of reducing

compilation time. All in all, the time for dynamic PR seem reasonable. With these results, we can

45

determine if the brute-force method is sustainable by a reasonable number of machines.

Figure 6.4: Execution times for performing dynamic PR for 2 to 6 RPs.

6.2.3 Cloud RTR Resource Requirements

Using the results from experiment 3, we can determine the daily throughput for compiling

mōbware. Also, by making assumptions about application production each month, we can deter-

mine how many machines would be required to sustain our cloud RTR deployment model. The

company AppFigures was kind enough to provide the Google Play Store application upload figures

for the entire year of 2014. Table 6.9 shows the number of applications in the Google Play Store as

of December 2014. Also, based on the numbers provided by AppFigures, we calculated an average

monthly growth in uploaded applications to be 6.10%. Using this average monthly app growth, we

extended it to April 2015. For the month of April in 2015, 104,187 applications are predicted to

be uploaded into the Google Play Store. Based on the anticipated number of applications that

46
Google Play Store Figures

Number of Apps as of Dec 14 1.43 Million

Average Monthly App Growth 6.10 %

Number of Apps uploaded for April 15 104,187

Table 6.9: Google Play Store app upload figures provided by AppFigures.

will be uploaded in the month of April, we can make assumptions on the percentage of applications

that will use mōbware per month. With this assumption, we can compare it to the throughput of

our machine and extrapolate the number of machines required to service the uploaded mōbware

each day. Table 6.10 shows the latency for compiling a single application. Using these numbers we

calculated the daily throughput, which is shown in table 6.11. We are able to service a maximum

of 121 RMs per day for 2 RPs and a minimum of 51 RMs per day for 6 RPs.

of RPs Execution Time (m) RM Synthesis Execution Tim (m) Total Execution Time (m)

2 8:21 3.71 11.92

3 11:21 3.71 14.93

4 15:31 3.71 19.02

5 20:50 3.71 24.21

6 24:52 3.71 28.23

Table 6.10: Compilation components for dyamic PR and RM synthesis.

of RPs Execution Time (m)

2 121

3 96

4 76

5 59

6 51

Table 6.11: Daily throughput of apps compiled per day.

47

Using the calculated throughput, we can determine if the brute-force approach is sustainable

for the current app market. To do so, we must make two assumptions. The first assumption is

percentage of apps that will utilize the re-programmable hardware. We choose three values, 0.1%,

1%, and 10%. We do not anticipate more than 10% of applications uploaded by developers would

use mōbware. Using this assumption, we can determine how many apps of the 104,187 uploaded

to the play store in April would need to be compiled. From this number, we can easily determine

how many hardware modules per day will need to be compiled and compare this value to our

throughput. The second assumption is the number of phone variants. We have discussed earlier

that there are many phone manufactures that will define the static design for their phone’s FPGA.

This suggests that the RM will have to be compiled for each phone variant. For this assumption,

we assume from 1 to 1000, with each interval increased by a factor of 10.

Table 6.12 shows the number of machines required to service monthly demands for compiling

mōbware, when 2 RPs are used. As discussed earlier, we choose a broad scale of the percentage of

monthly apps that require RMs to be compiled (i.e. 0.1%, 1%, and 10%). Table 6.12 shows the

number of RMs uploaded each day based on the percentage of applications that require hardware.

For example, if 0.1% of applications for the month of April require RMs to be compiled, 4 (rounded

3.47) apps would be uploaded each day. A single machine compiling these RMs on a static routed

design with 2 RPs can handle 121 RMs per day, as shown in Table 6.11. If there was only one

phone architecture, only one machine would be needed to compile the 4 apps. Table 6.12 shows a

broad spectrum of scenarios. The most expensive scenario is 1000 phone architectures and 10 % of

the applications uploaded for the month of April utilize mōbware. For this scenario, 2875 machines

would be needed to accommodate the workload.

Table 6.13 makes the same assumptions, however, a static routed design of 6 RPs is consid-

ered. More RPs means longer compilation time, as shown in table 6.11. When the static design

has 6 RPs, it’s throughput is 51 RMs per day. Since the throughput is much less, more machines

48

are required to accommodate the different scenario workloads. For the worst case of 1000 phone

variants and 10% of application uploads need RMs compiled, 6809 machines are needed. With this

many machines, we would expect work to be offloaded by the phone manufactures. This would

relieve the computational burden on the cloud compiler. Even so, 6808 machines is a reasonable

number of machines to accommodate such a large amount of phone variants and applications that

use mōbware.

2 Slots Requirement % of April Apps that Use Hardware

0.1 1 10

of Apps Uploaded per Day

3.47 34.71 347.28

of Phone Architectures # of Machines Required to Compile RMs

1 0.03 0.29 2.87

10 0.29 2.87 28.75

100 2.87 28.75 287.48

1000 28.75 287.48 2874.78

Table 6.12: Compilation components for dyamic PR and RM synthesis for 2 RPs.

49

6 Slots Requirement % of April Apps that Use Hardware

0.1 1 10

of Apps Uploaded per Day

3.47 34.71 347.28

of Phone Architectures # of Machines Required to Compile RMs

1 0.07 0.68 6.81

10 0.68 6.81 68.08

100 6.81 68.08 680.83

1000 68.08 680.83 6808.31

Table 6.13: Compilation components for dyamic PR and RM synthesis for 6 RPs.

Chapter 7

Future Work

All experiments previously were solely based on an FFT hardware module. To gain better

insight on how large and how many RPs should be allocated onto the FPGA, we must run exper-

iment 1 with different hardware modules, such as, AES, FIR filter, and QAM hardware modules.

By studying their resource demands, we can better layout RPs and accommodate a wide variety

of hardware modules. Similarly, we would like to add inter-module communication to reduce the

burden of fixed RP numbers. For example, imagine that an AES hardware module is too large to

fit into any of the allocated RPs. The AES hardware module can be split into two modules and

connected using inter-module communication.

Also, we previously discussed routing as the most expensive activity during compilation of

an RM. We also discussed that routing time varied based on RP location and RM size. By ex-

perimenting with RP placement and testing compilation time for the hardware modules described

above, we can determine the optimal way to place RPs to reduce compilation time. We must also

learn how routing resources are allocated and how we can improve floor planning to reduce routing

resource contention.

In addition, we would like to explore altering the deployment model. Currently, we are ex-

pecting the phone manufacturer to provide the static design and the number of RPs that will be

allocated onto the FPGA. It is very likely that the phone manufacturer would not be concerned

51

with what the static design looks like. As long as the phone has access to the resources of the

PL and other I/O, they are content. This would allow us to define the static design, but provide

different variants depending on the needs of the phone manufacturer. By providing standardized

static designs and module allocations, we can significantly reduce the number of phone variants.

With less phone variants, the time for compilation reduces and so does the number of required

machines.

Chapter 8

Conclusion

We have introduce a cloud-based RTR deployment model for mōbware, giving applications

access to these hardware modules. We leverage this deployment model to brute-force compile all

RMs using Xilinx’s partial reconfiguration technology. Also, by using a cloud deployment model,

we can compile the RMs of the developers onto the static design of the phone manufacturer and

deploy it to users. We placed as many FFTs onto the FPGA to determine how large and how many

RPs should be placed onto the FPGA. We also built a cloud system environment and measured

execution times of compilation of RMs when uploaded to a cloud. Using these measured execution

times, we determined the throughput of our cloud deployment system and used application upload

figures to determine the machines required to accommodate our deployment system.

Bibliography

[1] P. Possa, D. Schaillie, and C. Valderrama, “Fpga-based hardware acceleration: A cpu/accel-
erator interface exploration,” in IEEE International Conference on Electronics, Circuits and
Systems (ICECS), 2011.

[2] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Accelerating compute-intensive ap-
plications with gpus and fpgas,” in Symposium on Application Specific Processors (SASP),
2008.

[3] C. Cullinan, C. Wayant, T. Frattesi, and X. Huang, “Computing performance benchmarks
among cpu, gpu, and fpga,” MathWorks. 2013.

[4] J. Nunez-yanez and A. Beldachi, “Run-time power and performance scaling with CPU-FPGA
hybrids,” pp. 55–60, 2014.

[5] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M. Shelburne, J. Suris, M. Bucciero,
and J. Graf, “Wires on demand: Run-time communication synthesis for reconfigurable com-
puting,” in Proc. International Conference on Field Programmable Logic and Applications
(FPL), 2007.

[6] C. Conger, R. Hymel, M. Rewak, A. George, and H. Lam, “Fpga design framework for dynamic
partial reconfiguration,” in Proceedings of Reconfigurable Architectures Workshop (RAW),
2008.

[7] S.Guccione, D. Levi, and P. Sundararajan, “Jbits: Java-based interface for reconfigurable
computing,” in Proc. Conf. on Military and Aerospace Application of Programmable Devices
and Technology, 1999.

[8] E. Keller, “Jroute: A run-time routing api for fpga hardware,” in IPDPS Workshops, ser.
Lecture Notes in Computer Science, vol. 1800, 2000.

[9] T. Frangieh, R. Stroop, P. Athanas, and T. Cervero, “A modular based assembly framework
for autonmous reconfigurable systems,” in Reconfigurable Computing: Architectures, Tools
and Applications, ser. Lecture Notes in Computer Science, 2012.

[10] R. K. Soni, N. Steiner, and M. French, “Open source bitstream generation,” in Proc. IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM), 2013.

[11] D.Koch, C. Beckhoff, and J. Teich, “Recobus-builder a novel tool and technique to build
statically and dynamically reconfigurable systems for fpgas,” in Proc. Field Programmable
Logic and Applications (FPL), 2008.

54

[12] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The erlangen slot machine: A dynamically
reconfigurable fpga-based computer,” in VLSI Signal Processing Systems, 2007.

[13] C. Patterson, P. Athanan, M. Shelburne, J. Bowen, J. Suris, T. Dunham, and J. Rice, “Slotless
module-based reconfiguration of embedded fpgas.,” in ACM Trans. Embedd. Comput. Syst,
October 2006.

[14] T. Frangieh, R. Stroop, P. Athanas, and T. Cervero, “A modular-based assembly framework for
autonomous reconfigurable systems,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7199 LNCS,
pp. 314–319, 2012.

[15] S. Singh and P. James-Roxby, “Lava and JBits: From HDL to Bitstream in Seconds,” The 9th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’01),
2001.

[16] “Achieve power-efficient acceleration with opencl on altera fpgas.”

[17] M. Klein, “Power consumption at 40 and 45 nm,” Xilinx. 2009.

[18] S. Liu, R. Pittman, and A. Forin, “Energy reduction with run-time partial reconfiguration,”
Fpga, no. September, 2010.

[19] D. A. Patterson and J. L. Hennessy, “Computer organization and design,” 2009.

[20] E. Horta, J. Lockwood, and D. Parlour, “Dynamic hardware plugins in an fpga with partial
run-time reconfiguration,” in Proceedings of the 39th conference on Design automation, June
2002.

[21] “Vivado high-level synthesis.”

[22] “Zynq-7000 all programmable soc.”

[23] E. L. Horta, J. W. Lockwood, and S. Louis, “PARBIT : A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs),” 2001.

[24] “Xilinx partial reconfiguration.”

[25] “Axi reference guide.”

[26] “Vivado design suite.”

[27] “Zed board.”

[28] “Vivado high-level synthesis user guide.”

[29] “Partial reconfiguration user guide.”

[30] “Enable software programmable digital pre-distortion in cellular radio infrastructure.”

[31] S. Kestur, J. D. Davis, and O. Williams, “BLAS Comparison on FPGA,CPU and GPU,”

[32] E. L. Horta and J. W. Lockwood, “Automated method to generate bitstream intellectual
property cores for virtex fpgas,” in Proc. International Conference on Field Programmable
Logic and Applications (FPL), 2004.

55

[33] Altera, “An 531: Reducing power with hardware accelerators,” 2008.

