
Synergistic Server-Based Network Processing Stack

by

Marcelo Abranches

B.Sc., University of Brasilia, 2004

M.Sc., University of Brasilia, 2016

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical, Computer and Energy Engineering

2022

Committee Members:

Eric Keller, Chair

Tamara Lehman

Joseph Izraelevitz

Eric Wustrow

Dirk Grunwald

ii

Marcelo Abranches, (Ph.D., Computer Engineering)

Synergistic Server-Based Network Processing Stack

Thesis directed by Prof. Eric Keller

Network functions provide the required functionality to interconnect systems while ensuring

security, availability, efficiency, and performance. With the recent trend to run network functions

in software over commodity servers (instead of using specialized appliances), there is the need to

introduce new systems that can provide the required network features while running on top of

optimal processing environments. Several software packet processing technologies currently exist

(e.g., in-kernel/kernel-bypass, XDP, and SmartNICs) and each of them provide different features in

terms of available functionality, processing capabilities, performance, and efficiency. In this thesis,

we break down network application processing needs and by characterizing the processing features

provided by each technology, we verify that no single technology can cover all network application

requirements. With this observation, we provide new systems that often break the boundaries

between different technologies, allowing the building of optimal packet processing environments

that can meet countless requirements of modern networks.

Using this as the foundation of our work, we build systems to address many network function

needs – layer 2 to layer 7 processing and monitoring. In our first work, we introduce a new packet

I/O subsystem to a high-performance userspace TCP stack. This subsystem is provided by new

programmable in-kernel features allowing the TCP stack to have a better resource consumption

profile and to build cooperation mechanisms between the kernel and userspace. In our second

work, we address the needs of monitoring systems by introducing new primitives that allow for

building high-coverage monitoring systems with high performance and efficiency. We optimize

those primitives by building an efficient division of work between SmartNIC offloads, XDP on the

host, and userspace processing. Finally, in our third work, we rethink the Linux networking stack

to address the inneficiencies that prevent it to support the performance requirements of modern

iii

applications. We propose to break down its processing in a minimal and efficient fast path and a in

a robust and feature-rich slow path provided by the Linux kernel. The fast path is built on demand,

based on current processing needs for a given set of services configuration and gets assistance from

the slow path for processing completeness. This allows avoiding unnecessary processing inside the

kernel, minimizing overheads and increasing performance, while still maintaining Linux’s rich set

of features. With these contributions, we believe that we can provide new foundations to help both

academia and industry to build optimized systems that can address many modern network needs.

iv

Contents

Chapter

1 Introduction 1

1.1 What Network Applications Need? . 3

1.1.1 L4-L7 Performance and Feature Richness . 7

1.1.2 High-Coverage Monitoring . 9

1.1.3 L2-L4 Performance and Feature Richness . 11

1.2 Outline . 13

2 High-Performance Networking Overview 14

2.1 Linux Networking . 14

2.2 User Space Networking . 15

2.3 XDP . 15

2.4 SmartNICs . 16

3 L4-L7 Performance and Feature Richness 18

3.1 Introduction . 19

3.2 Related Work and Challenges . 22

3.2.1 Kernel Bypass Approach for NFVs . 22

3.2.2 Challenges of the Current Approach . 23

3.3 Motivation . 23

3.4 Architecture and Implementation . 26

v

3.4.1 mTCP/AF XDP Integration . 26

3.4.2 NFV Deployments . 28

3.5 Evaluation . 28

3.6 Protecting the userspace TCP stack . 33

3.7 Conclusion and Future Work . 36

4 High-Coverage Monitoring 37

4.1 Introduction . 37

4.2 Motivation . 40

4.3 A Primitive for Network Monitoring Systems . 43

4.4 Implementation . 48

4.5 Evaluation . 51

4.6 Related Work . 55

4.7 Conclusion . 56

5 L2-L4 Performance and Feature Richness 57

5.1 Introduction . 57

5.1.1 Overheads in the Linux networking stack. 58

5.1.2 Rethinking the Linux networking stack is practical. 59

5.1.3 Introducing TNA. 60

5.2 Building Composable Fast-Path Modules . 62

5.2.1 Designing fast-path modules. 62

5.2.2 Building a library of composable data-plane modules. 63

5.3 Automated Fast-Path Data Plane Creation . 64

5.3.1 Introspect the Linux kernel . 66

5.3.2 Build a dependency graph. 66

5.3.3 Stitch together and deploy a set of TNA FPMs. 67

5.3.4 Extensible Fast Path. 68

vi

5.4 Prototype and Evaluation . 69

5.4.1 TNA Bridge Prototype . 70

5.4.2 TNA Router Prototype . 71

5.4.3 TNA Iptables Prototype . 72

5.4.4 Stacking Different Subsystems Together . 74

5.5 Related Work . 76

5.6 Conclusion and Future Work . 79

6 Future Work and Conclusion 81

6.1 Future Work . 81

6.1.1 Adding support to more use cases for TNA 81

6.1.2 Improving filtering performance . 81

6.2 Conclusion . 82

Bibliography 84

vii

Tables

Table

1.1 Processing needs for different network functions. 5

1.2 Processing features for different packet processing technologies. 6

5.1 Acceleration model for different packet processing applications. 63

viii

Figures

Figure

1.1 Breaking packet processing boundaries. 3

1.2 Network applications needs and optimal technology mapping through the following

systems: (1) A Userspace Transport Stack Doesn’t Have to Mean Losing Linux

Processing. (2) Efficient Network Monitoring Applications in the Kernel with eBPF

and XDP. (3) Getting back what was lost in the era of high-speed software packet

processing. 7

3.1 mTCP/AF XDP architecture. 26

3.2 Different number of cores. 30

3.3 Throughput vs Number of Clients. 32

3.4 CPU consumption vs number of Clients. 33

3.5 CPU Intensive Workload. 34

3.6 XDP Protection to DDoS Attack. 35

4.1 Efficient analytics with shared primitive. T1: Receive and select records, T2: com-

pute high-level statistics, T3: conditionally execute app specific logic, ASL: Application-

specific logic. 41

4.2 System Architecture Overview. 43

4.3 Router overview. 44

4.4 Example of record router for a TCP packet. 50

ix

4.5 Impact of adding monitoring applications on single CPU utilization. 52

4.6 Performance impact of per-packet hash table lookups and writes. 53

4.7 Throughput of monitoring primitive and primitive plus individual applications using

1 and 2 CPU cores. 54

4.8 HyperLogLog flow count estimate and ground truth during a flooding attack. 54

5.1 TNA Overview. 60

5.2 Automated Data Path Creation . 65

5.3 TNA Controller . 66

5.4 Evaluation Scenario. 69

5.5 Throughput of Bridge Implementations. 71

5.6 Throughput of Router Implementations. 72

5.7 Throughput of TNA vs PCN filtering Implementations. 74

5.8 Throughput of TNA (ipset) vs PCN filtering Implementations. 75

5.9 Stacking bridging + routing + iptables filtering . 76

5.10 Throughput of Bridge + Router Implementations. 77

5.11 Throughput of Bridge + Router + filtering Implementations. 78

5.12 Throughput of Bridge + Router + filtering (ipset) Implementations. 79

5.13 Throughput of TNA filtering (ipset vs iptables) Implementations. 80

Chapter 1

Introduction

Modern networks are challenged with workloads that demand high throughput and low la-

tency with ever-increasing intensity. Those networks are at the core to support a highly-dynamic

cloud infrastructure where applications can be rapidly deployed and adjusted as needed. Network

functions (NFs) like proxies, switches, routers, intrusion detection systems (IDS), access control

lists (ACLs), firewalls, and monitoring applications are composed and deployed on the infrastruc-

ture. This is done to enforce the desired network behavior, security, scalability and availability. To

support those highly-dynamic environments, network services are shifting from running in physical

appliances to commodity servers. Running on commodity servers means that network functions

now run as software components, which enables great flexibility, but at the same time, imposes

new challenges related to providing high performance. One fundamental challenge in this context,

is that with the end of Moore’s law [72] and Dennard scaling [7] commodity processors (CPUs)

are not able to keep up with the performance requirements of the networks that support modern

systems, such as big data, artificial intelligence and video on demand. This leads to the necessity

of avoiding as much unnecessary processing as possible, so that network packets can be processed

promptly.

The Linux network stack has been proven to do too many operations per packet [51], prevent-

ing it to have high performance. One recent trend is to build high-performance packet processing

systems on top of kernel-bypass technologies, like DPDK [8]. This type of technology enables build-

ing custom packet processing solutions, that only execute highly optimized logic that is needed for

2

each use case; thus avoiding many overheads and inefficiencies inherent to full kernel network stack

processing in a generic operating system. However, avoiding a feature rich operating system kernel

like the one provided by Linux is a missed opportunity in terms of available functionality (e.g.,

resource sharing and protocols). To programmatically avoid some Linux network stack overheads,

recently a new technology called the eXpress Data Path (XDP) [51] was introduced in the Linux

kernel. XDP allows building lighter data paths, while still having access to some kernel function-

ality, enabling it to balance performance and functionality for NFs. Another trend is to leverage

hardware offloads in SmartNICs to assist NFs performance and efficiency on commodity hardware.

SmartNICs can help networks by executing some or all the tasks needed by a packet processing

pipeline.

Previous works tended to consider the mentioned technologies as independent or competing

among each other. In this work, we argue that network systems should be designed considering

the potential synergy of combining those technologies to build optimal systems (Figure 1.1). We

observe that currently, there is a gap in systems that can effectively enable high-performance

network applications while coexisting with and leveraging the rich features provided by the Linux

kernel. In this direction, we propose to address several dimensions of network application needs

finding a suitable feature/performance balance between kernel-bypass, in-kernel processing, and

finally SmartNIC offloads.

3

High-performance

Feature richness

Flexibility

Efficiency

Current State
This Work

Kernel bypass

Kernel

SmartNICs

Figure 1.1: Breaking packet processing boundaries.

1.1 What Network Applications Need?

Network applications are fundamental components of a datacenter infrastructure. They pro-

vide connectivity among different services, protect the infrastructure against cyberattacks and

ensure service scalability and performance. Those applications are responsible for different tasks

in a network, providing essential functionality for each layer of the open systems interconnection

(OSI) model [110]. Layer 2 (L2) and layer 3 (L3) services are responsible to provide connectivity

among hosts on the same network segment (Ethernet) or on different networks (IP). Those services

are provided by NFs like routers and bridges. Layer 4 (L4) to layer 7 (L7) services operate above

the previously mentioned layers, and are responsible for functionalities such as multiplexing data

among different services or applications on a host (e.g., UDP), ensuring reliable communication

in addition to multiplexing (e.g., TCP), and providing a human-computer interaction layer (e.g.,

HTTP).

Those services need security mechanisms that can operate on several of those layers. For

example, we can have filtering and ACLs operating on layer 2 (MAC addresses) and layer 3 (IP

addresses and subnets) and firewall rules operating on layer 4 features (e.g., ports and connection

state). We can also have security functionality operating at layer 7, like access controls based

4

on HTTP data and IDSs. In the same way, we can have other functionality, like load balancing

to ensure scalability and availability, operating on features provided by different layers. Another

essential feature of a network infrastructure is having the ability to monitor network events and

means to derive useful knowledge about them.

Given the requirements for modern network services (i.e., high performance, feature richness,

flexibility and efficiency) and the constraints imposed by network ”softwarization” (i.e., run on com-

modity servers), in this work we take a new approach to build systems covering several dimensions

of network application needs; we do not see in-kernel, kernel-bypass processing, and SmartNIC

offloads as unrelated or competing technologies. Instead, we investigate cooperation mechanisms

among them to build optimal packet processing and monitoring systems covering several network

layers. This is crucial, as we argue that different network functions inside an application have

different processing and performance needs, and, at the same time, no technology can cover all the

requirements needed by each of them.

To find an optimal mapping between different network applications requirements and avail-

able technologies, in Table 1.1, as a first step, we break down network application processing

functions going from L2 to L7, monitoring features, and also functionality that is relevant to all ap-

plications (i.e., system and resource management features). On the left part of Figure 1.2, we show

examples of each of those functions. After breaking down network applications in processing func-

tions, we characterize their different processing requirements in terms of performance, functionality,

capability and efficiency. In this work, we define each of these requirements as follows:

• Performance. Required behavior in terms of throughput and latency. ”High” means

high throughput/low latency, being required by time-sensitive functions that process each

packet on a network. For example, L2 and L3 forwarding and L4-L7 functions like web

servers and proxies.

• Functionality. Required ecosystem to support a given function. For example, the slow-

path functionality required to provide bridging and routing for L2 and L3 is classified as

5

”high”, as it depends on routing daemons, protocols like spanning tree and many configu-

ration tools.

• Capability. Complexity in terms of logic required to support the function itself. L4-L7

processing is classified as ”high” in this requirement, as processing protocols like TCP

requires supporting congestion and flow control, retransmissions, data reassembly, and

buffer management.

• Efficiency. Ability to perform the function while having a fair resource consumption

profile (e.g., CPU and memory). In this work, we assume that high efficiency is a desired

requirement for all processing functions.

Packet Processing Requirements

Processing functions Performance Functionality Capability Efficiency

L4-L7 High High High High
L2-L4 (slow path) Low High High High
L2-L4 (fast path) High Low Low High
System management Low High High High
Resource management Low High High High
Mon (counters) High Low Low High
Mon (sketches) High Low Medium High
Mon (stateful) High Medium Medium High
Mon (routing) High Medium Medium High
Mon (analytics/alerts) High High High High

Table 1.1: Processing needs for different network functions.

In the next step, we characterize each of the main technologies available to provide software

packet processing, in terms of their ability to ensure the desired packet processing requirements

(Table 1.2). SmartNICs (2.4) have limited CPU and fast memory resources, however they can

provide high performance, for example, in packet forwarding applications, specially if a system can

ensure that all processing will be done on the NIC as this allows avoiding PCI crossing overheads.

They can also preprocess packets, reducing the load on hosts. XDP (2.3) allows high-performance

programmable packet processing inside the Linux kernel. Its high performance comes from avoiding

some kernel processing – which makes XDP oblivious of many kernel functionalities. To ensure

6

safety, XDP runs on a constrained environment, meaning that this may not be the right environment

to build functions with high capability requirements. The Linux ecosystem (2.1) provides high

functionality, capability and efficiency, however it suffers with low performance. This causes it to

be inadequate for executing tasks with high-performance requirements. User space packet (2.2)

processing technologies can ensure high performance and capability, but at the cost of disallowing

resource sharing, having inefficient CPU consumption and being oblivious to Linux management

tools and features.

Packet Processing Technologies

Processing Features Linux User Space XDP SmartNICs

Performance Low High High High
Functionality High Low Medium Low
Capability High High Medium Low
Efficiency High Low High High

Table 1.2: Processing features for different packet processing technologies.

Now, it is clear that no packet processing technology can optimally host all packet processing

and monitoring tasks. In this work, we use our observations from Tables 1.1 and 1.2 to provide

enabling technologies to map applications to an optimal system implementation across these tech-

nologies and associated developer goals (Figure 1.2). To this end, as our main contributions, we

propose three systems that synergetically integrate available packet processing technologies to op-

timize performance, efficiency and functionality of L2-L7 network applications and monitoring. In

the following subsections, we give a brief overview of such systems.

7
User Space

L4-L7 Processing Monitoring
(Analytics/Alerts)

Linux

L2-L4

(Slow Path)

Resource/System
Management

XDP

L2-L4
(Fast Path)

Monitoring
(Routing,

Sketches/stateful
processing)

SmartNIC

L2-L4
(Fast Path)

Monitoring
(Counters)

1

23

3 1 3

3

2

2

2

Web Servers, Caches, Proxies,
Stateful Firewalls, IDS

L4-L7 Processing

Routing Protocols, Spanning Tree
(STP)

L2-L4 (Slow Path)

Resource Sharing, memory management, configuration tools

Resource/System
Management

L2-L3 forwarding, NAT, ACLs, Load
Balancing

L2-L4 (Fast Path)

Data mining, knowledge derivation,
alert generation

Routing packets through monitoring
apps, HyperLogLog computation,

Stateful processing

Compute/aggregate simple counters
over packet fields

Packet Processing Needs Network Monitoring Needs

 Analytics/Alerts

Routing, Sketches/stateful
processing

Counters

Figure 1.2: Network applications needs and optimal technology mapping through the following

systems: (1) A Userspace Transport Stack Doesn’t Have to Mean Losing Linux Processing. (2)

Efficient Network Monitoring Applications in the Kernel with eBPF and XDP. (3) Getting back

what was lost in the era of high-speed software packet processing.

1.1.1 L4-L7 Performance and Feature Richness

L4-L7 network services play a fundamental role on the modern Internet and datacenters. They

provide functionality like web servers, caches, proxies, stateful firewalls and IDSs. Traditionally,

those services run on top of L4 functionality provided by an operating system (e.g., TCP over

Linux). However, Linux TCP is built with a series of inefficiencies like, for example, lack of

connection locality, heavyweight data structures and system call overheads that cause its number

of transactions per second to peak at 0.3 million while packet processing rates can reach several

millions of packets per second [58].

To ensure high-performance, as already mentioned, a new trend is to build those services on

top of kernel-bypass technologies. While this approach helps to avoid the Linux kernel overheads

and inefficiencies, it brings some challenges inherent to losing Linux processing, as we discuss next.

8

1.1.1.1 Challenges with Current Approaches

As noted in systems like mOS [57] and Microboxes [69], kernel-bypass technologies can in-

deed provide good performance to L4-L7 applications. Those systems are built on top of a high-

performance userspace TCP stack, called mTCP (multicore TCP) [58]. mTCP is designed with a

series of optimization techniques to improve TCP scalability on multicore systems. Some examples

of such techniques are lock-free, per-core cache-friendly data structures which in combination with

a high-performance kernel-bypass packet I/O subsystem enable mTCP to be up to 320% faster

than the Linux TCP stack.

However, gaining performance using this type of system comes at a price. The first issue is

that kernel-bypass systems cannot leverage the packet I/O features provided by the Linux kernel

(i.e., IRQs and NAPI). This prevents resource sharing as there is the need to dedicate NICs and

CPUs to the packet processing application. To perform packet I/O, the dedicated CPUs need to

busy poll the NIC queues, causing 100% CPU consumption all the time, even when the load is

low. This has negative implications in terms of efficiency, power consumption and support to CPU

intensive applications [17]. The second issue is that kernel-bypass applications are oblivious to

other Linux functionality, like sub-L4 protocol implementations, security features and management

tools. This requires reimplementing those protocols and security features in userspace, and also

prevents kernel-bypass systems to leverage the rich management tools provided by Linux.

1.1.1.2 A Userspace Transport Stack Doesn’t Have to Mean Losing Linux Pro-

cessing [17]

To address the mentioned challenges, in Chapter 3, we introduce a new packet I/O subsystem

to a high-performance userspace TCP stack (i.e., mTCP). This subsystem is built on top of a new

high-performance socket type called AF XDP [60]. This new type of socket allows sending raw

packets directly from the XDP layer to user space [51]. This allows hybrid kernel/kernel-bypass

L2-L7 programmability. The userspace TCP stack brings high-performance to L4-L7 network

9

functions and applications, while the in-kernel stack ensures efficient resource usage, lower-layer

protocol processing, and ACLs. Consequently, our system avoids the need to reimplement countless

networking features in userspace, and by having a better resource consumption profile (i.e., CPU),

our system makes the userspace TCP stack more suitable to support CPU-intensive applications

with high performance.

In our evaluation, we show that our approach enables building cooperation mechanisms be-

tween the XDP layer and the userspace TCP stack. For example, we protect a L7 application using

a distributed denial of service (DDoS) defense mechanism built on top of XDP. We also show that

by avoiding the need to busy poll the NICs, our system can have up to 64% more throughput for

a CPU intensive application, comparing to the DPDK implementation.

1.1.2 High-Coverage Monitoring

Continuous traffic monitoring and analytics are fundamental to modern networks. They allow

getting insights about the current state of network elements so that we can perform diverse tasks,

such as detecting performance, security and availability issues allowing executing actions to drive

the network to the desired state and also doing other fundamental tasks, like accounting for billing

purposes.

One important aspect in this scenario is that different network conditions are manifested

differently, so monitoring applications tend to be highly specialized. Consequently, to achieve high

coverage, several of such applications need to be deployed in parallel, making monitoring tasks

expensive.

1.1.2.1 Challenges with Current Approaches

Programmable switches play a significant role in this context, as some monitoring tasks can

be offloaded to them [84, 50, 98]. However, as this type of equipment have a constrained program-

ming model and limited resources, ultimately telemetry data and packets need to be processed by

analytics applications in software [79]. Hence, those applications need to ingest and process millions

10

of packets. To allow high performance in this scenario, several network analytics frameworks rely

on kernel-bypass technologies [8, 79, 102]. This makes monitoring expensive, as at least one CPU

core and network interface needs to be dedicated to the monitoring application, making it infeasible

to deploy systems alongside other applications and services, e.g., at the network edge. Added to

that, the fact that we need to deploy several monitoring applications in parallel, we see the need

for new mechanisms to efficiently ingest packets and orchestrate monitoring applications so that

we can reduce their resource footprint while providing high performance.

1.1.2.2 Efficient Network Monitoring Applications in the Kernel with eBPF and

XDP [18]

With the previous observations in mind, in Chapter 4, we introduce a new network monitoring

framework that intelligently orchestrates the deployment and execution of monitoring applications.

Our implementation leverages modern kernel-level packet processing (i.e., XDP), so we can avoid

many issues related to kernel-bypass technologies, such as high CPU consumption and poor resource

sharing capabilities. Orchestration is done by new shared network monitoring primitives that collect

lightweight high-level metrics that may indicate that a condition of interest may exist. In this

case, packets go through a deeper (and heavier) analysis that can confirm and get more details

about a possible issue. In this way, we reduce the resource footprint of software network analytics,

consolidating the logic that all monitoring applications require and only running them when needed.

Finally, we show that an efficient division of work between SmartNIC offloads, XDP on the host

and user space can ensure an even higher degree of efficiency, performance and functionality to our

system. In our evaluation, we build three example applications; a SYN flood detector, a DNS flow

analyzer and a traffic accounting application. Using those three applications, we show that our

system can provide high-coverage network monitoring with high performance and efficiency.

11

1.1.3 L2-L4 Performance and Feature Richness

The Linux network stack provides a rich set of L2-L4 functionality such as routing protocols,

bridging, packet filtering and policies that drives the core network infrastructure in the cloud, edge,

private datacenters, the Internet, and more. [55]. However, the Linux network stack is known to

be heavyweight – one of the consequences of its generality, which allows it to provide a rich set of

features for diverse use cases. With the advent of faster networks (i.e., 10-100 Gbps) the Linux

kernel is proving to do too many operations per packet, preventing it to support such speeds [51]. A

new technology called XDP provides a mechanism to build custom (and lighter) data paths inside

the Linux kernel using eBPF (extended Berkeley Packet Filter). By being customizable, XDP data

paths opens up the possibility to programmatically avoid some overheads inside the Linux kernel,

but unlike full kernel-bypass technologies, XDP allows integration with in-kernel features, making

it a good candidate to build feature-rich high-performance data paths.

1.1.3.1 Challenges with Current Approaches

Recently, several proposals have shown the value of building high performance data paths on

top of XDP/eBPF [31, 44, 64, 77]. However, those works generally models the XDP data path as

being mostly independent of the kernel, implementing custom functionality targeted to specific use

cases.

While this opens up opportunities for innovation, in our vision, this approach introduces

challenges. The first is that, we are starting to see non-standard communication mechanisms

powering datacenter connectivity [31, 77]. This introduces complexities in troubleshooting as, for

example, tracing tools need to incorporate system-specific knowledge to detect unexpected behavior.

In addition, managing many non-standard network systems requires that operators learn specific

nuances of unrelated technologies, which leads to steeper learning curves and may make the whole

environment more susceptible to errors. Another challenge, is that many networking features, need

to be (re-)implemented in XDP/eBPF form. This is a missed opportunity, as the Linux kernel

12

already provides rich forwarding and security functionality.

1.1.3.2 Getting back what was lost in the era of high-speed software packet pro-

cessing

The need for high performance and custom software-based packet processing has resulted

in decades of research. Common between them is that in order to obtain performance, these

approaches bypass or replace the Linux networking stack. This, in turn, has the unfortunate

consequence of sacrificing the rich and robust functionality within the Linux network stack and

the ecosystem of management programs and control plane software that is built on top of the

Linux interfaces and data structures. In chapter 5, we take the position that we should rethink

the design of the Linux network stack to address its shortcomings, rather than creating alternative

pipelines. This re-design would involve (1) decomposing processing into a fast path and slow path

processing, where each has a different execution environment (a fast path is efficient and focused

on throughput, a slow path is focused on completeness of functionality and state management),

and (2) transparently creating a custom fast path dynamically that consists of only what is needed

based on the current configuration of Linux.

This is seemingly counter to the monolithic design of Linux, but recent work enabled dynamic

and safe loading of processing, so we can load only what is needed at that particular time, while

allowing processing to interact with the Linux kernel. This enables is Linux, as exists today, to

serve as the slow path. What is missing is a system to build the fast path. For this, we introduce

TNA, a prototype system that is able to automatically generate a minimal data path, based on

what is current in used on a Linux box, avoiding many of its overheads, ensuring high-performance

while maintaining its rich set of functionalities. We show in our evaluation that TNA is able to

transparently accelerate many Linux kernel network subsystems.

13

1.2 Outline

The remainder of this work is organized as follows. In Chapter 2 we present background

information about the main technologies that we explore in this work to build feature-rich high-

performance packet processing systems. In Chapter 3 we show how we build a system that syn-

ergetically integrates in-kernel and kernel-bypass processing to benefit L4-L7 network functions

and applications. After that, in Chapter 4, we address the needs of many networked systems –

a high-coverage monitoring system, carefully designed to ensure high efficiency and performance

leveraging user-space, in-kernel and SmartNIC processing. In Chapter 5, we introduce a new sys-

tem that enables having feature-rich and high-performance network stack. To this end, we propose

to automatically break Linux packet precessing in a fast path and a slow path. The fast path

is provided by XDP and can programmatically bypass some Linux processing, avoiding its over-

heads. The slow path complements the fast path, executing more complex tasks that need full

stack processing and state management. Finally, in Chapter 6 we conclude this work.

Chapter 2

High-Performance Networking Overview

In this chapter, we briefly introduce the main technologies currently available to build high-

performance network applications, before we continue to the next chapters, where we do a deep

dive on systems that integrate the described technologies in order to provide optimal processing

environments for different network application profiles and needs.

2.1 Linux Networking

The Linux kernel provides feature rich and secure network services. It has been in use for

several years, in different contexts and scales. It has powered corporate networks, cloud, edge and

telecom infrastructures [55]. This high degree of adoption, combined with the fact that Linux is

an open source project maintained by the community, creates a synergetic environment where its

capabilities and security are in constant progress and scrutiny. However, the features that enable its

popularity are also a potential source of inefficiency. To cover this wide range of use cases, Linux

implements several layers of functionalities, allowing it to support different kinds of hardware,

network protocols and security features. This means that its network stack usually performs too

many operations per packet and needs to rely on heavy-weight data structures for doing so (i.e.,

sk buff), causing overheads that could be otherwise avoided if some features are not necessary

[28, 51].

15

2.2 User Space Networking

To avoid those mentioned overheads, a recent trend is to build network solutions on top

of kernel bypass technologies, like DPDK [8]. Kernel bypass networking enables building custom

network applications in user space. This opens up the possibility to avoid the multiple layers of

overheads present on the Linux kernel stack. However, this gain in performance comes at high

costs. Bypassing the Linux kernel means losing many of its good features, like resource sharing,

robust protocol implementations and security features. For example, an application built on top of

DPDK have no access to the packet I/O features provided by the Linux kernel (e.g., IRQ handling

and NAPI). This requires DPDK applications to busy poll the network interface card (NIC) queues,

dedicating CPU cores to the packet processing application and causing 100% CPU consumption all

the time, even if there are no packets to process. Another concern related to kernel bypass solutions

is that they can not leverage the battle proven protocol and security features available in the Linux

kernel. For example, if we are interested in building a L4 kernel bypass application, we need to add

code support all the lower layer functionalities like ARP (Address Resolution Protocol) handling

and IP (Internet Protocol). If we add to this, the necessity to re-implement security features already

provided by Linux and the fact that the management tools available to Linux cease to work on

kernel bypass applications, the challenges and inefficiencies brought by this scenario are obvious.

2.3 XDP

To strike a balance between the high performance provided by kernel bypass technologies,

while enabling network applications to leverage some rich features available on the Linux kernel,

recently, the Linux community introduced a new technology in the Linux kernel called the eXpress

Data Path (XDP). This technology enables programmable packet processing, leveraging some good

features of the Linux kernel while having performance close to kernel bypass. XDP enables safe

and dynamic code injection at the device driver level on the host, or even directly on a SmartNIC

itself. Dynamic code injection means that we can add new logic to XDP with no packet processing

16

interruption. Safe code injection means that the injected code will not crash the system. To

ensure safety, XDP programs can be written in a restricted version of C and a compiler converts

it to BPF byte code (which stands for Berkeley packet filter). The BPF byte code runs on a

sandboxed environment inside the kernel called the eBPF VM (virtual machine). This byte code

will only be loaded in the Kernel, if it passes some safety verifications done by the BPF verifier.

The Verifier will ensure that the byte code does not have infinite loops, does not try to access

unsupported instructions and do not perform out-of-bound memory accesses. XDP is fast, as it

executes at the device driver level, or even on a SmartNIC that supports it. This enables XDP

to take actions/decisions early in the network stack, avoiding overheads like sk buff allocation and

other unnecessary packet processing steps, depending on the use case.

With XDP we can deploy a customized data path that can take actions like rewrite packet

headers, access some kernel functionality via kernel helpers, persist data using a data structure

called BPF map and finally decide the fate of a packet using one of the many XDP actions. The

XDP actions allow dropping packets, forward them to another interface, or to the same one as the

packet was received, send the packet to be processed by the Linux kernel network stack, and more.

XDP is fast, as it executes at the device driver level, or even on a SmartNIC that supports it. This

enables XDP to take actions/decisions early in the network stack, avoiding overheads like sk buff

allocation and other unnecessary packet processing steps, depending on the use case.

2.4 SmartNICs

SmartNICs (smart network interface cards) enable programmable packet processing on the

NIC hardware itself. It allows moving from the unflexible world of classic ASIC NICs, where func-

tionality is hardwired on the NIC, to a more flexible one, defined by user provided logic. Several

types of SmartNICs are available on the market today, and despite their different architectures,

generally, they will provide hardware/software constructs for the following basic packet process-

ing functionalities: hearders parsing/deparsing, packet classification, re-writing, scheduling and

forwarding. They may also have a set of general purpose accelerators (e.g., for compression and

17

encryption tasks), and provide APIs for configuration and programmability. Currently, SmartNICs

use FPGAs (Field Programmable Gate Arrays) [109], embedded CPU cores [3] or NPUs (Network

Processing Units) [86] as their main computing substrates. They can be programmed in a vari-

ety of languages such as P4 [12], Verilog [16] (for FPGA NICs), C or eBPF [86, 27]. Being able

to run eBPF leads to an interesting opportunity to create cooperation mechanisms between the

SmartNICs, and software running on the host while using a common development environment and

language. This enables sharing processing responsibilities between the NIC and the host, reducing

load on the host, which ultimately leave more processing power to execute both packet processing

and user applications.

Chapter 3

L4-L7 Performance and Feature Richness

While we cannot question the high performance capabilities of the kernel bypass approach

in the network functions world, we recognize that the Linux kernel provides a rich ecosystem with

an efficient resource management and an effective resource sharing ability that cannot be ignored.

In this work, we argue that mixing kernel-bypass and in kernel processing can benefit applications

and network function middleboxes. We leverage a high-performance user space TCP stack and

recent additions to the Linux kernel to propose a hybrid approach (kernel-user space) to accelerate

SDN/NFV deployments leveraging services of the reliable transport layer (i.e., stateful middle-

boxes, Layer 7 network functions and applications). Our results show that this approach enables

high performance, high CPU efficiency, and enhanced integration with the kernel ecosystem. We

build our solution by extending mTCP which is the basis of some state-of-the-art L4-L7 NFV

frameworks. By having more efficient CPU usage, NFV applications can have more CPU cycles

available to run the network functions and applications logic. We show that for a CPU intense

workload, mTCP/AF XDP can have up to 64% more throughput than the previous implementa-

tion. We also show that by receiving cooperation from the kernel, mTCP/AF XDP enables the

creation of protection mechanisms for mTCP. We create a simulated DDoS attack and show that

mTCP/AF XDP can maintain up to 287% more throughput than the unprotected system during

the attack.

19

3.1 Introduction

Stateful middleboxes and Layer 7 (L7) network functions (NFs) are fundamental elements of

modern networks and datacenters [57]. Stateful middleboxes are responsible for services like prox-

ying, TCP splicing, stateful network address translation, firewalling, application load balancing,

network intrusion detection systems (IDS), and content caching. These elements rely on services

provided by the transport layer (e.g., TCP) to track Layer 4 (L4) state and inspect data content at

the flow level (through data reassembly). With the increased pressure on the network for video con-

ferencing, group collaboration [11], and digital entertainment [6], datacenters and cloud providers

need to offer adequate infrastructure to support these trends. Given the dynamics and need for

scalability, this trends towards software-based NFs, in the form of network functions virtualization

(NFV).

Recent works [89, 58, 22, 51] have shown that it is currently hard for the operating system’s

kernel to provide the necessary performance to support these modern network services. This is

mostly because today’s operating systems add non-negligible overheads to packet I/O due to ineffi-

ciencies in data-structures and memory allocation (e.g., sk buff, file descriptors, etc.), extra memory

copies, unnecessary protocol processing, and an inability to react to microsecond scale bursts due

to coarse temporal granularity in scheduling CPUs to the network applications threads.

To overcome these inefficiencies and enhance packet processing programmability, user space

network processing toolkits, such as DPDK [8], have been introduced and are gaining in popularity.

These toolkits give complete control of the networking hardware to the user space network pro-

cessing application, enabling the development of high performance packet processing applications

as many of the those kernel network stack inefficiencies can be avoided. Several projects have been

built on top of DPDK [89, 22], and they generally show that this approach can indeed improve

the performance of NFs and network applications substantially. Following this trend, mTCP [58]

proposed a highly scalable user space TCP stack that is optimized to multi-core systems and able

to outperform the Linux TCP stack by up to 320%. This created opportunities to L4-L7 net-

20

work functions frameworks [57, 69] to innovate in terms of functionality while also achieving high

performance.

However, this gain in flexibility to build high performance network functions comes with costs.

First, there is a need to dedicate CPU cores and network interfaces to the network application.

Further, the application needs to busy poll the network interface queues in order to receive packets.

Each of these causes high CPU consumption and leaves less CPU cycles for the network function

logic. Second, as the kernel is completely bypassed, all the configuration, monitoring, security, and

network (protocol processing, bonds, etc.) features provided by modern kernels are also bypassed

- leading to NFs needing to completely re-implement them in user space.

Observing the challenges introduced by network kernel bypass technologies, the kernel com-

munity introduced a new programmable packet processing framework, called the eXpress Data Path

(XDP) [51], that enables efficient and safe custom packet processing inside the kernel. The main

idea of XDP is to provide custom programs early access to the packet (before the packet reaches the

Linux kernel network stack), giving the XDP program the ability to modify the packet and also to

define a verdict to it (including rewriting packets and applying drop or redirect actions). As XDP

is part of the kernel, the packet processing application runs inside the kernel context, having access

to some capabilities provided by it. With XDP there is no need to dedicate resources (e.g., CPU

and network interfaces) to the packet processing application, and the XDP program can selectively

make use of kernel services and therefore avoid the need to re-implement functionality.

On top of XDP, the kernel community proposed a new high-performance network socket

type called AF XDP [60] that enables sending raw packets received at the XDP layer to user space.

This opens up the possibility of building hybrid packet processing and NFV solutions where packets

can be processed by user space applications, but with cooperation and support of XDP, NFs can

leverage all the integration and features that the kernel provides.

Leveraging the addition of XDP and AF XDP to the Linux kernel, in this chapter we argue

that accelerating the transport layer using a hybrid (kernel-user space) approach is of benefit to

SDN/NFV deployments as this scenario can leverage the performance of a high performance user

21

space TCP stack without completely bypassing the kernel. This work is the first that we are aware

of to introduce a high-performance TCP stack to AF XDP. In particular, we make the following

contributions:

• We propose an architecture and implementation that provides a hybrid packet processing

model in which NFs can leverage both a high-performance user space TCP stack, and rich

kernel functionality (Section 3.4).

• We demonstrate that this system is able to achieve a better CPU consumption profile

that leaves more cycles to execute application and NFs code – e.g., for a CPU intense

workload, mTCP/AF XDP can have up to 64% more throughput due to the extra CPU

cycles available. (Section 3.5)

• We demonstrate the benefit of hybrid processing where we show that a network application

is able to maintain up to 287% more throughput in the face of a DDoS attack, through

using filtering at the kernel level. (Section 3.6)

The remainder of the chapter is organized as follows: Section 3.2 describes related work and

depicts the main challenges of their current architecture. Section 3.3 describes several scenarios

that the hybrid kernel-userspace transport approach can benefit the network functions and ap-

plications world. Section 3.4 describes the architecture and implementation of the solution. In

Section 3.5, we compare the hybrid kernel-userspace transport stack (mTCP/AF XDP), with a

full userspace transport stack that uses DPDK as the packet IO subsystem (mTCP/DPDK). We

show in Section 3.6 the ability to protect network applications from DDoS attacks through the

hybrid-processing. Finally, in Section 3.7 we conclude and discuss future work.

22

3.2 Related Work and Challenges

3.2.1 Kernel Bypass Approach for NFVs

The Linux operating system was designed to be as general as possible, and to support a wide

range of applications and configurations. This means that the kernel network stack will perform

costly processing and allocate heavy weight data-structures even if the packet only needs a few steps

to processes lower-level protocols [51]. For example, for every packet that arrives, a data structure

called sk buff will be allocated to enable further protocol processing leveraging the rich semantic

provided by this data structure [19]. After that, other costly processes (e.g., netif receive skb core)

will be triggered to process the layered protocol stack, and to filter packets. As observed in [51, 19],

this process slows down packet processing and could be avoided if it is possible to build custom

packet processing applications that shortcut unnecessary processing.

To avoid these and other inefficiencies while providing maximum performance, modern NFs

frameworks are built on top of kernel bypass technologies [58], [57], [59], [69]. This approach has

the benefit of allowing highly customizable packet processing applications to avoid, for example,

unnecessary protocol processing and provide more efficient processing pipelines.

mTCP is a high-performance user space TCP stack that is built on top of kernel bypass

technologies, to improve performance, and in turn, can leverage multicore systems to improve

scalability. To enable multi-core scalability mTCP is built with a series of optimization techniques

(e.g., lock-free, per-core cache-friendly data structures). The mTCP process operates by running as

distinct threads (one for the application and one for the mTCP logic) on each CPU. mTCP leverages

RSS to distribute incoming packets from different flows among different CPU cores, while handling

core affinity. Being a user level implementation, mTCP decouples the TCP logic and development

from the kernel complexity, which smooths the development of new features to the stack itself and

enables building new solutions on the top of it. For example, mOS [57] is a framework built on top

of mTCP that allows building stateful middleboxes with full support for L4-L7 processing. mOS

currently supports DPDK [8] and Netmap [93] as packet I/O subsystems.

23

3.2.2 Challenges of the Current Approach

As we saw in the previous subsection, several network function frameworks have benefited

from the performance enabled by the kernel bypass approach. However, it is important to recognize

possible limitations of a complete kernel bypass approach and look for new opportunities to evolve

the current solutions. In the next paragraphs, we will list the limitations that motivated this work.

Inefficient CPU usage: Being a kernel bypass framework, DPDK does not rely on the

kernel networking mechanisms to receive packets (e.g., interrupts, ksoftirqs and NAPI) [51, 60].

Instead, DPDK needs to busy poll the NIC queues in order to receive packets. Although this

mechanism can provide better latency profiles to applications, this causes high CPU consumption,

leaving less cycles to process the NFs logic, as we will demonstrate in Section 3.5.

Lack of system integration: The Linux kernel has a rich ecosystem to provide network

connectivity, monitoring, configuration, resource sharing, isolation, and security. Generally, kernel

bypass technologies are blind to this ecosystem [19], which may slow down progress in this context

as much of this functionality needs to be re-implemented in user space. As we will see in the next

sections, a better alternative is to selectively use kernel functionalities, while still leveraging the

high performance and flexibility achieved by user space technologies.

3.3 Motivation

In this work, we ask if we can leverage the recent additions to the Linux kernel to address the

challenges listed in Section 3.2 and benefit a high performance user space TCP stack [58], which in

turn extends to the NFs frameworks built on the top of it that provide for processing capabilities

all the way up to the application layer [57, 69].

XDP enables flexible and efficient programmable packet processing inside the kernel [51].

The key enabler for XDP is the eBPF virtual machine, that allows only verifiable eBPF code to be

loaded inside the kernel. XDP enables attaching eBPF programs to process packets at the earliest

point inside the kernel (i.e., at NIC driver level, before the packet reaches the kernel network stack).

24

If the NIC supports it, the eBPF programs can be offloaded to the NIC hardware. XDP programs

allow, for example, rewriting packet headers and accessing packet metadata (e.g., queue number on

multiqueue NICs and custom metadata). The XDP hook execution finishes by assigning a verdict

to a packet. Possible verdicts are to drop the packet, transmit the packet back on the same interface

as it arrived, pass the packet to be processed by the kernel stack, and redirect the packet to another

interface (physical or virtual), another CPU for further processing, or even to a special socket that

sends the packet to user space (i.e., AF XDP).

AF XDP is another addition to recent Linux kernels. It enables sending raw packets to

user space at high-rates through zero-copy transfers (as long as the NIC driver supports this [60]).

To send and receive packets, AF XDP interacts with the kernel via specialized rings (i.e., fill,

completion, Tx and Rx rings), and uses a special memory area called UMEM. Those rings are

used by the userspace network application and kernel to switch control of UMEM areas (which

stores packet data) between each other (i.e., fill and completion rings). They are also used by the

application to receive packets, and inform the kernel the packets that should be sent (i.e., Rx and

Tx queues).

We use XDP and AF XDP to provide a new packet I/O subsystem for mTCP. This new

subsystem provides an efficient CPU consumption profile for mTCP applications and NFs, and

also provides better system integration.

Providing efficient CPU consumption: Middleboxes need to perform packet I/O, but

they also need available CPU cycles to process the network function’s logic, and as we will see

in Section 3.5, this is a challenge for DPDK. On the other hand, XDP enables a better CPU

consumption profile as it does not need to rely on busy polling to perform packet I/O, because it

has the Linux interrupt infrastructure and syscalls available.

Providing system integration: While kernel bypass packet I/O systems like Netmap [93]

may bring a better CPU consumption profile, it lacks good Linux system integration. For example,

currently Netmap is not part of the Linux kernel, so it may be a burden to maintain Netmap based

applications [51]. Moreover, it does not support XDP, which limits its data-path programmability.

25

XDP does not take over the ownership of the NIC as DPDK, so it is possible to share

the interface among multiple applications (providing the necessary XDP/eBPF logic). It is also

possible to use the Linux network configuration and monitoring tools like ethtool, iproute2 which

may easy the integration of XDP based network solutions with automation tools like Puppet,

Ansible and Chef. Container technology plays an important role in NFV deployments [59], and

as it relies heavily on kernel functionalities to provide resource isolation and configuration, XDP

based deployments can easy the integration of fast packet processing and enhanced networking

capabilities to the containers world. As DPDK completely bypasses the kernel, enabling these

functionalities to DPDK based applications is challenging [14].

Leveraging the support of the rich kernel ecosystem: As AF XDP sockets can send

raw packets to userspace after they are processed on the XDP hook, they enable a hybrid networking

stack approach. XDP can be used as a first layer that provides enhanced network functionalities to

the high performance transport layer running in user space. This first layer can be used to protect

the upper user space stack [5] and also to provide kernel integration functionality leveraging BPF

maps and kernel helper functions [51, 19]. Kernel helper functions can be used, for example, to

support packet checksum calculation and also to access kernel routing tables [10, 19]. BPF maps can

be used by the XDP redirect logic to react to events occurring at different kernel subsystems and

different resource monitoring points, including in user space (e.g., CPU load and cgroups) [51, 13]

opening up opportunities to create new load-balancing mechanisms. Furthermore, XDP can also

provide a flexible mechanism to implement access control lists (ACLs), packet filters, and other

functionalities to protect the user level transport layer.

This approach brings flexibility to NFs and applications that leverage high performance

user space transport stacks, as the XDP logic allows selecting only the needed kernel network

functionalities to be used. It does this via kernel helpers and does not require the packet to

traverse the whole Linux network stack.

26

3.4 Architecture and Implementation

3.4.1 mTCP/AF XDP Integration

Now that it is clear the motivation behind having a hybrid kernel-userpace TCP stack,

we present the architecture of the mTCP/AF XDP stack in Figure 3.1. This figure shows the

basic interactions between the different components of the solution, as we will explain in the next

paragraph. Notice that to obtain maximum performance, we decided to have one UMEM per

AF XDP socket, and also one AF XDP socket per mTCP thread, so we could completely avoid

synchronization overheads and obtain maximum performance.

NIC/VIF

XDP/eBPF

UMEM 2UMEM 1 ... UMEM N

mTCP T2mTCP T1 ... mTCP TN

AF_XDP 1 AF_XDP 2 AF_XDP N
Kernel Network

Stack

mTCP App/NF

App/NF

mTCP

Kernel

Rewrite/Actions

1

3

5

2
7

8

6

4

T1 T2 TN

Figure 3.1: mTCP/AF XDP architecture.

The life of a packet inside mTCP/AF XDP (see Figure 3.1): The XDP program 2 ,

decides to which AF XDP socket a packet should be sent. In our implementation, we use hardware

packet steering, and the NIC queue in which the packet arrived 1 is used as the index in the BPF

map to select the target AF XDP socket for the packet 3 . We avoid extra cache overheads by

27

pinning a mTCP thread on the same core that handles the ksoftirq on behalf of a packet received by

the multi-queue NIC. The kernel places the packet on the UMEM area using one of the addresses

available on the fill ring associated to that socket (if the NIC driver supports zero-copy, the NIC

will place the packet at UMEM via DMA). After that, the kernel places a file descriptor on the

socket RX ring. The mTCP/AF XDP packet I/O subsystem uses the (poll) system call to monitor

this ring 5 , and our implementation enables sending and receiving packets in batches for best

performance. The batch of packets is received by the mTCP’s stack main loop which performs the

TCP stack logic, and makes data available to the application threads through the mTCP events

system and userspace function calls (e.g., mtcp read) 6 . After successfully receiving the packets

mTCP/AF XDP returns ownership of these UMEM areas to the kernel by posting their descriptors

in the fill ring.

The sending path is similar. The mTCP/AF XDP packet I/O subsystem uses the TX ring

to place file descriptors pointing to the packet buffers it wants to send 5 . The kernel then as-

sumes control of this UMEM region and sends the packet to the NIC which sends the packet out.

After successful transmission, the kernel makes this UMEM area available for sending new pack-

ets by posting a memory descriptor on the completion ring 4 . mTCP/AF XDP consumes these

descriptors and uses them on the next iteration of the packet sending routine. Finally, the XDP

program may also be customized to provide extra functionality (e.g., stack protection features), or

even to redirect the packet to an NF or application using the Linux kernel network stack, allowing

coexistence 7 , 8 .

To implement this solution, we added about 500 lines of C code to the mTCP code base.

We have specific eBPF/XDP code (afxdp kern.c), which is responsible for sending/receiving the

desired packets to/from the AF XDP sockets, making them available at the mTCP layer. We

leverage the modular mTCP packet I/O design, to add a new packet I/O module (afxdp module.c)

and make targeted modifications to other mTCP components to support it. The code is available

in our mTCP fork [2], and we expect to merge it to the main mTCP repository soon.

28

3.4.2 NFV Deployments

We envision that L4-L7 network functions built on top of mTCP based frameworks (e.g.,

[57, 69]) can benefit from our proposal by leveraging cooperation scenarios with XDP/eBPF (see

section 3.6 for an example), the high performance provided by mTCP [57, 69] and the better CPU

consumption profile enabled by our solution - see section 3.5 - (which will ultimately produce more

resource and power efficient solutions). In this scenario, NFs like L7 caches, protocol accelerators,

and IDS can leverage services provided by XDP/eBPF to control how packets flow, determining, for

example, which packets should be sent to a specific NF, which of them should be sent to the Linux

stack (e.g., to handle corner cases), which packets should be dropped and which of them should

be routed to the next hop or forwarded to an application in the case the flow does not need NF

processing. Interactions between the userspace NFs and XDP/eBPF should occur via eBPF maps,

and enhanced integration with the kernel should be achieved through the kernel helpers available

to the XDP layer.

3.5 Evaluation

To demonstrate the value and feasibility of the proposed approach, in terms of performance

and added functionality, in our evaluation we answer the following questions regarding using an

AF XDP based packet I/O subsystem on a high performance user space TCP stack:

• Can the proposed system provide high performance?

• Can we have a better CPU consumption profile that enables more CPU cycles to be con-

sumed running application code?

Experimental Setup: To answer these questions, we set up two testing environments on

Cloudlab Wisconsin [15], one for mTCP/DPDK and another for mTCP/AF XDP. Each environ-

ment is composed by 1 physical server machine that runs mTCP code (type c220g5 [15], Ubuntu

18.04.1 LTS Kernel 5.3.0-61-generic) and 5 physical client machines (type c220g1 [15], Ubuntu

18.04.1 LTS Kernel 5.3.0-61-generic). The server machines run the HTTP server that ships with

29

mTCP (epserver). The client machines run ab (Apache Benchmark). As each client host has 16

cores available, we run 16 instances of ab on each host. We have observed that in our setup, each

client ab instance has maximum performance when sending 50 parallel HTTP connections, so we

use this configuration on all tests. The server machines have 2 sockets with 10 cores each, and

each socket is attached to one NUMA node. These machines have only one dual-port 10 GbE NIC

attached to NUMA node 0, so we only report results for threads running on the processor on the

first socket. We used the I40e Intel NIC driver, and all of the AF XDP experiments use zero-copy

mode. Also, we observed that DPDK performs poorly when the number of cores dedicated to

mTCP is not a power of two (we do not observe this limitation on the AF XDP implementation).

So, to have a fair evaluation, we run our experiments using up to 8 cores on the server machines. In

this work, we did not implement hardware TCP checksum offload for mTCP/AF XDP, so we also

report results for DPDK with it disabled (referred to as DPDK on the labels). For maximum per-

formance, we disable hyper-threading and CPU power saving for each core. To isolate these cores,

and avoid the kernel scheduling other user level threads on them, we use the isolcpus statement at

boot time.

The Spectre and Meltdown mitigations affected the performance of eBPF programs, so

AF XDP is also impacted [60]. Users in controlled environments, where only trusted code can

be executed, may opt to disable related mitigations. As we saw maximum performance for

mTCP/AF XDP when we disabled the mitigations, we include this scenario in the results on

Figure 3.2. In our experiments, DPDK performance does not seem to be affected by those miti-

gations, so we only include these results for AF XDP. As we cannot expect that all environments

to be controlled and only run trusted code, for all other experiments we leave the mitigations en-

abled. In [60] the authors proposed a socket option called XSK ATTACH, that automatically loads

a minimal XDP code that only redirects packets that arrive at a queue id to an AF XDP socket

avoiding the user to have to provide a custom XDP code. This code is optimized and minimizes the

impacts of the mitigations. In our tests, we do not use this socket option, as we want to maintain

the flexibility of having custom XDP code in our hybrid stack.

30

For each test, we set up each client instance to send 1 million requests (50 in parallel for

each instance). Unless specified differently, in each test we use all five client hosts with 16 ab

instances and each client instance sends HTTP requests to download a 64B file from the server.

Each test is repeated 5 times, and we report our results using the average of each metric and

standard error (although the bars are too small to be noticed on the graphs). In [58], the authors

show that mTCP can outperform the Linux TCP stack by several orders of magnitude (up to 25

times for small messages), so we do not include Linux TCP in our evaluation. Finally, we use Linux

Perf tool to analyze the overheads of each implementation and other metrics that may affect their

performance (e.g., number of CPU cache misses, context switches and so on).

1 2 4 8
Number of Cores

0.2

0.4

0.6

0.8

1.0

1.2

M
es

sa
ge

s/
se

c
(x

 1
0^

6)

1e6
AF_XDP
AF_XDP_NO_MTG
DPDK
DPDK_TCP_CSUM_OFF

Figure 3.2: Different number of cores.

Raw performance evaluation: To demonstrate that mTCP/ AF XDP can support high

31

performance and scale, in the first experiment we compare mTCP’s core scalability for mTCP/

DPDK and mTCP/AF XDP. We can see in Figure 3.2 that mTCP’s throughput scales almost

linearly with the number of cores for all implementations. mTCP/DPDK with HW TCP check-

sum offload enabled (DPDK TCP CSUM OFF) has the best performance for 2 and 8 cores, with

AF XDP with mitigations disabled (AF XDP NO MTG) having performance almost as good as it

for 1, 2 and 8 cores. We observe that for 4 cores, mTCP/DPDK has some drop in performance.

Because of that, mTCP/AF XDP outperforms mTCP/DPDK for 4 cores. It is important to no-

tice that as we do not implement hardware TCP checksum offload to AF XDP, the application

has to spend CPU cycles to calculate it. In fact, we observe that when we disable the hardware

TCP checksum offload on mTCP, it can spend up to 8% of its processing time performing those

calculations. Observing these results, we expect mTCP/AF XDP to improve its performance as

we integrate hardware TCP checksum offload for mTCP/AF XDP, which we leave as future work.

Efficient CPU consumption profile: In this experiment, we evaluate if mTCP/AF XDP

can provide an efficient CPU consumption profile (figures 3.3 and 3.4) and the effects of having

more CPU cycles available to execute application code (figure 3.5). We can see in Figure 3.4 that

mTCP/AF XDP gradually increases CPU consumption as the number of client hosts and messages

per second increase. In contrast, mTCP/DPDK relies on busy polling to receive packets, so it always

consumes 100% of CPU. mTCP/AF XDP does not rely on busy polling to perform packet I/O,

which saves precious CPU cycles that can be spent to run the mTCP stack and application code.

We analyze where each implementation spends more time, and we observe that mTCP/DPDK

spends non-negligible time on the receiving path busy polling loop. In contrast, mTCP/AF XDP

spends more time executing application code and also handling important events on the mTCP

stack. We can also observe in this figure that mTCP/AF XDP does not hit 100% CPU consumption

for 5 client hosts, even though the server is saturated. This is because our CPU measurements start

when there is no load on the server, and goes until all clients finish sending the HTTP requests,

so at the end of the experiment there is also a drop in load and this reflects on the average CPU

consumption in this test.

32

1 2 3 4 5
Number of Client Hosts

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

M
es

sa
ge

s/
se

c
(x

 1
0^

6)
1e6

AF_XDP
DPDK
DPDK_TCP_CSUM_OFF

Figure 3.3: Throughput vs Number of Clients.

To observe the mTCP/AF XDP benefits of having more available cycles to process application

logic, we add a simulated CPU intensive HTTP application by executing a function to find all the

prime numbers smaller than a given X in each HTTP request. The results can be seen in Figure 3.5,

which shows the normalized throughput using mTCP/DPDK with HW TCP checksum enabled as

the baseline. We start the server with 8 cores. To find primes lower than 100, the application does

not get CPU bound enough for the mTCP/AF XDP benefits to be perceived. But, as we increase

X above 200, we observe that more CPU power is needed to find the prime numbers, and in this

scenario mTCP/AF XDP can have up to 64% more throughput than mTCP/DPDK (for X = 800).

Having more CPU cycles available may benefit mTCP to run CPU intensive applications

(e.g., node.js) and network functions logic, and also enables mTCP to better support SSL/TLS.

33

0 1 2 3 4 5
Number of Client Hosts

0

20

40

60

80

100

No
rm

al
ize

d
CP

U
Co

ns
um

pt
io

n
(%

)

AF_XDP
DPDK

Figure 3.4: CPU consumption vs number of Clients.

3.6 Protecting the userspace TCP stack

As we have shown in section 3.3, one of the benefits of mTCP/AF XDP is the possibility

to leverage XDP/eBPF to enhance and protect the mTCP stack. To show this, we implement a

simulated DDoS attack and an XDP DDoS protection similar to the ones described in [51] and [5].

In this experiment, we use 4 of the 5 client hosts to generate UDP packets targeting the mTCP

server. Each attacking host uses 16 nping instances (one for each core) to generate UDP packets at

a rate of 10 thousand packets/second. We gradually increase the intensity of the attack by joining

new client hosts to the attack. The other client host runs ab to generate HTTP requests to the

server. We start the mTCP servers on a single core to make the attack more pronounced.

34

 100 200 400 800
Find primes < X

0

20

40

60

80

100

120

140

160

No
rm

al
ize

d
Tp

ut
AF_XDP
DPDK
DPDK_TCP_CSUM_OFF

Figure 3.5: CPU Intensive Workload.

As mTCP is a user space TCP stack, all the security and isolation mechanisms provided by

the Linux kernel are bypassed, so mTCP is responsible for dropping the UDP packets. This is

not the case with mTCP/AF XDP. To protect the mTCP stack from this attack, we change the

XDP/eBPF code that sends the packets to the AF XDP sockets (see Section 3.4) to parse each

received packet and if it is a UDP packet, apply the XDP DROP verdict, and otherwise send the

packet to the AF XDP socket, so it can be normally processed by the mTCP stack.

Figure 3.6 shows the impacts of the attack. In this experiment, we measure the total HTTP

requests completed for each attack intensity. For mTCP/DPDK with hardware TCP checksum of-

fload enabled, mTCP’s throughput can drop 3.9 times when the attack is on its maximum intensity.

At the same time, mTCP with XDP DDoS protection is able to maintain 2.87 times more through-

35

0 1 2 3 4
Number of DDoS UDP Attacking Hosts

60000

80000

100000

120000

140000

160000

180000

200000

M
es

sa
ge

s/
se

c

AF_XDP
AF_XDP_DDoS_PROT
DPDK
DPDK_TCP_CSUM_OFF

Figure 3.6: XDP Protection to DDoS Attack.

put than mTCP/DPDK versions when the attack is at its maximum load. It is interesting to notice

that mTCP/AF XDP with no DDoS protection (AF XDP label) can handle the attack better than

mTCP/DPDK versions. This is because mTCP/AF XDP has more CPU cycles available to drop

the malicious packets.

By applying this XDP protection mechanism, we free mTCP threads from the burden to

process the malicious UDP packets, so the impact of the attack is minimized.

36

3.7 Conclusion and Future Work

In this work, we have enabled the power of eBPF and Linux system integration to cooperate

with a high-performance user space transport layer. We have shown that this approach can have

performance compatible with a high-performance kernel bypass approach, but providing enhanced

capabilities that come from the OS kernel. This opens up the opportunity to innovate L2-L7

network functions in terms of functionality, deployment, performance and security.

One avenue for future work, is to enable TCP hardware checksum offloading for mTCP/AF XDP.

We expect that this will greatly improve mTCP/AF XDP’s performance, as we described in Sec-

tion 3.5. Another opportunity is to work on NF stacks built on top of mTCP ([57, 69]) to investigate

cooperation scenarios between XDP/eBPF and network functions such as L7 caches, protocol ac-

celerators, and IDS (e.g., advanced forwarding mechanisms, eBPF hardware offloads, etc.). In this

context, it is interesting to investigate new NF deployment scenarios, for example, how can the NF

containers world leverage the enhanced networking capabilities provided by XDP while providing

state-of-the-art high-performance L4-L7 services.

Chapter 4

High-Coverage Monitoring

Continuous traffic monitoring and analytics are fundamental to the operation of today’s

networks. Network telemetry allows for performing fine-grained analytics on network flow or packet

records for various use cases including intrusion detection and traffic engineering. While some

analytics tasks can be offloaded to programmable switches, ultimately, telemetry data needs to

be processed by analytics applications in software. These applications are highly specialized, and

running many such applications concurrently to achieve high coverage is expensive. To reduce the

resource footprint of software network analytics, we present a novel network monitoring primitive

that consolidates logic which all monitoring applications require. The primitive can (partially) be

offloaded to a SmartNIC and triggers applications only when required based on high-level traffic

metrics, avoiding unnecessary and redundant computations. We identify eBPF and XDP as a

natural fit for this task, and implement a prototype of our system on top of this novel technology.

Our evaluation shows that the combination of conditional execution of analytics tasks and the

use of modern packet I/O technologies not relying on expensive busy polling (e.g., as in DPDK)

significantly reduces the resource footprint of performing continuous network analytics.

4.1 Introduction

Continuous, fine-grained traffic monitoring is essential to the operation of today’s reliable

communication networks. In a nutshell, network monitoring and analytics describe the process

of extracting information from network devices in the form of statistics or traffic records and

38

transforming this data into meaningful insights to be used for network management decisions. This

enables operators to detect changing demands, performance issues, or attacks and subsequently

reconfigure the network or scale network functions [84, 50, 99, 106].

In today’s networks, switches and routers continuously export data about the traffic that

traverses the network to analytics applications running on general-purpose servers [99, 98]. These

applications detect problems or calculate metrics for a variety of use cases. Programmable switches

allow for some applications to be partially offloaded to the network [84, 50, 98].

Data centers and wide area networks carry hundreds of millions of packets per second, re-

quiring significant processing performance to enable fine-grained analytics [79, 68]. Offloading

parts of the analytics pipeline to programmable switches can significantly reduce the load of the

software-based stream processing backend; but even then, the rate of events to be analyzed in

software is often still on the order of several million events per second per application [50]. This

is because many, especially complex or state-intensive, tasks can only be partially offloaded due

to the limited memory and compute resources and constrained programming model offered by

line rate hardware [79]. As a result, performing analytics in software using either general-purpose

stream processors or specialized packet analytics frameworks is indispensable to deploying complex,

parallel, and dynamic network analytics.

Deploying network-wide, fine-grained, software-based analytics in a resource-efficient manner

is still a major challenge. In particular, we identified two main issues with the state-of-the art in

software-based network analytics. First, operators need to run multiple different network analytics

tasks in parallel in order to achieve high coverage across possible failures and attacks, and to

have continuous, detailed insight into different aspects of the operation of their infrastructure [98].

Running multiple applications in parallel at all times is costly. Many network conditions (e.g.,

attacks), however, can be identified by shared lightweight logic and simple, high-level metrics (e.g.,

overall connection count) that can then be used to trigger finer-grained analysis only when required.

Second, most existing network analytics systems leverage kernel-bypass frameworks for packet

input [8, 79, 102]. Kernel-bypass can achieve high packet rates, but is expensive as at least one CPU

39

core is always entirely dedicated to packet input alone due to busy polling on the network interface

card (NIC) [8]. This is wasteful as these CPU cycles cannot be used for the actual task of performing

analytics. While receiving high volumes of packets via sockets is also inefficient or impossible, the

novel eXpress Data Path (XDP) [52] technology not only provides a resource-efficient way to ingest

millions of packets per second without using busy polling; it also provides abstractions particularly

suited for orchestrating multiple packet processing applications and efficiently running them in

parallel.

To address these challenges, this chapter presents a network monitoring architecture designed

around a novel primitive which consolidates logic all monitoring applications require. The XDP

technology is a natural fit to realize our architecture, and we show that the resulting system provides

several performance and architectural advantages over the state-of-the art. Our work makes the

following contributions:

(1) We identify the opportunity to consolidate monitoring system tasks in a novel network mon-

itoring primitive. The primitive efficiently computes high-level metrics and can (partially)

be offloaded to a SmartNIC.

(2) We propose an architecture for network analytics systems that allows for dynamic orches-

tration of analytics applications based on high-level metrics and policies.

(3) We implement a prototype of this architecture on a Netronome NFP SmartNIC [86] and

for the Linux kernel using eBPF and XDP to demonstrate its feasibility.

(4) Using benchmarks, we show the high performance and small resource footprint of our

approach using three example applications.

In the remainder of this chapter, we motivate our work by elaborating on the challenges in

software network analytics in Section 4.2. We then present an architecture for efficient and practical

network analytics in the kernel in Section 4.3. Section 4.4 describes our prototype and challenges

40

we encountered during its implementation. We demonstrate the performance of our system in

Section 4.5 before discussing related work and concluding in Sections 4.6 and 4.7, respectively.

4.2 Motivation

As previously described, two main challenges in operating software-based network analytics

are related to (a) reducing the system resource footprint when running analytics tasks in parallel

and (b) efficiently ingesting and processing high rates of network records. We will now elaborate

on both challenges.

Efficiently Deploying Parallel Applications. Analytics applications are usually highly

specialized and focus on one particular type of scenario, such as a specific attack or common

performance problem [84, 50, 106]. Accordingly, applications must be used in parallel to achieve

high coverage across monitoring tasks such as intrusion detection [99], analyzing performance is-

sues [84, 102], or traffic classification [87]. Even monitoring a network for just the most common

attacks or anomalies therefore requires continuously running many specialized applications thus

incurring high cost [98].

Despite the heterogeneity of analytics tasks, all share common tasks and logic. All applica-

tions read in network records from a NIC and decide which records carry measurements and which

are control (or other) traffic. Then, especially those applications detecting some condition (e.g.,

an attack or performance anomaly), are often designed to be triggered based on shared, high-level

metrics involving packet, Byte, or flow counters [30]. Such metrics may be used for several appli-

cations allowing for deduplicating logic and dynamically enabling and disabling more expensive,

finer-grained analysis. As a result, (1) performing shared tasks, (2) computing metrics relevant

to all applications, and (3) conditionally executing applications based on these metrics can be

consolidated at the system-level; an overview of this is shown in Figure 4.1.

For example, a SYN flood toward a particular host would manifest itself not only in the

particular pattern of a high amount of unanswered SYN+ACK segments, but also initially in

an increase of overall flows. This basic higher-level metric can efficiently be computed on all

41

T1 T2 T3

logic common to all applicationsNetwork

Efficient processing. Apps only process packets of interest

Analytics with shared primitive
ASL

ASL

ASL

Network

T1 T2 T3 AEL

Application

T1 T2 T3 AEL

Application

T1 T2 T3 ASL

Application

Redundant processing. All apps process all packets

Analytics with no shared primitive

Figure 4.1: Efficient analytics with shared primitive. T1: Receive and select records, T2: compute
high-level statistics, T3: conditionally execute app specific logic, ASL: Application-specific logic.

traffic using, for example, probabilistic data structures. A change in a metric can then trigger

the activation of a series of more fine-grained analytics applications that are designed to mine the

required and more useful information, such as the origin of the attack to subsequently configure

filtering. Today, we are missing an architecture including a common primitive that consolidates

tasks needed by all analytics tasks and enables the use of high-level metrics to dynamically enable,

disable, and orchestrate downstream analytics applications.

Efficiently Ingesting High-volume Packet Streams. To cope with high traffic rates in

software, existing software frameworks leverage kernel-bypass technology (e.g., by using DPDK [8])

to ingest network packets at high rates [79]. While this provides high input rates, the use of

busy polling in these implementations causes significant CPU consumption, leaving fewer cycles

for actual analytics. Furthermore, using kernel-bypass renders all in-kernel network processing

capabilities (e.g., use of routing tables, firewalls, sockets) useless on the particular NIC in use and

makes integration with other legacy applications challenging or impossible.

Both issues are especially problematic for distributed telemetry frameworks, such as Switch-

42

Pointer [102] where in-network measurements are processed and stored on all hosts in the network.

Using kernel-bypass here would unnecessarily waste CPU cycles on all servers. Also, in this archi-

tecture, the telemetry sinks are not dedicated analytics servers and must also perform their regular

purpose requiring NIC access via sockets and kernel network processing.

To enable high-performance user-defined packet processing while integrating with the OS and

still allowing socket-based applications on the same NIC, the eXpress Data Path (XDP) [52] has

been introduced in the Linux kernel. XDP allows to attach Extended Berkeley Packet Filter (eBPF)

programs early in the kernel’s packet processing path, enabling programmability at performance

close to kernel-bypass technologies while leaving the kernel’s packet processing functions usable.

eBPF programs can be loaded and dynamically chained at runtime; they support stateful processing

and offloading to compatible NICs to further boost performance.

While this novel technology is promising for a wide range of packet processing applications,

we believe that eBPF and XDP are particularly useful as a platform for the practical deploy-

ment of high-performance network analytics applications and can solve many of the above outlined

challenges for several reasons. First, common analytics functionality can be implemented in a

shared eBPF program that can even be offloaded to a SmartNIC. This common logic can easily be

changed and written using the same language and programming model (eBPF programs in C) as

the analytics tasks themselves, simplifying development and adoption. Second, monitoring tasks

implemented as eBPF programs can be injected and activated at runtime from user space. Multiple

such applications can be orchestrated as a chain where each task feeds its results into the next one.

Third, this mechanism of high-performance packet processing is lightweight and saves CPU cycles

compared to kernel-bypass solutions [52]. It does not take ownership of the NIC and is transparent

to kernel-based packet processing and user space networking applications, making this technology

particularly suitable for distributed measurement systems.

43

RouterReceiver

formatted
packet records
packet headers
full packets

Network Kernel
or NIC

Kernel

User space Filter
Rules

High-level
Metrics

Selection /
Routing Rules

Application 1

Application-
specific State

Controller Task-specific
Controllers

(always on)

(on demand)

(automatically)
(e.g., if flow/s > x)

Application 2

Application N

Operator
configure

applications
retrieve

analytics
results

High-level
Monitor

trigger mode:

A B C

Figure 4.2: System Architecture Overview.

4.3 A Primitive for Network Monitoring Systems

At the heart of our proposed system lies a novel network monitoring primitive that manages

a set of monitoring applications and conditionally executes them based on a set of basic metrics

in conjunction with operator-specified policies. Performing these tasks at the system-level rather

than in each individual application has several advantages. First, application developers can write

slimmer applications that focus on the measurement task and do not require logic for input/output,

decapsulation of records, and computation of triggers to decide whether a record needs to be

processed or not. Second, it provides a simple abstraction for orchestrating and triggering chains of

applications reducing the complexity required to build practical, high-coverage monitoring systems,

increasing network security and reliability. Finally, consolidating these operations avoids duplicated

logic and ultimately saves resources which increases performance and saves cost.

Network Monitoring Applications. Before presenting our system in more depth, we

first define what a network monitoring application is and elaborate on when and how an operator

might want to run a specific application. A network monitoring application is a piece of logic that

transforms a high-volume stream of measurements collected in the network into a lower-volume

stream of data that provides useful insights for the operator. An insight is useful if it provides

enough detail for the operator to make network management decisions with the goal of improving

or restoring the correct and reliable operation of the network or to perform other required tasks,

44

Selection / Routing
Rules

Controller

Router
set of applications that
need to receive the recordmonitoring

records

high-level
metrics condition, e.g., if #flows/s > 10K1

selection, e.g., then proto == 6 to SYN fl. analyzer2

install rule

Figure 4.3: Router overview.

such as billing. Network management decisions usually result in reconfiguring a network function

(e.g., a router or firewall) or adding, scaling, or removing functions. As previously explained,

applications serve diverse use cases ranging from intrusion detection and traffic engineering to

profiling and debugging. While the applications are highly specialized, their logic alone is often

relatively simple; many applications add, update, or delete state based on some logic for each

received measurement and generate an event if a condition is met.

As applications and their measurement and analytics tasks are diverse, when and how an

application should run can also differ depending on the use case. We identified three main cases

how an operator might want to deploy an application. First, an application might need to run at

all times. This is the case for lightweight monitoring applications that go beyond basic device-level

counters, such as a traffic accounting and billing application in a cloud setup. Second, an application

can run only when explicitly activated by the operator. This mode allows for, for example, ad-hoc

queries or other profiling and debugging tasks, such as detecting an imbalance in ECMP routing.

Finally, an application can be automatically triggered by a higher-level condition, such as a sudden

increase in connections or overall traffic volume. Here, just knowing about the increase in a metric

is not sufficient to apply configuration changes to the network (e.g., block a host). As a result,

more fine-grained applications need to be deployed rapidly to mine more facts, such as the set of

hosts affected.

45

Receiving and Filtering Records. We now describe the three main components of our

primitive and explain how an operator uses their respective APIs to configure and orchestrate a

set of monitoring applications. The overall system architecture is depicted in Figure 4.2; the three

components of the monitoring primitive which we will explain now are labeled A, B, and C. For the

remainder of this chapter we focus on network traffic records, in particular formatted per-packet

records where each telemetry packet represents one network packet that traversed the monitored

device. Each record contains the original packet’s IP 5-tuple, ingress switch port number and queue

depth, µs-timestamp, packet size, IP-ID, and (if applicable) TCP flags. The records are 32 Bytes

in length. This is an example format for the purpose of this discussion and for our prototype; other

formats can easily be supported through minor changes in the packet parsing logic.

The receiver component is the entry point to our system. Streaming telemetry records are

usually encapsulated in UDP datagrams and sent to a specific IP and port combination on the

analytics server. There, a monitoring system needs to differentiate telemetry traffic from control

or other traffic destined for the respective machine. Which traffic should be considered monitoring

traffic can be specified using filter rules that perform an exact match on the IP 5-tuple of the received

packets (not the carried record). Unmatched packets are passed to the kernel to be received by any

other application (e.g., the host’s SSH server) or dropped at this point.

Packets for the analytics system are then decapsulated and later required metadata fields are

prepended. The metadata fields include a list of monitoring application identifiers that will later

be populated for record routing and a field for monitoring data derived from a hash computed over

the records’ IP 5-tuple (see Section 4.4). These steps are stateless operations and can efficiently be

offloaded to programmable hardware, e.g., in our case, a SmartNIC.

Our architecture supports various types of input records including formatted packet or flow

records, mirrored packets or headers, and regular data packets that may carry telemetry data (i.e.,

in-band network telemetry, INT [73]). Regular packets would, of course, have to be injected into

the normal kernel path after all analytics tasks have been completed.

High-level Traffic Monitoring. The high-level monitor computes statistics relevant to all

46

applications and required for the subsequent routing process. It runs at all times and can also

serve as a baseline network monitor, e.g., if no further analytics tasks are currently required. The

metrics are scalar values aggregated over a time period (e.g., a second). Our system computes 8

basic counters: the number of packets and Bytes per interval for all records and for TCP, UDP,

and ICMP traffic, respectively. This is useful, for example, to detect a shift in the ratio between

the protocol types as it would occur in various flooding attacks. It also computes the number of

unique flows (as per IP 5-tuple) seen in each interval.

As this module is executed for every received record, it is important that the computation

is lightweight. While the basic counters can be incremented efficiently, for example, computing

the number of flows would usually require a more heavyweight set data structure. Our prototype

leverages a HyperLogLog sketch (HLL) [46] to estimate the number of unique flows. The counters

as well as the sketch data structures are stored in memory shared between the controller and data

path. The monitor writes into this memory for each packet while the controller reads the values

and resets all state after each time period. As this process requires stateful computations, not

every type of metric calculation can efficiently be offloaded to a SmartNIC (see more details in

Section 4.4).

Routing Records to Applications. Finally, the routing component, conceptually depicted

in Figure 4.3, is responsible for determining the set of analytics applications that should receive a

particular record. The inputs to the router are the incoming record stream, the current snapshot

of previously computed high-level metrics, as well as policies defined by the operator. The policies

describe which records under which condition should be sent to a specific application.

At the core of the router is a series of match+action tables for different subsets of the packet’s

header space (e.g., destination IP address or a combination of fields). An action is a list of moni-

toring applications that should receive the record. Each record contains the previously initialized

list of applications in its metadata. After each match, the router appends the list of applications in

the matched entry to the list in the record’s metadata and the record will subsequently traverse all

applications in this list. The match+action tables are populated by the controller and then read by

47

the router to construct the list of application for the respective record. This allows for a two-step

process where first the controller checks whether an operator-defined condition is true and then

populates the tables for selection of the relevant records.

The condition determines when an application should receive a record based on operator

policies and previously computed metrics (i.e., when an application should be triggered). The

selection step then defines which records, in terms of matches on header fields, are relevant to the

triggered application. For example, an application detecting out-of-order TCP segments should

not receive UDP traffic at all. The controller provides the operator access to the current state of

high-level metrics and exposes an API to add and remove selection rules. The conditions can be

implemented either directly in the controller or through an external component (e.g., a script) that

consumes metrics and installs rules accordingly.

Above, we outlined three different modes of how and when an operator might want to run

an application. Our primitive supports these three modes. First, an application that needs to

run at all times, simply has a permanent entry which is installed at system initialization that

specifies which slice of the network traffic should always be sent to the application. Second, an

application can run only when explicitly activated by the operator (e.g., for ad-hoc queries or

debugging). This is possible as the match+action tables can be modified at runtime. Adding or

removing an entry does not incur downtime or disruption in the monitoring system. Finally, an

application can be automatically triggered by a condition over high-level metrics. A condition is a

logical expression, e.g., number of flows per second greater than 10K and is checked after each time

interval. If a condition is true, the respective application (or set of applications) is activated for the

next time interval. This mechanism is powerful as it allows to (a) execute more computationally

expensive applications only when required in order to save resources and (b) autonomously analyze

an ongoing issue by deploying operator-defined profiles of more fine-grained applications. More

complex conditional execution, e.g., using automated anomaly detection or separate conditions for

when an application should be deactivated again are possible in our model but beyond the scope

of this work.

48

4.4 Implementation

We implemented our system and three example applications in approximately 1800 lines of

code 1 . The data plane components consisting of the monitoring primitive and the individual

applications’ data plane parts are written as eBPF programs in C. The main controller and the

application-specific controllers operating in user space are written in C++. We will now present

the technical details of our implementation, focusing on the computation of high-level metrics, the

routing system, and the example applications.

Efficient Computation of High-level Metrics. As we compute a set of high-level metrics

for each received telemetry record, this computation must be efficient and not incur unnecessary

overheads. Netronome SmartNICs support offloading XDP programs and can be used to maintain

simple statistics like counters directly on the NIC without using host CPU cycles. These counters

can then be accessed by the controller through an eBPF map. Additionally, our system uses a

HyperLogLog (HLL) sketch to estimate the number of unique flows per time interval. The HLL

algorithm estimates the cardinality of large sets with negligible memory use [46]. HLL’s main idea

is that if the binary representation of an element in a set is random and uniformly distributed (e.g.,

a hash), the number of leftmost zeros in this representation can be used to estimate the cardinality

of the set. In this manner, HLL requires the computation of the hash of a given key of interest

(e.g., 5-tuple) for every packet in our system.

To reduce variance of the estimation, the hashes are divided in buckets, where the b leftmost

bits of the hash value are used as the bucket index on an array. The final cardinality estimation

uses the harmonic mean of the cardinality in each bucket. To find the cardinality of a bucket, the

HLL algorithm gets the remainder of the hash, calculates the number of leading zeros, and checks if

this number is greater than the previously recorded one for the respective bucket. If so, the bucket

is updated and the HLL algorithm uses this value to estimate the new cardinality of the set. A

smaller b reduces memory requirements for HLL but also reduces its accuracy. For example, by

1 Our code is available at: https://github.com/mcabranches/xdp-netmon

49

using b = 8, HLL can estimate the cardinality of distinct 5-tuples consuming only 768 Bytes with

an accuracy of ∼93.5% (see [46] for details).

Performing the HLL operations is not computationally cheap, so we leverage the processing

power available on a Netronome SmartNIC to accelerate them. Despite the limitations of our

SmartNIC XDP offloads (i.e., inefficient and slow map update operations from the data plane [9])

we were able to design an efficient division of work between the SmartNIC and the host. In this

case, all the stateless operations for the HLL are executed on the SmartNIC and the stateful ones

are executed on the host. This is possible as we are able to enrich the packet metadata (using

bpf xdp adjust head()) with precomputed HLL data on the SmartNIC (bucket index and number

of zeros for a given hash), and this will be carried with the packet for further processing on the

host XDP layer (HLL state updates) and controller (cardinality estimation).

Routing Packets through eBPF Programs. The match+action tables required for

record routing are implemented as eBPF hash maps offloaded to the SmartNIC and populated

from the controller to indicate which packets should be processed by each of the applications (traffic

selection). When a match occurs in each table, we enrich the packet metadata with a list of file

descriptors (FD) that indicates which applications should process the packet in which order. The

first field in the file descriptor list is a pointer to the FD of the application that should receive the

record next. This FD is used as an index (key) in a BPF MAP TYPE PROG ARRAY on the host’s XDP

layer to get the memory address of the application to be called using the bpf tail call() function.

Before jumping to the desired application, the pointer is incremented so that the router knows

when the chain of applications for a packet has reached the end. After application processing, the

packet is returned to the router via a tail call. The router then determines whether the packet needs

to be forwarded to the next application or whether it has reached the end of the chain where a

XDP action can be applied (e.g., drop, pass, etc.). Figure 4.4 shows an example of this mechanism

where a TCP segment is sent through the traffic accounting application and the TCP half-open

connection analyzer.

Example Applications. We implemented three example applications to demonstrate the

50

50
0 (all) fd1, …, fdn

M
AP

6 7
ip proto fd1, …, fdn

M
AP

53 11
tp dst fd1, …, fdn

M
AP

0

0 (ptr)

0
0

append matches
to fd stackinput records

with 0’ed fd stack

fd = 11
DNS Flow Analyzer

fd = 7
TCP Half-open Conn.

fd = 5
Traffic Accounting

5
1 (ptr)

7
0

populated
fd stack

ptr = 1

ptr = 2

ptr = 3 → val = 0
→ drop

(…)

all header fields

IP protocol

L4 destination

Figure 4.4: Example of record router for a TCP packet.

flexibility of our system. All applications consist of a kernel space (eBPF) component and a user

space component. The two components communicate via eBPF maps. The user space component is

a standalone application that can access the eBPF maps configured in the kernel space counterpart

as soon as the kernel portion is loaded. In order to access a map, the user space application only

needs to know a custom identifier string of the respective map set in the eBPF program. We will

now briefly describe the applications we used in our evaluation.

Traffic Accounting. This application counts the number of Bytes and packets per destination

IP address. This is useful for billing purposes, e.g., in a public cloud. The application performs a

lookup and subsequent value increment in a eBPF hash table (BPF MAP TYPE HASH) for every single

record. The aggregation key and potential filtering can easily be changed to adapt the query to

the operator’s needs. We envision this application running at all times.

Half-open TCP Connections. A high number of half-open TCP connections are an indicator

for various TCP-related attacks, in particular a SYN flood. This application keeps track of all

ongoing TCP handshakes with a timestamp of the SYN segment in a hash map indexed by the IP

5-tuple. If the handshake completes, i.e., when the client sends an ACK, the previously installed

state for this connection is removed. If an entry spends longer than a configurable threshold (e.g.,

5s) in this map, the flow is reported as a half-open connection.

51

DNS Flow Analyzer. The DNS flow analyzer can be used to confirm a suspected DNS-related

attack. It collects the number of packets and Bytes and the timestamp of the first packet for each

DNS flow in an eBPF map. This information can be used to block flows where the request rate

exceeds a threshold.

4.5 Evaluation

We will now evaluate the efficiency and scalability of our system by measuring CPU con-

sumption and throughput as we vary the number of applications deployed and the number of cores

assigned to the system. We also evaluate the ability of our sketch-based high-level monitor to detect

an attack.

Experimental Setup. We set up two 12-core servers (Intel Xeon E5-2620v3 at 2.40GHz)

with 64 GB of RAM. The first server runs our system and is equipped with a 10 Gbit/s Netronome

Agilio CX SmartNIC [86]. The second server has a 10 Gbit/s Intel 82599ES NIC. The servers run

kernel versions 5.8 and 5.4, respectively. We use DPDK’s pktgen [37] to replay a PCAP file with

telemetry records generating up to 12.5 million packets per second (Mpps) between the machines.

Efficiency in CPU Utilization as we add Applications. Our system saves resources

(i.e., CPU) by leveraging shared high-level metrics that drive our monitoring application routing

decisions. To evaluate this, in our first experiment we apply a conservative load on our system (2

Mpps) and run it on just one core. We also gradually increase the number of monitoring applications

that each packet traverses. We can see in Figure 4.5 that as each packet traverses a longer chain of

monitoring applications (x-axis), the average CPU utilization on the system only increases in small

steps (y-axis) due to our primitive and XDP. With the SmartNIC offloads (see §4.4), our system is

even more efficient and able to comfortably process the applied load with all applications enabled,

without ever reaching over 60% CPU utilization. This is important for energy efficiency, and also

leaves more CPU cycles available for extra monitoring applications and other processes. Systems

using DPDK would consume 100% CPU at all times.

Scalability in Terms of Throughput. Now we look at our system scalability in terms of

52

0

25

50

75

100

Primitive +Acct. +TCP H−open +DNS Flows
Routing Configuration

C
P

U
 U

til
iz

at
io

n
[%

]

NIC offload no offload

Figure 4.5: Impact of adding monitoring applications on single CPU utilization.

throughput as we add applications. Here, to show a different perspective, we focus on the main

limiting factor of throughput in our monitoring applications - the number of eBPF map accesses

(i.e., lookups/writes). As we describe in Sections 4.3 and 4.4, most network monitoring applications

interact with some state (often in a hash table) to implement their core functionality. For example,

our three applications each perform up to two map accesses (lookup and/or write) for each packet.

To evaluate how the number of map accesses affects the system throughput, we gradually

increase the number of map lookup/writes on an eBPF hash map for each packet. This XDP

application is set to run on just one core, and we can see it as a chain of applications of variable

length and of different complexities. Figure 4.6 shows that as we have more map lookups/writes,

the system’s throughput starts to degrade. By leveraging our system’s primitive, monitoring appli-

cations can be turned on and off, ensuring that they will only execute when needed, which in turn

allows more packets to be processed by the monitoring applications that are running at a given

time.

Scalability as we add Resources. Now we show how our system throughput scales with

the number of processing cores. In Figure 4.7, we run our system on one and two cores (one

and two NIC queues) and set IRQ affinity for each queue/core. The y-axis shows the system

throughput in Mpps. Our SmartNIC distributes traffic among cores based on the contents of the

telemetry packet (in our case, the 5-tuple of the record). We set pktgen to send traffic at its

53

0

5

10

15

0 2 4 6 8 10
Hash Table Writes

T
hr

ou
gh

pu
t [

M
 p

ac
ke

ts
/s

]

Figure 4.6: Performance impact of per-packet hash table lookups and writes.

maximum rate for our configuration (12.5 Mpps) and run the primitive alone and with each of the

monitoring applications (x-axis). Here, we can see that our offloads can speed up our system by

accelerating stateless operations, as we describe in Section 4.4. The primitive with one core has

slightly higher throughput than with two cores. This is likely caused by memory access contention

between multiple memory queues and our logic on the NIC. This cost is, however, amortized as the

applications with two cores have higher throughput than those with one core.

High-level Monitoring Accuracy. Finally, to show the accuracy of the HLL-based flow

count estimator, we demonstrate a practical example of how our implementation was able to detect

an artificially injected flooding attack. In this experiment, we used a WAN trace collected by

CAIDA [4] and added an attack packet for each existing packet with probability 0.1 during a 60

second time window. The attack packet had a randomly sampled 5-tuple increasing the number of

distinct flows. We computed the exact number of distinct flows seen in every 1 second time interval

54

0

5

10

15

Primitive P+Acct. P+TCP H−open P+DNS Flows
Application

T
hr

ou
gh

pu
t [

M
 p

ac
ke

ts
/s

]

1 CPU / NIC offload 1 CPU / no offload
2 CPU / NIC offload 2 CPU / no offload

Figure 4.7: Throughput of monitoring primitive and primitive plus individual applications using 1
and 2 CPU cores.

and used our HLL implementation with b = 8 to obtain an estimate. Figure 4.8 shows that the

estimate closely follows the ground truth; it also immediately reacts to the sudden increase in flow

count making this approach suitable for our use case.

60

80

100

0 50 100 150 200
Timestamp [s]

D
is

tin
ct

 F
lo

w
s

[K
]

exact

estimate (HLL)

Figure 4.8: HyperLogLog flow count estimate and ground truth during a flooding attack.

55

4.6 Related Work

The literature around network telemetry and monitoring is vast, yet few works propose

solutions for parallel and dynamic queries and analytics tasks. *Flow [98] is a hardware-based

telemetry system that partitions an analytics pipeline and performs only those tasks in hardware

that are relevant to all queries enabling arbitrary and concurrent queries in software. Jetstream [79]

complements *Flow with a fast software processor; the system, however, falls short in providing a

server-side routing and dynamic orchestration mechanism for analytics tasks. NetQRE [106] allows

for dynamic queries but is not designed for concurrent measurement. BeauCoup [30] is designed

for dynamic and concurrent queries at switch line rate but only supports a single class of query

(count-distinct).

Most work on orchestrating packet processing functions focuses on network function virtual-

ization (NFV) for a variety of use cases, e.g., [97, 63, 101]. NFV systems and service chains span

several hosts and generally dedicate full servers for NF processing, often with all CPU resources

being blocked for heavyweight packet I/O frameworks. Our system focuses specifically on net-

work monitoring and is designed to save system resources in order to be deployed alongside other

applications and services, e.g., at the network edge.

Over the past years, eBPF and XDP have attracted significant interest in the research com-

munity as well as industry. XDP has first been presented in [52] and, since then, the technology

has been used for a variety of use cases; most of them revolve around network virtualization [20],

load balancing [43], or packet filtering and DDoS mitigation at end hosts [24]. For example, Cas-

sagnes et. al. propose using XDP for DDoS detection and filtering on end hosts [29]. This system,

however, also only serves this single use case and does not support orchestration of monitoring

tasks.

The perhaps most related work, Polycube [77], goes beyond a single application and provides a

framework for realizing general NFV service chains using XDP. Our work focuses on telemetry-based

network monitoring applications and is designed and optimized for this use case. Our application

56

router also uses tail calls to enable chaining and dynamic loading eBPF/XDP applications, but dif-

ferent from Polycube, routing decisions on our system can be based on shared high-level monitoring

metrics. Furthermore, our work adds and evaluates offloading XDP logic to a SmartNIC.

4.7 Conclusion

We presented a practical software-based network monitoring framework that significantly

reduces resource consumption of network analytics by consolidating tasks relevant to all applications

and triggering applications only when required. Our implementation leverages modern kernel-level

packet processing capabilities improving efficiency and reducing energy consumption over existing

kernel-bypass approaches.

Chapter 5

L2-L4 Performance and Feature Richness

The need for high performance and custom software-based packet processing has resulted

in decades of research. Most proposals bypass or replace the Linux networking stack with the

unfortunate consequence of sacrificing the rich and robust functionality available within Linux and

the ecosystem of management programs and control-plane software built on top of it. In this paper,

we propose to rethink the design of the Linux network stack to address its shortcomings rather

than creating alternative pipelines. This re-design involves (1) decomposing packet processing into

a fast path and a slow path, and (2) transparently and dynamically creating a custom fast path

that only implements the processing tasks currently configured. We leverage Linux’s eXpress Data

Path to load efficient and small fast-path modules, leaving the ker- nel stack to serve as the slow

path. To materialize this vision, this paper introduces Transparent Network Acceleration (TNA),

a prototype system that automatically generates a minimal data path based on introspection of

the current net- working configuration, avoiding many of the networking stack overheads in Linux

while ensuring high performance and maintaining Linux’s rich set of functionalities.

5.1 Introduction

Software-based packet processing is being widely adopted across a number of use cases, such

as data center load balancing [41], virtualized networking between containers [103, 104] or virtual

machines [62], and in 5G infrastructures [47]. Doing so requires both high-performance and, in

many cases, the ability to introduce custom functionality. While Linux is the most widely used

58

platform for many such services, supporting the packet processing performance required with its

out-of-the-box network stack is challenging [28, 51, 58].

This led to new approaches for enabling high-performance custom packet processing through

alternative pipelines. These take several different forms, such as kernel bypass (e.g., DPDK [8],

netmap [94]) which efficiently copy packets to a user space program for processing, in-kernel network

stack bypass (e.g., XDP [51], Click [61]) which run inside kernel space but are still largely an

alternative pipeline as performance is only obtained when the traffic does not touch the Linux

network stack, or as a new kernel (e.g., x-kernel [54], Demikernel [107]).

Using an alternative pipeline vastly improves throughput over receiving and processing pack-

ets through the Linux networking stack and makes it easier to add new functionality; however,

it incurs significant drawbacks. First, these alternative pipelines cannot, without degrading per-

formance, leverage the rich and widely used networking functionality of Linux such as its built-in

bridging, packet filtering, and traffic shaping subsystems together with their powerful management

tools (e.g., iproute2 [48]). The rich ecosystem extends to management software that builds around

the Linux APIs and interfaces (and command line tools), such as Infrastructure-as-Code (e.g., An-

sible), container networking (e.g., Flannel), and control plane software (e.g., FRR [49] for routing

and StrongSwan [100] for IPsec).

In this paper we take the position that we should rethink the design of the Linux network

stack to address its shortcomings, rather than creating alternative pipelines. Moreover, we show

that this is practical today.

5.1.1 Overheads in the Linux networking stack.

To understand what is needed as part of a re-design, we need to look at the overheads in the

Linux networking stack. The generality that makes Linux networking so powerful is also one of its

main sources of inefficiencies. One dimension of this is that there is a long, complex data path that

performs too many operations per packet. This includes many different protocols and a wide array

of functionality where Linux needs to check whether each block of code to process needs to be called

59

or not. This leads to a long critical path which, in turn, slows processing. A second dimension

is that the processing that does need to be executed is quite inefficient — again, due to the need

for generality. This includes both heavyweight protocol implementations that can support all of

the corner cases (e.g., IP fragmentation), as well as heavyweight data structures (e.g., sk buff) for

which the allocation process is not just a memory allocation, but complete parsing of packets to

fill in all of the data into the structure.

There are two key insights that we can draw from this — both opportunities for optimization

of Linux networking. First, in most cases, only a subset of functionality is actually being used. For

example, we might only need to set up a bridge between two interfaces, but Linux still checks if

we are using IPsec, packet filters, or traffic shaping. Instead, we believe Linux should be designed

much like the models proposed in the x-kernel [54] and Click [61] work — that is as a composable

design. However, unlike those in which users explicitly provide a graph of processing, we need to

make this transparent from users of Linux.

Second, while Linux does have a degree of fast-path and slow-path processing, such as the

inclusion of some control protocols (e.g., spanning tree) in the kernel, it treats all packets the same

— with the same pipeline and same data structures being allocated. Instead, we believe Linux

should explicitly separate out fast-path functionality and slow-path functionality, and tailor the

execution of each.

5.1.2 Rethinking the Linux networking stack is practical.

Redesigning the Linux networking stack as proposed, would require (1) a decomposition into

explicit fast-path and slow-path functionality and execution environments, and (2) an ability to

dynamically instantiate only the part of the network stack that is used. While this is counter to

the monolithic design of Linux, we believe that it is actually possible today because others have

introduced frameworks which can serve as the fast-path execution environment. That said, while

not explicitly designed for this purpose, we believe there are existing frameworks that can serve as

the fast-path execution environment. The key things we need in an execution environment for fast-

60

Linux Kernel

read/write

hand off for
slow path

TNA Controller Linux Networking
Tools & Ecosystem

configure introspect read/write

User Space
Applications

pass (AF_XDP or
via kernel stack)

Network Stack
(unmodified)

Config & State +
Packet Processing

XDP

TNA Fast Path Modules

Figure 5.1: TNA Overview.

path processing are (1) that it is designed with efficiency in mind for high throughput processing,

(2) that it enables the dynamic loading of processing so that we can load only what is needed at

that particular time, and (3) an ability to interact with the Linux kernel to be able to access its

data structures and exchange packets. Both Click and, more recently, XDP provide all of these.

What having this fast-path execution environment enables is Linux, as exists today, to serve as the

slow path. With that, two more challenges remain: (1) how to design the modules such that they

are very lightweight and leverage the current Linux network stack as the slow path, and (2) how

to dynamically build a graph of Linux processing of what is needed.

5.1.3 Introducing TNA.

As a prototype realization of this vision, we introduce Transparent Network Accelera-

tion (TNA), shown in Figure 5.1, which includes a library of fast-path modules of various Linux

networking functions coupled with an orchestration layer that builds a custom data plane on de-

mand based only on what is configured in Linux (with command line utilities or other software

that use the Linux interface to set data structures within the Linux kernel, such as the forwarding

61

table). The modules are designed to be lightweight and can be stitched together and loaded into the

kernel with XDP. They are designed to work with the Linux networking stack as the slow path by

redirecting any need for corner case processing or state management to the Linux networking stack

and accessing state through various helper functions. We support different application needs by

multiplexing packets to custom processing based on packet header information. To determine what

fast-path processing graph to load at any given time, a lightweight controller continuously intro-

spects the kernel’s network configuration, then it composes and places the currently used functions

on the data path. It also provides APIs for user-defined logic to be inserted at any point in the data

path. The result is a fast Linux networking stack that is (1) fast as it only runs a slim data plane

of the currently required functions instead of passing packets through a complex, general-purpose

stack, (2) transparent to the rest of the system as it uses the kernel’s configuration and network

state together with its ecosystem of tools and third-party software, and (3) extensible as it uses

an underlying technology (XDP) that was designed to add custom functionality to the Linux kernel

efficiently.

To demonstrate the benefits and performance gains with TNA, we accelerate three Linux

network subsystems, i.e., bridging, routing and filtering. With this, the user can configure Linux

bridges, routing and filtering with unmodified Linux management tools and TNA transparently

accelerates the packet processing. For example, our bridge implementation, depending on the CPU

count, improves throughput by up to 3.1 times over the Linux networking stack implementation. We

also compare with Polycube [77], which directly leveraged XDP to accelerate bridging by bypassing

the Linux networking stack. Unlike with TNA, Polycube is not transparent to the user and requires

users to interact with custom control software. We show that even in this case, the TNA-accelerated

bridge is up to 1.6 times faster. This largely stems from XDP being used as a bypass of the Linux

networking stack in Polycube, versus an explicit leveraging of Linux functionality as a slow path

that keeps the TNA modules very lightweight. We also show performance gains for routing, filtering

and services composed by a combination of those subsystems.

In the remainder of the chapter, we first discuss how we can decompose Linux functionality

62

into fast-path and slow-path elements (Section 5.2) and how we can then automatically build

a custom fast data path that only includes needed functionality based on the current context

(Section 5.3). We then describe the prototype implementation of TNA, along with an evaluation

based on accelerating the Linux bridge subsystem (Section 5.4). We wrap up with a discussion of

conclusions and future work (Section 4.7)

5.2 Building Composable Fast-Path Modules

The first challenge to address is how to design the modules such that they are very lightweight

and leverage the current Linux network stack as the slow path effectively. Here, we first provide

guidance on how to design the modules and then describe how we decompose Linux functionality

into fast-path modules.

5.2.1 Designing fast-path modules.

The Linux networking stack today processes all packets without explicitly distinguishing them

as fast-path or slow-path. In this way, any packet that is sent to Linux will be correctly processed

and will correctly update internal state. In the trivial case, we can consider that a fast path that

is empty and sends all traffic to the Linux networking stack will work correctly.

What we aim for is that elements be inserted such that they can process a majority of packets

without needing to send them to the Linux networking stack. These elements should only execute

a few simple tasks such that they can be as fast as possible. What this means is different for each

function; we provide some examples later in this subsection. In general, it should only include the

common-case data plane processing — with corner cases and more complex control protocols being

handled by Linux. In XDP, this is enabled through the ability to inject packets into the Linux

networking stack. So, modules must include functionality that determines whether a packet can be

processed just in the fast path, or needs to be passed to the Linux networking stack.

The functions should not maintain their own state, but instead only use existing Linux

63
Subsystem Fast Path In-Kernel State Control Plane + Slow Path

Bridging Parsing, rewriting,FDB lookup/update,
forwarding

FDB, port state Manage FDB (aging), handle FDB
misses (flooding), STP protocol processing

Routing Parsing, rewriting, FIB lookup,
forwarding

FIB, neighbor tables Routing Protocols (e.g., BGP, OSPF), ARP
handling, IP (de)fragmentation

Netfilter Parsing, rewriting, conntrack
lookup/update, allow/deny packets

Conntrack, ACLs Conntrack handling, IP (de)fragmentation,
handle rules on unsupported hooks

Table 5.1: Acceleration model for different packet processing applications.

networking data structures. In XDP, this can be done through the use of helper functions1 .

This allows any given packet to be processed by the Linux networking stack without modification,

otherwise synchronization would be needed. State will largely be (but does not need to be) read-

only as much of the state management exists within the higher-level control protocols or set from

management utilities (e.g., Linux command line tools) or user-space control plane software.

5.2.2 Building a library of composable data-plane modules.

To provide examples of these principles in practice, we elaborate in Table 5.1 how we break

Linux packet processing into a series of lightweight modules for a set of Linux networking subsys-

tems. While this is not an exhaustive set of networking functionality, this list is highly representative

as those services serve as the basic building blocks to implement complex networking applications

such as bridges, routers, NAT, firewalls, and container network interfaces (CNIs).

The lightweight modules for each subsystem are responsible for simple tasks, like parsing

and rewriting packets, looking up state in the kernel tables, and sending packets for full processing

when needed. We call those lightweight modules the TNA fast-path modules (FPMs) and we

build a library of them to execute tasks needed by each network subsystem. For example, the

fast path on a bridge deployment can be composed by a series of pre-built TNA FPMs where

each of them performs tasks like packet parsing, forwarding database (FDB) lookups (via a kernel

helper), and L2 forwarding (directly from the fast path). The Linux kernel exposes FDB access

and port state to the fast path via a kernel helper and performs tasks like aging, STP and FDB

1 Some kernel helpers are available to XDP today (e.g., bpf fib lookup [10]), but some are missing. So, to realize
our full vision, we will both leverage the ones that are available and build new ones as needed.

64

misses handling, and packet flooding. FDB misses/flooding should happen only for the first packet

destined to an unknown MAC address [26]. STP is responsible for avoiding loops on a network with

redundant paths, by blocking specific ports based on bridge protocol data unit (BDPU) messages

that communicate topology changes once every 2 seconds (by default) [32]. In this manner, the

fast path is able to process the majority of the packets with higher performance than the full Linux

processing (see Section 5.4).

In the same manner, the fast path for a router uses TNA FPM modules to parse packets, per-

form FIB (forwarding information base) lookups, and L3 forwarding. The fast path gets assistance

from Linux by accessing exposed FIB and neighbor data via a helper, supporting routing protocols

like BGP (Border Gateway Protocol) – in which protocol messages only need to be processed every

few seconds [92]), and other unsupported operations like handling fragmented packets (which can

be avoided [36]).

The netfilter subsystem exposes access control lists (ACLs) and the table of initiated L4

connections/flows (called conntrack table) to the fast path. This allows building accelerated services

like stateful firewalls and NAT2 .

5.3 Automated Fast-Path Data Plane Creation

The second key challenge is how to dynamically build and load a fast-path processing graph

consisting of only what is needed. Before providing a more complete description, to give intuition

on how TNA can generate and deploy a minimal XDP fast path to accelerate Linux networking

services, in agreement with what is currently configured, we describe a simplified example for one

use case. In this example, we show how TNA would automatically instantiate an XDP fast path

to transparently accelerate a bridge deployment. In the left part of Figure 5.2 we see that an

operator or automation framework (e.g., Ansible) could execute a sequence of commands using

Linux configuration tools (e.g., iproute2 and brctl) to configure the bridge. So, the process starts

2 Note that this model is essentially different from solutions like [77] which maintains state in BPF maps and reim-
plements several networking features in BPF form, missing the opportunity to leverage features already implemented
in the Linux ecosystem.

65

Kernel

Linux configuration
tools

Add NIC1 to VLAN Y

Add NIC1 to br1

Enable STP on br1

TNA Bridge

(1) Parse L2 + VLAN

(3) FDB lookup

(5) L2 FWD

(2) Send STP to Kernel

NIC1

VLANY

br1

STP

Create Bridge br1

Dependency

Graph

NIC1

XDP

(4) Send Misses to
Kernel

TNA
Controller

TNA
Controller

Kernel
Objects

TNA
Objects TNA Fast Path Modules (FPMs)

Figure 5.2: Automated Data Path Creation

with an operator adding a network interface on the Linux system (NIC1) to a desired VLAN (Y).

The second step is to issue a command to create the bridge (br1). After that, NIC1 is added to

br1 and finally STP is enabled on this bridge.

To automatically generate the XDP fast path, we need to introspect the Linux kernel looking

for bridge objects and retrieve the entities that compose them (TNA objects). After that, we build

a dependency graph with relationships between those objects, allowing us to have a structured view

of the current bridge configuration.

The next step is to map the nodes of the graph into one or more small units of pre-build

eBPF code (TNA FPMs) that can be stitched together to provide the necessary fast-path logic to

accelerate the bridge. In this example, the dependency graph shows a bridge with VLANs and STP

configured on it. In this case, we stitch together and deploy a set of TNA FPMs on NIC1 to (1)

parse L2 header including VLANs, (2) send STP messages for kernel processing (slow path), (3)

perform FDB lookups in the kernel, using a kernel helper, (4) when a lookup fails, send the packet

to the kernel, (5) when the lookup succeeds, send the packet to the egress port directly from the

fast path.

66

TNA
Controller

Service
Introspection

Topology
Manager

Capability
Manager

TNA
Accel

Library

TNA Fast
Path

Assembler

TNA Fast
Path

Deployer

TNA
objetcs TNA graph Resources

description
TNA

FPMs
TNA

pipeline
TNA data

path

Controller
Processing

Controller
Artifact

Minimal XDP
data path

Figure 5.3: TNA Controller

We design the TNA controller (shown in Figure 5.3) with a series of components that work

together to allow the steps just described to happen, as we explain next with more details.

5.3.1 Introspect the Linux kernel

. Our service introspection component uses the Netlink protocol [85] by both sending queries

to the kernel at the controller startup time to get an initial view of the current configured services

and also by joining to multicast groups to get kernel notifications about configuration changes and

updates. The received messages are converted into network objects descriptions (TNA objects)

containing the type of object and a set of configuration attributes. A network interface, for example,

will contain the type of interface (e.g., physical or virtual), its name, its current state (e.g., up or

down), IP configuration, and so on.

5.3.2 Build a dependency graph.

TNA starts this process by feeding the TNA objects generated by the service introspection

to the topology manager component, which is responsible for processing each of those objects and

establishing relationships among them. This creates the TNA graph, which is a dependency graph

67

representing the services that are currently configured and the objects that compose them. To build

the dependency graph, we leverage relationships that can be derived from the Netlink messages

(e.g., the bridge that an interface is part of). Where this direct mapping is not possible, we apply

domain knowledge to derive other dependencies. 3 For example, when we have an IP address

configured on a bridge interface, packets arriving at this interface may need routing, so we add the

required objects representing this feature to the dependency graph accordingly.

TNA aims to allow tailoring acceleration code for systems according to the features they

have available, such as the presence of SmartNICs with XDP offload capabilities [86] and a kernel

version with needed helpers available. For doing so, the capabilities manager component builds an

inventory of the available assets on a given system, such as the kernel version, and network interface

model.

5.3.3 Stitch together and deploy a set of TNA FPMs.

The TNA acceleration library has a set of pre-built TNA FPMs. We propose different types

of code that can, for example, (if available) leverage SmartNICs to do packet parsing and maintain

counters, or leverage a set of available kernel helpers.

The fast-path assembler component uses outputs from the topology manager, capability man-

ager, and the TNA acceleration library to generate a minimal fast path to support the services that

are currently configured on the system in accordance to its capabilities. Currently, TNA does so

by directly mapping one or more TNA FPMs to each node of the TNA graph in a hierarchical way

that allows building a fast path that has functional equivalence with the original Linux data path

(but is thinner and faster). We aim to generate a data plane that is as thin as possible as this

results in fewer instructions per packet (making processing faster), potentially reduces cache misses

(as code/data are more likely to fit on processor’s cache), and leads to less resource consumption —

which is important on SmartNIC XDP offloads. Generating a minimal data plane can be enforced

3 Currently, we do hard code domain knowledge in TNA. As future work we aim to generalize defining supported
kernel objects, services, configurations and dependencies via configuration files.

68

by (1) avoiding code duplication by carefully organizing the TNA graph nodes such that several

services on a pipeline can share TNA FPMs (e.g., a packet parser) and (2) avoiding deploying

unnecessary code. For example, if there are no VLANs or IPv6 configured on the system, TNA

should not deploy code (i.e., TNA FPMs) to parse those protocols.

Given the minimal fast path that was just generated, the Fast Path Deployer is responsible to

actually deploy the code on XDP. Currently, we do this by having, at the beginning of the pipeline,

an XDP program that leverages the eBPF tail call mechanism to send packets to the minimal data

path. Each time the data path is regenerated (which is triggered by changes in configuration),

TNA atomically replaces the current XDP data path with the new one, by updating the reference

to the new program on the required map eBPF map [51]. The fast path is built by in-lining the

required FPM modules to compose the full processing pipeline.

5.3.4 Extensible Fast Path.

While the focus of this paper is how to redesign the Linux networking stack itself to be

high performance, we inherit the desire for users to add custom packet processing. For this, TNA

provides an API that allows injecting custom code on the packet processing pipeline. This can

be done in two ways. The first is to inject custom eBPF code at different points in the XDP

processing pipeline. Those attachment points can be at the beginning of the processing, at the

end (e.g., before a packet is forwarded), or somewhere in between (i.e., between two TNA FPMs).

This allows injecting custom network functionality in the pipeline, e.g., monitoring [18], or load

balancing [44], that can work in concert with the deployed pipeline. The second possibility is to

add custom packet processing applications on user space (e.g., [17]). This can be done by using

a special type of socket, called AF XDP, that allows sending raw packets directly from the XDP

layer. This enables creating a hybrid kernel/user space processing environment where lower layer

protocol processing and security are provided by Linux/TNA and upper layer processing (e.g., L4-

L7) is provided by user space with higher performance than a full Linux pipeline. Full exploration

is left as future work.

69

Pktgen

(DPDK)

NIC

NIC

NIC

NICBridging

Routing

Filtering

TNA/Linux/Polycube

Figure 5.4: Evaluation Scenario.

5.4 Prototype and Evaluation

We built an initial prototype to evaluate TNA’s feasibility and performance. For our initial

evaluation, we focus on accelerating Linux’s bridging, routing and filtering (iptables) subsystems;

they have several mature features implemented in the kernel and are widely deployed, for example

in data center networks and CNIs. Our prototype is composed by the TNA controller (∼1820 LoC),

a library of FPMs (∼200 LoC) and new BPF helpers (∼230 LoC) that we introduce in the Linux

kernel, or modify existent ones to support TNA use cases. Those helpers are available on our Linux

kernel fork on GitHub [1]. [ADD A FIGURE SHOWING THE EVALUATION SCENARIO].

We show our evaluation scenario in Figure 5.4. We set up a test bed composed of two servers

connected back to back via two ports of a quad-port 10 Gbps Intel NIC (Intel X710). Those servers

have Two 2.4 GHz 64-bit 8-Core E5-2630 ”Haswell” processors. We disable Hyper Threading (HT)

and power saving. We also perform all tests using CPU cores and NIC interfaces on the same NUMA

node. Unless stated otherwise, one of them acts as packet generator/sink using DPDK’s Pktgen

and generates line rate traffic towards the other server at minimum packet size (64B packets at

∼15 Mpps). In this server, we use one processor core to generate traffic and another one to receive

it. The second server is the device under test (DUT) and is used to receive and forward traffic

to the other machine. In this server, we deploy and compare TNA with both Linux (kernel 5.15)

and Polycube [77] (v0.9.0) using different services — bridging, routing and filtering. Unless stated

70

otherwise, we run each experiment 10 times for 10 seconds.

5.4.1 TNA Bridge Prototype

As there currently is no helper function available in XDP to interact with bridge state inside

the kernel, we needed to add one. When a packet arrives at the XDP layer, the helper adds the

packet’s source MAC address/ingress port to the kernel FDB table (if not yet present). After that,

given a destination MAC address/VLAN ID, if there is a match on the FDB, the helper answers

with the output port and also the STP state (e.g., blocked or learning).

The TNA controller is able to introspect the kernel, build the dependency graph representing

the kernel objects required for a bridge, including the bridge name, the attached network interfaces,

their configuration (e.g., VLANs, STP, etc.). Based on this graph, the TNA fast-path assembler

composes a minimal data path. For example, if there are no external routes configured on a system,

TNA will not be accelerating L3 forwarding nor will code to parse the IP header be added; the

same concept applies to VLAN headers if no VLANs are configured. Similarly, if STP is disabled,

there is no code to check STP state on a port and take actions based on it (e.g., drop packets on a

blocked port).

As Polycube completely reimplements the bridge in eBPF/XDP and user space, it cannot be

configured with standard Linux tools; the command polykubectl is required instead. In contrast, we

configure the Linux bridge with standard unmodified tools (e.g., ip, brctl, bridge), and let the TNA

controller automatically deploy an accelerated XDP data path for this deployment. Figure 5.5

shows the results using 1, 2, and 6 cores for each system. We can see that the Linux bridge with

TNA acceleration is up to 3.1 times faster than without. It is also up to 1.6 times faster than

the Polycube bridge, with the added benefit of leveraging the Linux bridge implementation and

the respective configuration tools. In this scenario, TNA is faster due to its ability to generate

a minimal data plane (avoiding unnecessary packet processing overheads) and optimized access

to kernel data structures, which allows it to consume 39% and 69% fewer cycles per packet than

Polycube and Linux respectively (when using just one CPU core).

71

1 2 6
CPUs

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

Bridging

Linux
PCN
TNA

Figure 5.5: Throughput of Bridge Implementations.

5.4.2 TNA Router Prototype

Linux already has a BPF helper that allows interacting with the kernel’s FIB, so we leveraged

it on our prototype. The TNA controller introspects the Linux kernel and if L3 forwarding is

enabled (i.e., net.ipv4.ip forward=1) and there are external routes configured on the system, the

TNA composes the fast path and deploys it on the required interfaces. We can see in Figure 5.6

that TNA is up to 3.9 times faster than Linux and 5% faster than Polycube. In this case, TNA’s

performance is similar to Polycube’s and their difference in cycles per packet is almost negligible.

We attribute this to the fact that routing is a simpler service than bridging, allowing an eBPF

fast path to be naturally thin and optimized. For example, differently than in a bridge, there

is no need to process VLANs or spanning tree state for forwarding. In addition, there are fewer

interactions between the eBPF data plane and control plane as there is no need to perform complex

tasks like, MAC learning, STP state and perform FDB aging. However, we emphasize the fact that

TNA can accelerate Linux routing subsystem transparently, where routes can be managed with

standard Linux tools (e.g., ip route), and powerful control plane routing software like Bird, FRR

and Quagga. This allows TNA to transparently support and accelerate, for example, BGP and

72

1 2 6
CPUs

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

Routing

Linux
PCN
TNA

Figure 5.6: Throughput of Router Implementations.

OSPF (Open Shortest Path First) deployments. In order for Polycube to support this scenario,

the routing control plane software would have to be modified to work independently of the Linux

kernel, losing its features and to directly update routes on eBPF maps.

5.4.3 TNA Iptables Prototype

Currently, the Linux kernel does not provide any kernel helpers to allow interacting iptables.

As a first step, to allow accelerating iptables, we build a new BPF helper that allows matching

iptables rules in its filtering table on the forwarding chain. Currently, our helper enables matching

source/destination IP addresses (including longest prefix matches for subnets) and protocol. 4 . Our

helper also supports aggregating rules using ipset, discussed below. TNA prototype supports the

forwarding chain. This means that TNA is able to accelerate filtering for packets being forwarded by

Linux routing subsystem. In this manner, TNA deploys the iptables FPM, following two conditions.

The first is that the routing FPM is deployed. The second is that there are supported iptables

rules in the forwarding chain. As iptables does not support Netlink, we introspect its tables using

4 As future work, we plan to support matching more packet header fields and support accelerating other chains

73

the library libiptc [67].

As noted in [75] iptables suffers from scalability issues mainly due to its matching algorithm

that performs a linear search on its table until a match is found for a given packet. This causes

performance to be degraded when several rules need to be evaluated before applying a verdict

(e.g., accept or drop a packet). For example, suppose that a table has 5k rules and any of them

matches a given packet. In this case, iptables will try to match the packet against all of them before

continuing its processing. To allow better performance and scalability for iptables, the Linux kernel

community introduced a new component called ipset. Ipset allows aggregating several matching

fields (e.g., IP addresses, networks and ports) in one set. This allows dramatically reducing the

number of required rules on iptables, which in turn greatly improves its performance. As TNA

leverages iptables for filtering, it is able to transparently accelerate firewall deployments using our

supported matches and chains. As we will see in this section and the next, this allows accelerating

services built on top of a composition of Linux kernel facilities like, for example, bridging, routing

and filtering. On the other hand, TNA inherits iptables scalability limitations, which are attenuated

as our BPF helper supports ipsets.

In this subsection, we compare TNA and Polycube filtering. In the next section, we compare

TNA and Linux iptables filtering, in a scenario where we accelerate a composition of Linux services,

which is not supported by Polycube. Polycube implements its own firewall in eBPF form, which

is called pcn-iptables [75]. Their implementation addresses the iptables’ scalability problem by

introducing a new search algorithm that instead of performing a linear search on the filtering table,

they adopt a more efficient classification algorithm called Linear Bit-Vector Search (LBVS), which

was introduced in [65]. LBVS encodes matched rules in bit vectors, and matches for each protocol

field are done through separate tables that are matched in sequence. At the end of the pipeline, the

LBVS performs a bitwise AND operation with the bit vectors as input to obtain the final verdict

for the packet; the most significant bit of the result indicates the matched rule with the highest

priority. This allows a divide-and-conquer paradigm where rules can be evaluated in large batches,

allowing great lookup speedup when comparing to iptables linear search algorithm. As we can see

74

100 1000 5000
rules

0

2

4

6

8

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

TNA vs PCN Filtering

PCN
TNA

Figure 5.7: Throughput of TNA vs PCN filtering Implementations.

in Figure 5.7, Polycube’s filtering is indeed faster than TNA’s, specially as the number of firewall

rules increase. However, pcn-iptables does not support ipsets, and only supports up to 5000 rules.

In contrast, TNA supports several thousands of rules that, if aggregated on a few ipset rules, may

lead to performance similar to pcn-iptables. For example, in Figure 5.8 We aggregate 50k different

networks subnets on ipsets and create one or two rules matching them. This allows TNA to filter

packets for a much larger range of IP addresses and networks than Polycube, while having better

or similar performance.

5.4.4 Stacking Different Subsystems Together

We now evaluate the scenario where TNA introspects different subsystems at different levels

of its processing stack (i.e., L2, L3 and packet filtering). When possible, we compare Linux and

TNA with Polycube. This use case can be seen on Figure 5.9. On the left part of this figure,

we build a bridge, with VLAN filtering activated, and we do L3 routing to allow communication

between different VLANs. We also configure iptables rules to allow fine-grained filtering between

the different VLANs.

75

TNA (ipset) vs PCN filtering
0

2

4

6

8

10

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

TNA ipset vs PCN Filtering

TNA 1 50k rule
TNA 2 50k rules
PCN 5k rules (max)

Figure 5.8: Throughput of TNA (ipset) vs PCN filtering Implementations.

In Figure 5.10, we configure bridging and routing using Linux configuration tools for Linux

and TNA. TNA introspects the kernel, verifies that the bridge has VLAN interfaces configured with

IP addresses, has external routes and also verifies that IP forwarding is enabled. This is translated

to a dependency graph that allows TNA to automatically build and deploy a fast path by stitching

together the required bridging and routing FPMs. Polycube is configured with polycubectl. We test

maximum throughput as we add more CPU cores to each deployment. We can see that, in this

scenario, TNA is up to 4.2 times faster than Linux, and up to 3.7 times faster than Polycube.

Now we add iptables filtering to this deployment, and set rules to filter traffic between different

VLANs. Again, TNA introspects the Linux kernel, and in addition to the dependencies found in

the previous example (bridge + routing), it also verifies the presence of supported filtering rules

on the forwarding chain. In Figure 5.11, we configure the DUT machine with 6 CPU cores, and

we test throughput as we increase the number of filtering rules to be evaluated for each packet.

We only compare Linux and TNA as Polycube does not support this scenario. Here we can see

that for 100 rules, 1000 and 5000 rules TNA is 3.5, 1.8 and 1.28 times faster than Linux (note

that this plot is in log scale). Now we show how TNA can leverage ipsets to improve filtering

76

br0

br0.200

(VLAN 200)

br0.100

(VLAN 100)

192.168.200.1 192.168.100.1

NIC 0 NIC 1

192.168.200.0/24 via
192.168.200.10

192.168.100.0/24 via
192.168.100.10

Chain FORWARD (policy ACCEPT)

target prot opt source destination
DROP all -- anywhere 192.168.0.0/24

....

Pktgen (DPDK)

NIC 1

192.168.200.10

NIC 0
192.168.100.10

 Src IP: 192.168.100.0/24

GW: 192.168.100.1

VLAN: 100

 Src IP: 192.168.200.0/24

GW: 192.168.200.1

VLAN: 200

Figure 5.9: Stacking bridging + routing + iptables filtering

scalability while still accelerating Linux. In Figure 5.12, instead of using vanilla iptables rules, we

configure ipsets with 50k different network subnets, and add up to 40 rules using them. We can see

that TNA is able to increase Linux throughput up to 3.6 times as we add 1, 20 or 40 ipset rules in

iptables. In Figure 5.13, we also configure the DUT machine with 6 CPU cores to evaluate compare

vanilla iptables rules with Ipset rules in TNA. In this case, we configure 40 ipset rules, with ipsets

containing 50k different network subnets. We compare this with 5k vanilla iptables rules. We can

see that with Ipsets, TNA filtering us able to filter a large range of IP addresses, while having 5.5

times higher throughput.

5.5 Related Work

Kernel-bypass networking. A variety of packet I/O frameworks take the approach of

bypassing the kernel in order to scale software packet processing, most notably the Data Plane

Development Kit [8], PF RING [88], and Netmap [94]. Common to these frameworks is that they

generally take over control of a NIC, only copy packets a single time from the NIC to pre-allocated

memory via DMA, and rely on expensive busy polling instead of interrupts. Snap [74] avoids the

need of dedicating hardware resources to network functions by leveraging and customizing Linux

77

1 2 6
CPUs

0

2

4

6

8

10

12

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

Bridging + Routing

Linux
PCN
TNA

Figure 5.10: Throughput of Bridge + Router Implementations.

kernel features such as scheduling. Snap is a microkernel-inspired approach where core network

functions are reimplemented in userspace and managed with custom tools. In contrast, with TNA

we believe that the Linux networking stack should not be bypassed, but instead redesigned such

that we can leverage the operating system’s networking features, and its ecosystem of tools and

control plane software.

In-kernel fast packet processing. Alternatively, there has been work that can load custom

packet processing functionality into the kernel, providing both the opportunity to access kernel

state (e.g., the forwarding table) and exchange traffic with the Linux networking stack. One

such framework is the Click [61] modular router, which allows stitching together packet processing

elements as a directed graph to build complex network functions from an extensive library of

elements and loading that into the kernel as a kernel module. The eXpress Data Path (XDP) [51]

similarly provides an in-kernel execution environment, but provides better safety through the use

of the eBPF virtual machine (instead of admitting any C++ code to the kernel), and has been

integrated into mainline Linux. TNA is complementary to these efforts, as we rely on the capabilities

of XDP to provide a fast path execution environment and are inspired by the model in Click where

78

100 1000 5000
rules

100
T

hr
ou

gh
pu

t [
M

 p
kt

s/
s]

 ­
 L

og

1.97

0.6

0.14

7.03

1.07

0.18

Bridging + Routing + Iptables

Linux
TNA

Figure 5.11: Throughput of Bridge + Router + filtering Implementations.

modules can be stitched together. As example applications built with XDP, most related to our

work are Polycube (which implemented alternate implementations of some Linux network functions

with XDP along with custom interfaces) and Bastion [83] (which implements a CNI with XDP).

While providing acceleration, these fall short in that they bypass the Linux networking stack and,

in the case of Polycube, slow-path processing needed to be implemented from scratch in user space.

In contrast, TNA uses Linux’s existing rich functionality as the slow path, avoiding the need for

costly reimplementation and non-standard interfaces.

Clean-slate approaches. Finally, entirely new kernel architectures have also been proposed.

X-kernel [54] is an early work that proposes an OS designed to simplify building and composing

communication protocols; it includes abstractions and building blocks to realize a wide range of

protocols to be used within and across hosts. More recently, Zhang et al. proposed Demikernel [107],

an OS architecture that aims at integrating legacy control plane software with a fast data path

bypassing the kernel. Also motivated by the lack of system integration, Sadok et al. [96] make

the case for an interposition layer on SmartNICs and through a custom OS kernel that can see all

traffic before software processing starts. All three approaches have in common that they propose

79

1 20 40
ipset rules (each with 50k entries)

100

101

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]
 ­

 L
og

2.43

1.2

0.78

8.94

1.87

1.02

Bridging + Routing + Iptables (ipset)

Linux
TNA

Figure 5.12: Throughput of Bridge + Router + filtering (ipset) Implementations.

completely new kernels and radical changes to OS architecture. While achieving similar goals, TNA

can be deployed today as it can be implemented using mechanisms Linux already provides.

5.6 Conclusion and Future Work

In this paper, we propose a redesign of the Linux network stack, making it more suitable to

address the needs of modern network systems in terms of performance, functionality and extensi-

bility. The redesign starts from the observation that it is possible to instantiate a fast data path

to Linux, covering only functionality that is actually in use on the system, avoiding many over-

heads that slow down Linux packet processing. We show that this can be achieved with technology

that is currently available in the Linux kernel. To test our proposal, we build a prototype system,

called TNA, and show that we can transparently accelerate many Linux network subsystems (i.e.,

bridging, routing and packet filtering).

There is still work to do to fully realize our vision. First, we need to do a more comprehensive

analysis of the Linux kernel network stack to support decomposing more of it with our proposed re-

design. Second, we need to investigate techniques for building and optimizing the TNA dependency

80

40 ipset rules (50k entries) vs 5k iptables rules
0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t [

M
 p

kt
s/

s]

TNA Bridging + Routing + Iptables (rules vs ipset rules)

Iptables
Ipset

Figure 5.13: Throughput of TNA filtering (ipset vs iptables) Implementations.

graph, and to generate and deploy code based on it. Third, we need to come up with a model that

can ensure correctness and consistency in the data plane as we insert custom processing. Finally,

we will explore debugging mechanisms considering the new network stack design.

Chapter 6

Future Work and Conclusion

6.1 Future Work

In this section, we discuss avenues to extend this work: Adding support to more use cases

for TNA and improving filtering performance.

6.1.1 Adding support to more use cases for TNA

Currently, TNA can accelerate Linux bridging, routing and filtering on the forwarding chain.

However, our goal is to rethink all of Linux networking functions. In order to extend the range of

services that TNA can accelerate, there is the need to characterize more Linux network subsystems

looking for opportunities to break their processing in fast and slow paths. In doing this characteri-

zation, it will be possible to generalize the findings and create a taxonomy of processing and state

access to build more fast path modules. This can help guide current and future Linux networking

functionality, as well as inform how to organize custom processing modules. We believe that one

particularly interesting avenue would be to apply XDP/eBPF acceleration to container networking,

as other works [103, 31, 77, 83] already do, but fall short in having a closer integration with the

Linux network stack, missing several opportunities as discussed during this work.

6.1.2 Improving filtering performance

As discussed in chapter 5, our TNA filtering leverages the widely deployed iptables kernel

implementation. This allows TNA to seamlessly accelerate different kernel packet processing ap-

82

plications that need to perform packet filtering. However, TNA filtering also inherits the iptables’

scalability problem that limits its performance when several rules per packet need to be checked.

One avenue for future work, would be to improve the iptables matching algorithm itself, which

would benefit not only TNA but also other iptables deployments. Another possibility would be to

create a caching layer on XDP that could readily apply a verdict on a subset of packets, avoiding

the need to traverse the whole iptables tables. As iptables performs a linear search until there is

a match for each packet, another alternative would be to have new mechanisms to dynamically

reorganizing filtering rules based on frequency of matching. In this manner, rules with higher fre-

quency could be moved up on iptables, so we could avoid several packets to be matched against

several rules before processing continues.

6.2 Conclusion

In this dissertation, we identify many challenges faced by modern network systems, most of

them related to the impossibility to match their requirements with optimal processing technologies.

This leads to system designs that need to trade off having high performance with rich functionality

and efficiency. To address this, we start by breaking down the desired processing requirements of

many network functions and characterize the processing features of many technologies. After that,

we match each processing function with the technology that can most benefit it. In order to have

complete packet processing applications in this scenario, we break the boundaries among different

technologies, leading to a new foundation that can provide high performance, rich functionality, and

efficiency for many network applications. With this foundation, we introduce systems to address

many needs of modern data center networks, going from L2 to L7 and monitoring.

We started by introducing a new system that can integrate a high-performance userspace

TCP stack with kernel functionality, making it more efficient, allowing better resource sharing

capabilities, and enabling cooperation mechanisms between that stack and the kernel, giving it a

richer functionality set. We also introduced new monitoring primitives that allow to intelligently

orchestrate monitoring applications, only executing them when they are needed. This system is

83

built using modern in-kernel packet processing, SmartNIC offloads, and userspace processing leading

to high-coverage monitoring systems, with efficient resource consumption and rich functionality.

Finally, we proposed a redesign of the Linux network stack, which addresses many of its inefficiencies

and allows it to have the required performance to support modern services. The redesign starts

with the observation that it is possible to break down network processing in a slow path, leveraging

kernel features and a fast path. The fast path can be dynamically instantiated, based on the current

processing requirements, allowing a shorter processing path that minimizes overheads and greatly

improves performance. Unlikely systems that work independently of the Linux network stack, TNA

allows leveraging its rich ecosystem composed by management tools, control plane software and

protocol implementation.

Bibliography

[1] Author’s Linux kernel fork - new BPF helper implementations.
https://github.com/mcabranches/linux.

[2] Author’s mTCP fork - AF XDP support to mTCP. https://github.com/mcabranches/mtcp.

[3] Bluefield SmartNIC Ethernet. https://www.mellanox.com/products/ BlueField-SmartNIC-
Ethernet.

[4] The caida ucsd anonymized internet traces - mar. 2018. Retrieved July 5, 2021 from https:

//www.caida.org/catalog/datasets/passive_dataset.

[5] Cloudflare, How to drop 10 million packets per second. https://blog.cloudflare.com/how-to-
drop-10-million-packets/.

[6] Deloitte, Media and entertainment industry outlook trends.
https://www2.deloitte.com/us/en/pages/technology-media-and-
telecommunications/articles/media-and-entertainment-industry-outlook-trends.html.

[7] Dennard Scaling and Other Power Considerations. https://pensando.io/dennard-scaling-and-
other-power-considerations/.

[8] DPDK, Data Plane Development Kit. https://www.dpdk.org/.

[9] Ever deeper with bpf – an update on hardware offload support - nov.
2018. Retrieved July 5, 2021 from https://www.netronome.com/blog/

ever-deeper-bpf-update-hardware-offload-support/.

[10] Linux, bpf-helpers(7) — Linux manual page. https://man7.org/linux/man-pages/man7/bpf-
helpers.7.html.

[11] Micrsoft, Remote work trend report. https://www.microsoft.com/en-us/microsoft-
365/blog/2020/04/09/remote-work-trend-report-meetings/.

[12] P4 Language Consortium. https://p4.org/.

[13] Prototype Kernel, eBPF - extended Berkeley Packet Filter. https://prototype-
kernel.readthedocs.io/en/latest/bpf/.

[14] Red Hat, Mobile Networks - Performance and Optimization. https://access.redhat.

com/documentation/en-us/reference_architectures/2017/html/deploying_mobile_

networks_using_network_functions_virtualization/performance_and_optimization.

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset
https://www.netronome.com/blog/ever-deeper-bpf-update-hardware-offload-support/
https://www.netronome.com/blog/ever-deeper-bpf-update-hardware-offload-support/
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/deploying_mobile_networks_using_network_functions_virtualization/performance_and_optimization
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/deploying_mobile_networks_using_network_functions_virtualization/performance_and_optimization
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/deploying_mobile_networks_using_network_functions_virtualization/performance_and_optimization

85

[15] The Cloudlab Manual, Hardware. https://docs.cloudlab.us/hardware.html.

[16] Ieee standard for verilog hardware description language. IEEE Std 1364-2005 (Revision of
IEEE Std 1364-2001), pages 1–590, 2006.

[17] Marcelo Abranches and Eric Keller. A userspace transport stack doesn’t have to mean losing
linux processing. In Proc. NFV-SDN, 2020.

[18] Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. Efficient network moni-
toring applications in the kernel with ebpf and xdp. In 2021 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), pages 28–34. IEEE,
2021.

[19] David Ahern. Leveraging kernel tables with xdp. In Linux Plumbers Conference, 2018.

[20] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. Inkev: In-kernel distributed
network virtualization for dcn. ACM SIGCOMM Comput. Commun. Rev., 46(3), July 2018.

[21] Paul Aitken, Benôıt Claise, and Brian Trammell. Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011, 2013.

[22] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet processing. In
2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS), pages 5–16. IEEE, 2015.

[23] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE: Fine grained
traffic engineering for data centers. In Proceedings of the Seventh Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’11. ACM, 2011.

[24] Gilberto Bertin. Xdp in practice: integrating xdp in our ddos mitigation pipeline - netdev
2.1. Retrieved June 28, 2021 from https://legacy.netdevconf.info/2.1/session.html?

bertin.

[25] Matteo Bertrone, Sebastiano Miano, Fulvio Risso, and Massimo Tumolo. Accelerating linux
security with ebpf iptables. In Proceedings of the ACM SIGCOMM 2018 Conference on
Posters and Demos, pages 108–110, 2018.

[26] Linux, bridge(8) — Linux manual page. https://man7.org/linux/man-
pages/man8/bridge.8.html, 2012. Retrieved June 10, 2022.

[27] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli, Giuseppe
Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro Palumbo, Luca Petrucci, and
Roberto Bifulco. hxdp: Efficient software packet processing on FPGA nics. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’20. USENIX, 2020.

[28] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and Rachit Agarwal.
Understanding host network stack overheads. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 65–77, 2021.

[29] Cyril Cassagnes, Lucian Trestioreanu, Clement Joly, and Radu State. The rise of ebpf for
non-intrusive performance monitoring. In Proc. NOMS, 2020.

https://legacy.netdevconf.info/2.1/session.html?bertin
https://legacy.netdevconf.info/2.1/session.html?bertin

86

[30] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. Beaucoup:
Answering many network traffic queries, one memory update at a time. In Proc. ACM
SIGCOMM, 2020.

[31] Cilium. ebpf-based networking, observability, and security. Retrieved February 22, 2022, from
https://cilium.io/.

[32] Cisco. Understanding and tuning spanning tree protocol timers, 2006. Retrieved June
14, 2022, from https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-
protocol/19120-122.html.

[33] Cloudflare. Dns flood ddos attack. Retrieved June 25, 2021 from https://www.cloudflare.

com/learning/ddos/dns-flood-ddos-attack/.

[34] Cloudflare. Slowloris ddos attack. Retrieved June 15, 2021 from https://www.cloudflare.

com/learning/ddos/ddos-attack-tools/slowloris/.

[35] Cloudflare. Syn flood attack. Retrieved June 15, 2021 from https://www.cloudflare.com/

learning/ddos/syn-flood-ddos-attack/.

[36] Cloudflare. Broken packets: Ip fragmentation is flawed. https://blog.cloudflare.com/ip-
fragmentation-is-broken/, 2017. Retrieved June 10, 2022.

[37] Intel Corporation. Pktgen - traffic generator powered by dpdk. Retrieved February 22, 2022,
from https://github.com/pktgen/Pktgen-DPDK.

[38] Gregory Cusack, Oliver Michel, and Eric Keller. Machine learning-based detection of ran-
somware using SDN. In Proceedings of the 2018 ACM International Workshop on Security in
Software Defined Networks and Network Function Virtualization, SDN-NFV Sec. ’18. ACM,
2018.

[39] Andrea di Pietro, Felipe Huici, Nicola Bonelli, Brian Trammell, Petr Kastovsky, Tristan
Groleat, Sandrine Vaton, and Maurizio Dusi. Toward composable network traffic measure-
ment. In 2013 Proceedings IEEE INFOCOM 2013, INFOCOM ’13, 2013.

[40] Alessandro D’Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia, and Pedro Casas.
A survey on big data for network traffic monitoring and analysis. IEEE Transactions on
Network and Service Management, 16(3):800–813, 2019.

[41] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov, Eric Mann-
Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dylan Hosein. Ma-
glev: A fast and reliable software network load balancer. In USENIX NSDI, 2016.

[42] Paul Emmerich, Maximilian Pudelko, Simon Bauer, and Georg Carle. User space network
drivers. In Proc. ACM/IEEE ANCS, 2019.

[43] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. Partition-aware packet steering using xdp
and ebpf for improving application-level parallelism. In Proc. ACM ENCP, 2019.

[44] Facebook. Katran - l4 load balancer. Retrieved February 22, 2022, from https://github.

com/facebookincubator/katran.

https://cilium.io/
https://www.cloudflare.com/learning/ddos/dns-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/dns-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/ddos-attack-tools/slowloris/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://github.com/pktgen/Pktgen-DPDK
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran

87

[45] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh,
Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar
Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu,
Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair,
Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: Smartnics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’18. USENIX, 2018.

[46] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In AofA: Analysis of Algorithms,
DMTCS Proceedings, June 2007.

[47] Open Networking Foundation. Aether, 2022. Retrieved June 16, 2022, from
https://opennetworking.org/aether.

[48] The Linux Foundation. iproute2, 2022. Retrieved June 21, 2022, from
https://wiki.linuxfoundation.org/networking/iproute2.

[49] FRR Project. FRRouting project, 2022. Retrieved June 14, 2022, from https://frrouting.org.

[50] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and Walter
Willinger. Sonata: Query-driven Streaming Network Telemetry. In Proc. SIGCOMM, 2018.

[51] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom
Herbert, David Ahern, and David Miller. The express data path: Fast programmable packet
processing in the operating system kernel. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, pages 54–66, 2018.

[52] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John Fastabend, Tom
Herbert, et al. The express data path: Fast programmable packet processing in the operating
system kernel. In Proc. ACM CoNEXT, 2018.

[53] Qun Huang, Haifeng Sun, Patrick P. C. Lee, Wei Bai, Feng Zhu, and Yungang Bao. Omnimon:
Re-architecting network telemetry with resource efficiency and full accuracy. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’20. ACM, 2020.

[54] N. Hutchinson and L. Peterson. Design of the x-kernel. In ACM SIGCOMM, 1988.

[55] Fortune Business Insights. Linux operating system market size. Re-
trieved February 22, 2022, from https://www.fortunebusinessinsights.com/

linux-operating-system-market-103037.

[56] Van Jacobson and Michael J. Karels. Congestion avoidance and control. In SIGCOMM 1988,
Stanford, CA, August 1988.

[57] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han, and KyoungSoo
Park. mos: A reusable networking stack for flow monitoring middleboxes. In 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17), pages 113–129,
2017.

https://www.fortunebusinessinsights.com/linux-operating-system-market-103037
https://www.fortunebusinessinsights.com/linux-operating-system-market-103037

88

[58] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm,
Dongsu Han, and KyoungSoo Park. mtcp: a highly scalable user-level {TCP} stack for
multicore systems. In 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), pages 489–502, 2014.

[59] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. Stateless network functions:
Breaking the tight coupling of state and processing. In 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), pages 97–112, 2017.

[60] Magnus Karlsson and Björn Töpel. The path to dpdk speeds for af xdp. In Linux Plumbers
Conference, 2018.

[61] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The click
modular router. Transactions on Computer Systems, 18(3), aug 2000.

[62] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda, Bryan
Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain
Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan,
Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander
Yip, and Ronghua Zhang. Network virtualization in multi-tenant datacenters. In USENIX
NSDI, 2014.

[63] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K. K. Ramakrishnan,
Timothy Wood, et al. Nfvnice: Dynamic backpressure and scheduling for nfv service chains.
In Proc. ACM SIGCOMM, 2017.

[64] L3af. Complete lifecycle management of ebpf programs in the kernel. Retrieved February 22,
2022, from https://l3af.io/.

[65] TV Lakshman and Dimitrios Stiliadis. High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. ACM SIGCOMM Computer Communication
Review, 28(4):203–214, 1998.

[66] Rafael Laufer, Massimo Gallo, Diego Perino, and Anandatirtha Nandugudi. Climb: En-
abling network function composition with click middleboxes. ACM SIGCOMM Computer
Communication Review, 46(4):17–22, 2016.

[67] Leonardo Balliache. Querying libiptc howto, 2022. Retrieved October 24, 2022, from
https://tldp.org/HOWTO/Querying-libiptc-HOWTO/index.html.

[68] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: a better netflow for data
centers. In Proc. USENIX NSDI, 2016.

[69] Guyue Liu, Yuxin Ren, Mykola Yurchenko, KK Ramakrishnan, and Timothy Wood. Mi-
croboxes: high performance nfv with customizable, asynchronous tcp stacks and dynamic
subscriptions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, pages 504–517. ACM, 2018.

[70] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo Phothilimthana.
E3: Energy-efficient microservices on smartnic-accelerated servers. In 2019 USENIX Annual
Technical Conference, ATC ’19. USENIX, 2019.

https://l3af.io/

89

[71] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braver-
man. One Sketch to Rule Them All: Rethinking Network Flow Monitoring with Univ-
Mon. In Proceedings of the 2016 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’16. ACM, 2016.

[72] Chris A Mack. Fifty years of moore’s law. IEEE Transactions on semiconductor
manufacturing, 24(2):202–207, 2011.

[73] Pilar Manzanares-Lopez, Juan Pedro Muñoz-Gea, and Josemaria Malgosa-Sanahuja. Passive
in-band network telemetry systems: The potential of programmable data plane on network-
wide telemetry. IEEE Access, 9, 2021.

[74] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo Con-
tavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve Gribble, et al. Snap: A
microkernel approach to host networking. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 399–413, 2019.

[75] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez Bernal, Yunsong Lu, and
Jianwen Pi. Securing linux with a faster and scalable iptables. ACM SIGCOMM Computer
Communication Review, 49(3):2–17, 2019.

[76] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauricio Vásquez
Bernal. Creating Complex Network Services with eBPF: Experience and Lessons Learned.
In Proc. IEEE HPSR, 2018.

[77] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and Yunsong Lu.
A framework for ebpf-based network functions in an era of microservices. IEEE Transactions
on Network and Service Management, 18(1), 2021.

[78] Oliver Michel, Roberto Bifulco, Gábor Rétvári, and Stefan Schmid. The programmable data
plane: Abstractions, architectures, algorithms, and applications. ACM Computing Surveys,
54(4), May 2021.

[79] Oliver Michel, John Sonchack, Greg Cusack, Maziyar Nazari, Eric Keller, and Jonathan M.
Smith. Software packet-level network analytics at cloud scale. IEEE Trans. on Network and
Service Management, 18(1), 2021.

[80] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensemble
of autoencoders for online network intrusion detection. In Proc. NDSS, 2018.

[81] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David Walker.
Composing software defined networks. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). USENIX, 2013.

[82] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo Park. Ac-
celtcp: Accelerating network applications with stateful {TCP} offloading. In 17th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 20), pages 77–92,
2020.

[83] Jaehyun Nam, Seungsoo Lee, Hyunmin Seo, Phil Porras, Vinod Yegneswaran, and Seungwon
Shin. BASTION: A security enforcement network stack for container networks. In USENIX
ATC, July 2020.

90

[84] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun, Mo-
hammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. Language-directed hard-
ware design for network performance monitoring. In Proc. ACM SIGCOMM, 2017.

[85] netlink(7) — Linux manual page. https://man7.org/linux/man-pages/man7/netlink.7.html,
2021. Retrieved June 10, 2022.

[86] Netronome Systems Inc. Netronome nfp-4000 flow processor product brief. Retrieved June
17, 2021 from https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf.

[87] Thuy TT Nguyen and Grenville Armitage. A survey of techniques for internet traffic clas-
sification using machine learning. IEEE Communications Surveys & Tutorials, 10(4):56–76,
2008.

[88] NTOP. PF RING: High-speed packet capture, filtering and analysis, 2022. Retrieved June
13, 2022, from https://www.ntop.org/products/packet-capture/pf ring.

[89] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan.
Shenango: Achieving high {CPU} efficiency for latency-sensitive datacenter workloads. In
16th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
19), pages 361–378, 2019.

[90] Konstantina Papagiannaki, Rene Cruz, and Christophe Diot. Network performance monitor-
ing at small time scales. In Proc. IMC, 2003.

[91] Jiri Pirko and Scott Feldman. Ethernet switch device driver model (switchdev). Re-
trieved February 22, 2022, from https://www.kernel.org/doc/html/latest/networking/

switchdev.html.

[92] Cisco Press. Bgp fundamentals. https://www.ciscopress.com/articles/article.asp?p=2756480,
2018. Retrieved June 10, 2022.

[93] Luigi Rizzo. netmap: A novel framework for fast packet i/o. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pages 101–112, Boston, MA, 2012. USENIX Asso-
ciation.

[94] Luigi Rizzo. netmap: A Novel Framework for Fast Packet I/O. In 2012 USENIX Annual
Technical Conference, ATC ’12. USENIX, 2012.

[95] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. Inside the
Social Network’s (Datacenter) Network. In Proc. SIGCOMM, 2015.

[96] Hugo Sadok, Zhipeng Zhao, Valerie Choung, Nirav Atre, Daniel S. Berger, James C. Hoe,
Aurojit Panda, and Justine Sherry. We need kernel interposition over the network dataplane.
In ACM HotOS, 2021.

[97] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi. Design
and implementation of a consolidated middlebox architecture. In Proc. USENIX NSDI, 2012.

[98] John Sonchack, Oliver Michel, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. Scaling
Hardware Accelerated Network Monitoring to Concurrent and Dynamic Queries With *Flow.
In Proc. USENIX ATC, 2018.

https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf
https://www.kernel.org/doc/html/latest/networking/switchdev.html
https://www.kernel.org/doc/html/latest/networking/switchdev.html

91

[99] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras, and Burkhard
Stiller. An overview of ip flow-based intrusion detection. IEEE communications surveys &
tutorials, 12(3):343–356, 2010.

[100] strongSwan Project. strongswan: the opensource ipsec-based vpn solution, 2022. Retrieved
June 16, 2022, from https://www.strongswan.org.

[101] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. Nfp: Enabling network function
parallelism in nfv. In Proc. ACM SIGCOMM, 2017.

[102] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed network monitoring and
debugging with switchpointer. In Proc. USENIX NSDI, 2018.

[103] Tigera, Inc. Project calico, 2022. Retrieved June 15, 2022, from
https://www.tigera.io/project-calico.

[104] weaveworks. Weave Net, 2022. Retrieved June 16, 2022, from
https://www.weave.works/oss/net.

[105] Minlan Yu. Network telemetry: Towards a top-down approach. ACM SIGCOMM Comput.
Commun. Rev., 49(1), February 2019.

[106] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, et al. Quantitative network
monitoring with netqre. In Proc. ACM SIGCOMM, 2017.

[107] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob Nelson, Omar S. Navarro
Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay Jayakar, Pedro Henrique
Penna, Max Demoulin, Piali Choudhury, and Anirudh Badam. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In ACM SOSP, 2021.

[108] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin Cao, Yangyang Wang, Mingwei Xu, and
Jianping Wu. Newton: Intent-driven network traffic monitoring. In Proceedings of the 16th
International Conference on Emerging Networking EXperiments and Technologies, CoNEXT
’20. ACM, 2020.

[109] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore. Netfpga sume:
Toward 100 gbps as research commodity. IEEE micro, 34(5):32–41, 2014.

[110] Hubert Zimmermann. Osi reference model-the iso model of architecture for open systems
interconnection. IEEE Transactions on communications, 28(4):425–432, 1980.

	Introduction
	What Network Applications Need?
	L4-L7 Performance and Feature Richness
	High-Coverage Monitoring
	L2-L4 Performance and Feature Richness

	Outline

	High-Performance Networking Overview
	Linux Networking
	User Space Networking
	XDP
	SmartNICs

	L4-L7 Performance and Feature Richness
	Introduction
	Related Work and Challenges
	Kernel Bypass Approach for NFVs
	Challenges of the Current Approach

	Motivation
	Architecture and Implementation
	mTCP/AF_XDP Integration
	NFV Deployments

	Evaluation
	Protecting the userspace TCP stack
	Conclusion and Future Work

	High-Coverage Monitoring
	Introduction
	Motivation
	A Primitive for Network Monitoring Systems
	Implementation
	Evaluation
	Related Work
	Conclusion

	L2-L4 Performance and Feature Richness
	Introduction
	Overheads in the Linux networking stack.
	Rethinking the Linux networking stack is practical.
	Introducing TNA.

	Building Composable Fast-Path Modules
	Designing fast-path modules.
	Building a library of composable data-plane modules.

	Automated Fast-Path Data Plane Creation
	Introspect the Linux kernel
	Build a dependency graph.
	Stitch together and deploy a set of TNA FPMs.
	Extensible Fast Path.

	Prototype and Evaluation
	TNA Bridge Prototype
	TNA Router Prototype
	TNA Iptables Prototype
	Stacking Different Subsystems Together

	Related Work
	Conclusion and Future Work

	Future Work and Conclusion
	Future Work
	Adding support to more use cases for TNA
	Improving filtering performance

	Conclusion

	 Bibliography

