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Abstract. Routing flexibility improves as FPGAs increase in size and density.
While advantageous for applications, the routing resource software model re-
quires significant hard disk and memory resources. As a result, run-time routers
tend to devise alternate solutions to the flat graph model used by FPGA tools in
order to accomodate the limited memory available in run-time systems. JBits, a
run-time reconfiguration (RTR) tool suite from Xilinxr, contains just this type
of run-time router (JRoute). In order to accommodate the run-time memory lim-
its placed on JRoute, JBits chose to take a different approach to storing circuit
graphs. The solution, the JBits wire database, represents the wire connectivity of
a device with Java objects. These objects are stored in a device generic manner
that limits the references to repetitive routing structures. This and other memory
reduction techniques implemented by the JBits wire database enable automatic
run-time routing in RTR environments using JRoute. Beyond memory savings,
the JBits wire database provides low-level control over individual wires, which
is desirable in run-time routers. Also desirable in run-time routing is the abil-
ity to incrementally add and remove connections. This, along with the low-level
control and the memory efficiency of the JBits wire database opens up new appli-
cations. Applications such as device testing, defect tolerance, and debugging are
efficiently implemented using run-time routing with the JBits wire database.1

1 Introduction

As FPGA architectures continue to increase in density, a flat representation of the rout-
ing segments and switches consumes an inordinate amount of memory. This approach is
common for static FPGA tool flows that run on systems abundant in memory and stor-
age space. However, the memory limits placed on run-time routers in dynamic systems
discourages the use of this single graph technique and uncovers the need for another
methodology.

JBits[2] is a Java API that provides access into a Xilinx FPGA configuration bit-
stream, thus, enabling run-time reconfiguration (RTR). The JBits RTR environment
contains a run-time router called JRoute[1] which is placed under the same limitations
as any other dynamic router with regards to memory and storage. As a result, the JBits
development suite saw an immediate need for a methodology that avoids the heavy
memory and storage requirements of the flat graph representation.

The approach JBits uses to store connectivity information uses object oriented struc-
tures that take advantage of the repetition of identical routing structures tiled throughout

1 This work was supported in part by DARPA in the Adaptive Computing Systems (ACS) pro-
gram under contract DABT63-99-3-0004.



the FPGA device. While the compression of routing structures reduces memory over-
head, the object oriented wire classes also give complete control over specific wire
resources. This combination of memory efficiency and wire database control is very
desirable in RTR applications.

Applications such as device testing [6], defect tolerance [7], and debugging [8] are
ideal for taking advantage of the benefits offered with run-time routing. The memory
efficiency of the JBits wire database enables fast implementation and modifications.
The low-level control over individual wires allows for applications to specify wires to
use and to avoid. The incremental routing allows for routes to be added and removed as
the application executes. Each application has a dynamic nature to it. Defect tolerance,
for example, uses the low-level control to tell the router to avoid using the defective
wires. Incremental routing is then used to reroute any nets with defective wires on it.

In Section 2 background information on JBits and JRoute is presented. In Section
3 the JBits wire database is detailed. In Section 4 applications that utilize dynamic
routing are summarized. In Section 5 a comparison is made between the wire database
presented in this paper and other research. In Section 6 conclusions are made followed
by future work in Section 7.

2 Background

2.1 JBits

JBits is a Java API that provides direct access into a Xilinx FPGA configuration bit-
stream. It allows a bitstream to be modified by defining an API allowing configuration
of all routing and logic. The ability to modify the bitstream directly makes run-time
reconfigurable applications possible.

A tile based approach is taken to bitstream manipulation by JBits where each tile
represents some functional block of the FPGA (e.g. CLB tile, IOB tile, BRAM tile).
While this approach is not unique, JBits varies from traditional techniques by building
device specific tile structures at run-time. This methodology allows any tile associated
information to be stored once separate from any device specific structures. Typically,
standard tools store this type of data in a device specific file that duplicates this infor-
mation for each identical tile.

Figure 1 provides a graphical representation of how JBits builds device specific tile
arrangements at run-time. JBits assigns integer constants to each of the unique tile types
in an architecture family (e.g. the VirtexTM family of devices). Each device tile array in
an architecture family is stored statically using only these unique integers. When a user
application constructs a new JBits object, the device (e.g. XCV1000) must be specified
and used to select the stored device tile array.

JBits uses this device tile array to reference the information that has been stored
based upon the unique tile types of an architecture family. As an example, when an
applications reads a bitstream, JBits will utilize the device tile array to set pointer val-
ues to bitstream locations associated with specific tiles. This provides the information
necessary to perform fast run-time calculations that will locate resource configuration
“bits” in the bitstream.
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Fig. 1. With JBits, each identical tile in the tile array accesses the same circuit graph in memory
(the intra-tile connectivity). In this example there are only 2 unique intra-tile connection graphs.

2.2 JRoute

The JBits tool suite contains a run-time router (JRoute) that utilizes the wire database
presented in this paper. While the JBits wire database presents router developers with
an interface into the device connectivity, JRoute[1] provides the application developer
with a dynamic, incremental run-time routing API. This combination of layered APIs
allows the user to determine the level of control needed for a specific application.

JRoute provides different levels of abstractions in a route request. The user has the
ability to auto-route a net, define a template for a generic route or fully specify a net.
JRoute tracks resource utilization during route request processing and allows future
removal of the completed routes. These features give the user complete control over
the JRoute incremental routing process and, as with the wire database, the API allows
flexibility in the underlying routing algorithms.

3 The JBits Wire Database

3.1 Tile Based Representation

The wire database used by JBits stores routing graphs based upon unique tiles as shown
in Figure 1. Storing these graphs, independent of device, results in a significant storage
reduction since identical tiles are duplicated thousands of times for just one device. For
example, in an XCV1000 device, there are 6,144 (64 X 96) CLB related tiles. This
causes the CLB tile routing graphs to be duplicated 6,144 times for just the XCV1000
device when using traditional methods. If the other Virtex [3] devices are included, for
this same tile, the factor will be raised to over 20,000. This factor will continue to grow
with the newer architectures.

The reduction in database size certainly reduces the storage required and this benefit
will extend to memory resources as well. In the context of memory, the JBits approach
has some additional techniques for minimizing memory utilization to be discussed in



Section 3.2. In addition to being stored only once per tile, each routing resource wire is
stored as a Java object completely separate from all other wires in a specific tile. These
techniques take advantage of Java’s on demand loading and garbage collection.

3.2 Object Oriented Representation

Figure 2 shows an example of a wire object in the JBits wire database. The stored part
of the wire discussed presently consists of the intra-tile connectivity shown in CLB 0.
Each wire is represented by a Java object that will be loaded on demand, which is a ben-
efit of using Java. Since many designs do not require every wire to be instantiated, this
methodology will result in additional memory savings. For example, the implemen-
tation of the Smith-Watermann algorithm [16] required only 1,136 out of 2,424 wire
objects to be instantiated. This leads to an additional 50% reduction in the memory
required beyond those savings obtained from the tile based approach already described.
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Fig. 2.Diagram showing a hex east 0 wire object. Shown are the intra-tile source and sink connec-
tivity information and the inter-tile segment that crosses over 6 CLB tile boundaries. The “bits”
shown represent the necessary configuration “bits” needed to connect any of this wires sources
to this wire object.

Figure 3 illustrates how the wire objects can be manipulated by a router. Step 1
starts off with an output XQ wire object. The XQ object is queried in step 2 for its sink
wire objects (OUT0, OUT1 and OUT7 are shown). If one of the objects needed has
not been previously accessed, it is dynamically instantiated and loaded into memory. In
this example, the OUT0 wire object’s connect methods are used to configure the OUT0
mux to provide a route from XQ to OUT0. In step 3, a similar process occurs and E2 is
chosen to be the next hop in the route from XQ.

In the example so far the intra-tile connectivity has been considered without mention
of wires that cross inter-tile boundaries. Step 4 shows what happens when wires cross
tile boundaries. Besides querying E2 for sink objects, in step 4 E2 is also probed for
its tile to tile segment connectivity. Then, as seen in step 5, the path route moves from
E2 to an adjacent tile where E2 changes names to W2. This process can continue in
any manner the controlling process desires and when a route is complete, Java can then
garbage collect any inter-tile segments created while producing the route.
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Fig. 3. Step by step creation of a route.

3.3 Routing Utilization Numbers

Table 1 presents several designs that fill up a Virtex device. The metric used in the
table refers to the number of wire segments used compared to the total number of wire
segments on the entire chip. Another commonly used metric counts the number of used
switches as a percent of the total number of switches. With the JBits wire database
representation, the former is the more appropriate method as it sheds more light on
exactly how much benefit the greedy on demand loading provides.

Table 1. This shows, for several applications, the amount of routing resources that are used as a
percent of the total number of wires available.

Device Routing UtilizationLogic Utilization
Rijndael XCV1000 40.9% 99%

Smith-WatermannXCV1000 15.1% 99%
Firewall XCV1000 18.4% 95%

As shown in Table 1, the routing intensive Rijndael application [9] utilizes only 41
percent of the wire segments. The other applications utilize less and are representative
of common designs. As a result, the Java on demand class loading creates memory
savings since not all the wire objects need to be loaded for each application.

3.4 Extra Processing Cycles

While there is an obvious benefit in storing wire database information in tile specific
files, this means of data representation is not complete. The main piece missing from



the stored data is the inter-tile connectivity, which is an integral part of device specific
circuit graphs. Figures 2 and 3 show the inter-tile connectivity represented in the JBits
wire database as a segment. Since commercial FPGAs lack homogeneous tile arrays,
storing inter-tile connectivity statically would require a device dependent flat graph
approach. Instead we chose to generate this information at run-time in order to save
on storage and memory utilization. As a result, the JBits wire database requires extra
processing cycles not needed in the flat graph approach.

JBits attempts to provide the ability to handle these extra processing cycles in a
number of ways. A cache can be enabled with a specific size so commonly used re-
sources will not require segment regeneration for each occurrence of a tile wire seg-
ment. The application has complete control over the size of the cache and whether or
not it is enabled, providing the user with the power to match the application to the re-
sources of the system. Additionally, there may be a point in small parts where the flat
graph memory requirements more closely match those of the ideas presented in this
paper. In this case, the JBits API in no way prevents an implementation using a de-
vice dependent flat graph approach from being inserted in place of the wire database
described in this paper. The analysis on where this breakpoint occurs is left as future
work.

4 Application Examples

This section examines some applications that can benefit from automatic run-time routers
to show the usefulness of enabling dynamic routing in run-time systems. Since these
systems require low memory overhead in the underlying structures to become practical,
these examples reinforce the need for a low memory wire database solution.

4.1 Defect Test

Device testing is an important field. Whether it is quality assurance from the manu-
facturer or diagnostic tests in the field, device testing is necessary to ensure a working
chip. The JBits wire database has the ability to specify the exact resources to use for
a given net [6]. Combining full control of wire resources with run-time control of the
FPGA routes allows for programmatic control of fault detection techniques. As a result,
a programmer can create automated fault isolation tools.

4.2 Defect Tolerance

After isolating a fault at run-time, the next possible step using the wire database would
be to tolerate these defects [7]. Since the developer has complete control over each
and every wire, once a defect is found, the control program can mark specific wires as
bad and remove them from JRoute’s list of usable wires. As a result, the defect can be
ignored and routed around at run-time by JRoute.



4.3 RCAM

Another application that demonstrates run-time routing is the run-time reconfigurable
content addressable memory (RCAM) [5]. The RCAM makes use of the run-time router
to change the priority encoder. JRoute changes priorities by unrouting and rerouting the
nets from the match unit to the priority encoder. Since these routes are modified at run-
time, benefits in area reduction and clock frequency can be obtained in the resulting
circuit.

4.4 Debugging

Debugging FPGA designs form an interesting class of debugging techniques. One tech-
nique to observe internal FPGA signals is to instrument the design with extra circuitry
that routes a signal to an unused IOB or to extra circuitry implementing a logic ana-
lyzer. Typically this is done by adding in the extra debug circuitry at design time [11].
However, Graham, et al. have demonstrated that adding in the extra circuitry at run-time
is possible with the use of JRoute [8].

4.5 RTPCores

Run-time parameterizable (RTP) [4] cores provide a way to instantiate high level circuit
descriptions with a parameter determined at run-time. RTP cores can be added, removed
or relocated at run-time. Because of these needs, a run-time router is required to perform
dynamic modification of routes.

4.6 Partial Configuration

One topic that has received much attention is how to partition designs to make use of
partial configuration. The need to specify areas of the device that cannot be used by the
tools for placement or routing is required. This is not an optimal solution as it reduces
the number of routing resources available. However, when using a dynamic router, like
JRoute, a partitioning tool can avoid the step of constraining routes from a partitioned
area[10]. For situations where the run-time overhead of auto-routing is not possible,
another solution is to avoid using specific wires instead of every wire in a given area.
The JBits wire database and JRoute provide the ability to mark wires as used so that
the run-time router avoids specific wires without requiring the developer to completely
avoid all routes within a specific region. The configurable blocks can be swapped in and
out with the internal routing fully specified since the static part of the circuit does not
use those routing resources.

5 Comparison to Other Run-Time Approaches

This section contrasts a number of different approaches to solving the memory problem
associated with the single graph database in run-time routing. Depending upon the ap-
plication requirements for memory, time to switch route matrices and route versatility,



any one of these methods can be considered the better choice. The approach described
in this paper focuses on reducing memory overhead, maintaining automatic run-time
routing versatility and fast communications between the route points, but at the expense
of the speed of interconnect switching. Other approaches have different tradeoffs.

Brebner and Donlin present multiple techniques for addressing run-time routing is-
sues in the context of Swappable Logic Units (SLUs) [12]. In one approach, the SLUs
are connected via a parallel harness resulting in fast communication and low memory
overhead, but limited route versatility and slow switchiing speeds. The parallel harness,
for example, can be organized in a 2D systolic array and then switched to a hyper-
cube later. The main intent, however, is for the parallel harness arrangement to change
infrequently.

The Ultimate RISC (URISC) [13][14] provides an additional solution to this run-
time routing dilemma. The URISC has one instruction that moves memory to memory
allowing a software controlled routing program to move data. In the context of the SLU,
the hardware would have a sea of SLUs with IO registers mapped into the FURI mem-
ory map. Routing would occur when the software control program moves data from
the memory of one SLU to another. This method has some memory overhead and high
route versatility, but the tradeoff results in slow switching and slow communication.

Eggers et. al. [15] created a crossbar on an FPGA fabric for an ultrasonic probe. The
methodology used for dynamically modifying the crossbar was very similar to another
technique presented in [12]. The run-time routing software is created specifically for the
target application. This method has good switching speeds, minimal memory overhead,
fast communication speeds but limited versatility. If additional routes are required, the
user will have to modify the run-time routing program and the crossbar circuit to handle
the new routes.

6 Conclusions

The JBits wire database reduces memory and storage requirements using a few different
methodologies. While the idea of representing wires in a device independent manner
decreases both storage and memory needs, additional benefit is realized by storing the
tile dependent wires as objects separate from other wires resident in the same tile. This
combination, of tile based graphs and greedy Java class loading, can lead to significant
paring of both storage and memory consumption.

This reduction in memory aids dynamic routers by allowing them to have full ac-
cess to and complete control of routing resources in a run-time environment. While
methodologies for enabling run-time routing already exist, the techniques described in
this paper focus on enabling generic and automatic routing as opposed to speed. This
benefits applications requiring these full and automatic features and not necessarily ap-
plications requiring low latency changes to the bitstream.

7 Future Work

As future work, a detailed analysis of the memory usage numbers by the JBits wire
database is necessary. Additionally, a comparison of different programming language



implementations of JBits would be beneficial. For example, a C/C++ version of JBits
could compare the advantages of C/C++ speed and memory utilization versus Java’s
ability to do on demand loading of the wire classes. Finally, an analysis of possible
benefit of these wire database ideas to traditional static routers is desired.
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