
Programming a Hyper-Programmable Architecture for Networked
Systems

Eric Keller and Gordon Brebner
Xilinx Research Labs

Xilinx, Inc., USA
{eric.keller, gordon.brebner}@xilinx.com

Abstract

Modern programmable logic devices have
capabilities that are well suited for them to assume a
central role in the holistic implementation of
networked systems. We have devised a highly
flexible soft platform architecture abstracted from
such physical devices, which may be viewed as a
particularly configurable and programmable type of
network processor. In this paper, we discuss a
programming model for the architecture, and
present an XML-based description language for
expressing the programming information. This
intermediate language is designed both to be an
attractive compilation target for domain-specific
languages used for describing networking
applications, and also to have efficient mappings to
programmable logic devices, harnessing to the full
their high degree of concurrency, interconnectivity
and programmability. We present a detailed
example, where a high-speed Remote Procedure Call
(RPC) protocol server for gigabit Ethernet was
described directly in the XML-based language, and
automatically compiled to a working implementation
on a platform FPGA device. The exercise was
carried out by a non-hardware expert in only two
weeks, thus demonstrating the unlocking of access to
programmable logic technology.

1. Introduction

In this paper, we consider the programmed
implementation of networked systems. These are
systems, now and in the future, that feature
communication and networking as a significant
activity, alongside computational activity. Examples
include simple sensors and actuators, and more
complex clients and servers.

We believe that modern field programmable gate
arrays (FPGAs) are well suited as a basis for
implementing networked systems, through efficiently
providing “hyper-programmable architectures”. By
the term “hyper-programmable”, we mean that all

aspects of the architecture are configurable, not just
that the architecture supports a programming model.
In particular, we wish to establish that FPGAs can be
viewed as the primary, perhaps exclusive,
components of networked systems. This means not
only demonstrating that FPGAs have apt capabilities,
but also devising new use models and tools to
unleash these capabilities.

We have designed a particular hyper-
programmable architecture for networked systems.
In this paper, we consider in detail a programming
interface for this model, that allows a user to express
system components in a technology-independent
way. This description is then automatically compiled
to programming information for an FPGA. The
intention is to expose a path for harnessing FPGAs
that is accessible to those who are not hardware or,
more specifically, FPGA experts. This will remove a
major deterrent to using FPGAs, by aiming to match
the relative ease of writing software for processors.

We demonstrate the programming model through
an experiment to create a Remote Procedure Call
(RPC) server, speaking the Internet RPC protocol
over a stack of the UDP, IP and Ethernet protocols.
In addition to providing a substantial speedup of the
protocol handling over a conventional software
implementation, this experiment also shows that
higher level protocols, with a tradition of software
implementation, can be conveniently implemented
with programmable logic by a non-hardware expert.
This points the way to FPGAs playing a major role in
the holistic implementation of networked systems.

Moreover, with distributed systems becoming
commonplace, this particular example enables
progress in allowing heterogeneous technologies to
inter-operate. From grid computing, to sensor
networks, to the Internet, conventional
microprocessor-based systems can interact as peers
with FPGA-based systems for applications such as
cryptography, image processing and gene matching,
where FPGA implementations have been shown to
offer speedups several orders of magnitude greater
than their software counterparts.

Design automation
tools for MP users
(entry, debug, ...)

HYPMEP soft
platform, with
API for tools

Exploit concurrency,
interconnection and
programmability

Provide concurrency,
interconnection and
programmability

Platform FPGAs

2. Architectural model

2.1. Domain specificity

Various classes of design language are targeted at
experts in particular domains, instead of appealing to
system designers in general. These domain-specific
languages, together with compilers and other tools,
provide a design environment tailored to the specific
domain. The restriction to a narrower domain offers
scope for more realistic mappings to hardware than is
possible when attempting to support general-purpose
design methodologies. For this reason, we see
domain specificity as a promising direction for
facilitating access to modern platform FPGA
technologies.

We are interested in the domain of networked
systems as our focus. There have been various
proposed domain-specific languages in this area.
One example is the Click modular router [7]
developed at MIT, originally targeted at
implementation on a Linux workstation. Other recent
alternative proposed languages, some targeted at
emergent network processor technologies, include
CloudShield’s RAVE [3], Novilit’s Anyware [8] and
Teja’s Teja C [10]. A more long-standing example is
SDL [9], used for almost three decades in
telecommunications. However, unlike in the DSP
domain, where Matlab and Simulink have wide
popularity with domain experts, neither Click nor
other proposed languages have yet emerged with the
same stature in networking. For this reason, we have
focused on a domain-specific hyper-programmable
architecture as a target for compilers, rather than a
particular domain-specific language.

2.2. Overview

Figure 1 shows the top-level view of our
mechanism for ‘impedance matching’ between
domain-specific design automation tools for
networked systems and platform FPGAs. The
centerpiece is the HYper-Programmable MEssage
Processing (HYPMEP) ‘soft platform’ – a highly
programmable microarchitecture. We use ‘message’
as a generic term for ‘packet’, ‘frame’, ‘cell’, ‘data
unit’, etc., that is, any sort of discrete unit of
information being communicated over networks. As
indicated in the figure, HYPMEP is designed to
exploit, to the full, the concurrency, interconnection
and programmability inherent to the FPGA, and
deliver this at a higher level of abstraction to the
design automation tools. The soft platform is
presented as an API that is accessible to the higher-
level tools. In essence then, this API defines the
programming language that allows programming of
the hyper-programmable platform. We thus supply a
tool-neutral mapping point for domain-specific tools,
abstracting the most applicable properties of an
underlying platform FPGA. We also cater for a
range of capabilities from underlying programmable
logic device (PLD) technologies, down from rich
platform FPGAs including embedded processors and
memories, through basic FPGAs, down to more
constrained programmable logic arrays.

2.3. Soft platform components

Messages enter and leave the soft platform
through perimeter interfaces, and are stored within it
while they are being processed. All of the major
components of the soft platform model are designed
to have very efficient mappings to the full
capabilities and characteristics of platform FPGAs.
Stressing ‘full capabilities’ is important because we
particularly aim to ensure that the attributes of these
soft platform components are highly programmable
(hyper-programmable).

The soft platform has two types of component
concerned with the processing of messages. The first
type is the thread, a lightweight concurrent entity
with programmable structure and function, and an
efficient FPGA implementation. It is targeted at the
kinds of simple message header processing required
for protocol implementation. The second type is the
hook, a programmable wrapper for an existing
functional block with an FPGA implementation. It is
targeted at the kinds of more complex algorithmic
processing required for message headers (e.g.
checksum calculation) or payloads (e.g. encryption).

There are two other types of major component.
First, an interface is used for moving messages into
or out of the system perimeter and, in general,
includes both thread- and hook-like functionality.

Figure 1. The HYPMEP architectural model

Second, a memory is used for storage of messages,
system state or system data. Memories are
implemented using apt elements in the memory
hierarchy of an FPGA (e.g., flip-flops, registers or
block memory).

3. The HAEC API for the soft platform

3.1. Overview

We have designed three experimental APIs –
named HIC, HAEC and HOC – at decreasing levels
of abstraction. HIC exposes a particular abstract
model of message processing, and is suitable for
higher-level tools. HOC exposes the basic design
components for a platform FPGA, such as HDLs,
programming languages and networking IP blocks.
In between, HAEC exposes the major soft platform
components described above, and is the focus here.

HAEC (HYPMEP Architecture Elaboration Code)
is an XML-based programming language. XML is a
markup language that allows a formal grammar to be
specified through the use of the document type
definition (DTD), and here it has allowed very rapid
exploration of language provision in tandem with
architectural exploration. The API accepts a HAEC
description, and we have written a prototype
compiler that converts this directly to a hardware
description expressed in VHDL (later, the HOC
language will be the target). This hardware
description is then compiled by standard back-end
tools to generate the low-level programming
information for the platform FPGA.

3.2. Threads

From a user’s perspective, the programming
interface provides a coding environment targeting
multiple micro-engines that can operate in parallel.
These micro-engines are realized as threads. Here,
the term ‘thread’ is used in the sense introduced by
Brebner [2] to describe a unit of concurrency
targeted at programmable logic, and not implying all
of the baggage associated with software threads in
standard operating systems. An instruction set is
used to program the behavior of a thread; at present,
the instruction set is fixed but, in the future, we
anticipate this also being programmable. Although
these are machine code style instructions, the thread
does not operate as a traditional microprocessor, i.e.,
a fetch, decode and execute pipeline feeding an ALU.
Instead, each thread is implemented as a custom
finite state machine, with instructions associated with
the states, and with each instruction included having
its own dedicated hardware implementation. Given

this, there is scope for instruction level parallelism,
since multiple instructions can be executed
simultaneously.

Figure 2 shows a fragment of HAEC code for the
definition of a thread. The main definition starts with
the variables in lines 4 to 7. Variables can be
internal, input or output, and have a defined bit
width. Input and output variables are used for inter-
thread communication, and are discussed later. The
use internal to the thread is the same for each type
though, in that variables can be assigned to and read
from, as would be expected. After the variables, the
thread’s controlling state machine is defined from
line 8 onwards. The tag that starts this definition
indicates which state is the start state, that is, the state
that is the first to execute when the thread is started.
An optional tag can be used to identify a stop state,
for cleanup.

After the tags defining the thread control, each of
the states is defined as shown on lines 9 to 13 and 14
to 27 in Figure 3. Operations, conditionals and
transitions can be associated with a state. Operations
make use of the instruction set to define
functionality. As normal in programming, the
instructions can use variables as arguments, or pre-
defined symbolic or numeric constants as arguments.

 1: <thread name="rx_thread">
 2: <useinterface intname="RX" name="mygmac" port="rx"/>
 3: <usemem intname="PUT" name="ethrecv_buf" port="put"/>
 4: <variables>
 5: <internal name="len" width="16"/>
 6: <internal name="addr" width="11"/>
 7: </variables>
 8: <states start="startState" altstart="RX_dataValid">
 9: <state name="startState">
10: <operation op="WRITE_DATA" params="PUT, RX_Data, 4"/>
11: <operation op="ASSIGN" params="addr, 4"/>
12: <transition next="writeData"/>
13: </state>
14: <state name="writeData">
15: <conditional>
16: <condition cond="EQUAL" params="RX_dataValid, 1">
17: <transition next="writeData"/>
18: <operation op="WRITE_DATA"
19: params="PUT,RX_Data,addr"/>
20: <operation op="ADD" params="addr, addr, 1"/>
21: </condition>
22: <condition cond="else" params="">
23: <operation op="WRITE_DATA" params="PUT, addr, 0"/>
24: <transition next="commitPacket"/>
25: </condition>
26: </conditional>
27: </state>
…

Figure 2. Example HAEC code for a thread.

A conditional, as shown on lines 15 through 26 in
Figure 3, is a grouping of operations, transitions or
other conditionals that depend on a certain condition.
This is a standard “if, else if, else” style mechanism.
Each branch of the conditional requires a condition,
as shown on line 16. These conditions are part of the
instruction set and include instructions such as
EQUALS and LESS_THAN. Transitions indicate
the next state to execute, and are deterministic, i.e.,
there can only be one transition per possible
execution path in a given state.

3.2.1. Inter-thread communication
To provide a useable model, threads must be able

to communicate to some extent. The soft platform
supports two direct forms of communication between
threads, although more indirect communication via
shared memory is also possible. One mechanism is
very lightweight, and just involves a direct
connection between two threads. This allows for the
threads to handle any mutual handshaking that is
desired. For example, one form of handshaking may
involve a data valid signal that tells a receiver of data
that the data can be read. Another form may
additionally involve an acknowledge signal which
tells the sender that the receiver did receive the data.
Of course, two threads may also exchange data
without any explicit control handshaking if they can
assure correct synchronization in some other way.

These explicit connections provide for
programmed communication with no restrictions. It
is also desirable to support a method of
communication where the functionality lies in the
communication mechanism rather than in the threads.
For this purpose, channels exist. The difference
typically comes with the use. Direct connections are
more useful for passing fields of a message or results
from a calculation between threads. Channels are
more useful for streaming a message, or any other
ordered data, through the system to each of a number
of threads. The streaming may be continuous and
have data available every clock cycle, or it may be
asynchronous with some extra control.

We now consider how these mechanisms are
presented in the HAEC language. As already noted,
variables within threads can be defined as input or
output. For explicit inter-thread communication,
such variables can be connected. When a sending
thread assigns a value to an output variable, that
value will appear on a receiving thread’s input
variable and can be used. The value on the receiver’s
input is held only as long as the sender’s output
retains that value, so it is necessary for the threads to
be accurately synchronized in time. For each
connection, a name, a source, and one or more sinks
are given. Source and sinks are pairs containing the
name of the thread and the variable.

 The other form of communication is through
explicit channels, allowing for more complex data

transfers between threads. A collection of channel
types is supplied, each one with a pre-defined FPGA
implementation. To use a particular channel, the
HAEC description first must declare it, using an
“include” mechanism that is also used for interfaces
and memories. The threads that make use of the
channel, either on the sending or receiving side,
include a “usechan” tag within the thread definition.

An example channel type is the AlignedChannel.
This channel allows a sender to broadcast a
continuous or non-continuous stream of data. It also
allows the receivers to access the data in a partly-
random manner. The sending thread simply sends
data into the channel. Then, each broadcast datum
has an address associated with it, the address being
calculated by the channel. This address enables
receivers to simply wait until the address that the
thread wishes to access matches the address of the
data being broadcast by the channel. Because of this,
the receivers do not have to count cycles or deal with
data values that are not valid, thus simplifying the
thread circuitry. An additional feature of this
channel, as suggested by its name, is that receivers
can access data on non-datum boundaries because, in
addition to outputting the current datum, the channel
also outputs the previous datum.

3.2.2. Inter-thread control flow
A major feature of the threading model is that

control flow exists on a per-message basis,
instantiated by sequences of threads starting and
stopping other threads. A new flow begins with a
thread handling the receipt of a message, and ends
with a thread handling the departure of a message.
The flow can be visualized as a graph of thread
activation activity, in order to achieve the overall
processing necessary for a particular message.

To implement this, threads can start, stop and
query other threads using special control instructions:
START(thread name), STOP(thread name) and, for
example, the IS_FINISHED(thread name) query
instruction. When a thread is stopped, it may either
go directly into an idle mode or into a stop state to
perform cleanup before going into the idle mode.

3.3. Hooks and blocks

Programmable threads provide a basis for many of
the common tasks encountered when processing
network protocols. However, there are also
algorithms not naturally described by finite state
machine model. For example, encrypting a message
using direct processing of the data is much more
efficient, both in terms of performance and
specification. To accommodate such cases, and
allow the inclusion of functionality designed outside
our flow, we have the capability to include and make
use of existing blocks.

We use the term ‘hook’ to describe the interfacing
wrapper used to integrate a block into the overall soft
platform based system. These blocks might be in the
form of either hardware netlists or software code,
though the present version only caters for the former.
In the HAEC description, the interface of the block –
its inputs and outputs – is defined as shown on lines 1
to 7 in Figure 3. It is assumed that the block will
require a clock input as well as a reset signal, which
do not need to be defined explicitly. An instance of
one of these blocks is introduced as shown on line 8.
This specifies the type of the block, and a name by
which it will be referred to in the system, to allow its
activation by threads and its connection to memories.

3.4. Interfaces

One or more external interfaces are located at the
perimeter of the defined system. These are used to
move messages into and out of the system. Note that
they are not necessarily restricted to connecting to
input or output pins of the underlying FPGA. They
can also define an interface between the network
processing system defined using the soft platform
model and a larger design implemented on the FPGA
that incorporates the defined system as a subsystem.

The interfaces are not simply groupings of input
and output signals. They also include functionality
that enables the exchange of messages between the
network processing system and its environment.
Typically, the required functionality will exist as a
pre-defined block, and this has to be integrated with
the system. Here, the block will have an internal
interface of the type described in Section 3.3, but
also have an external interface describing how it
interacts with the enclosing environment. The latter
then contributes to the overall external interface of
the described system by contributing its list of
signals. This explicitly includes clock signals as well
as data and control signals.

The internal interface is packaged as a list of ports
that are used internally by the network processing
system, where each port is a grouping of signals that
relate to each other. For example a port of an
interface could contain a data bus as well as control
signals. A final feature of the specification is the

timing requirements of each port as well as of any
external clock. Currently, all of the external and
internal specification of each type of known interface
is built in, and does not feature as a programmable
aspect in the HAEC description.

Any built-in interface type can be instantiated
within a system description. The “include”
mechanism, already seen, is used. After the inclusion
of an interface, it must then be associated with a
thread by use of the “useinterface” tag within the
definition of a thread. Each of the threads with an
associated interface is responsible for handling
messages entering or exiting the system. As each
type of interface will have different protocols to
read/write data, there is the need for varying
functionality, and this is offered by the
programmable threads. To accommodate the
functions required, the threads used with interfaces
have access to certain ‘system’ (or ‘privileged’)
instructions that the basic threads do not have. These
instructions enable input and output across the
external interfaces.

3.5. Memories

Memory is a key component of all systems. In
particular, in a network processing system, memory
is used for buffering of messages, tables for lookup,
and storage for state. Like interface blocks, memory
blocks need to be both instantiated and associated
with a thread. Each memory can have one or more
ports, depending on the type. Instantiating a memory
in HAEC involves specifying the name to be used for
it as well as the type of memory component. Certain
memories can be parameterized and require
additional specification. As with interface ports,
threads can be associated with a memory port. The
ports are accessed by read and write instructions,
conditional instructions, and memory specific
instructions.

4. Compilation of HAEC to VHDL

Each of the system components instantiated by the
HAEC description is mapped to a hardware entity on
the FPGA. The hooked blocks, interfaces and
memories all exist as predefined netlists. They are
included by creating an instance in the VHDL
description, linking this to other elements as
required.

A major contribution of our compilation process
is the automatic generation of clock signals, thus
removing a significant hardware-style complication
from the software-style HAEC description. Each of
the threads, channels, interfaces and memories must
have clocks in the VHDL description.

1: <extern_IP_def type="Multiplier">
2: <input name="in1" width="32"/>
3: <input name="in2" width="32"/>
4: <input name="invalid" width="1"/>
5: <output name="res" width="32"/>
6: <output name="outvalid" width="1"/>
7: </ extern_IP_def >
8: < extern_IP type="Multiplier" name="mymult"/>

Figure 3. Example HAEC fragment to define and
instantiate an externally defined block.

However, it is not necessarily the case that they all
operate from the same clock – in fact, it is most
likely that they do not. Within the soft platform
model, the interfaces play a key role in clock domain
determination, since the goal is that the internal
clocking of the system is chosen just so that it
delivers the required timing at its perimeter
interfaces. Each interface can require a different
clock frequency, so there will be multiple clock
domains and, without careful handling, this can cause
problems.

 The compiler maps each thread to custom
hardware in the VHDL description, driven by the
definition of the thread’s functionality in the HAEC
description. Just as the definition is structured as a
finite state machine, so is the definition in the
generated VHDL. Operation instructions in the
HAEC definition get mapped to VHDL operations,
as do conditional instructions. When certain types of
inter-thread channels are included, the HAEC
description of a receiving thread may specify that the
thread has to wait for data to become available on the
channel. In the hardware description, this requires
the automatic wrapping of the state that the read
instruction is being performed in with a conditional
statement.

Finally, another necessary set of connections
between threads are the inter-thread synchronization
signals (e.g. start and stop). These signals are
generated automatically by the compiler. In the
VHDL implementation, each thread element has a set
of output signals that potentially allow it to start each
of the other threads. Then, all the signals for starting
a particular thread are logically OR-ed together. This
may seem like it would create unnecessary extra
logic – in practice, every thread will not start every
other thread – but we had full confidence that the
back-end synthesis tool is capable of optimizing out
any unnecessary logic.

It can be seen that the major work of the compiler
is in automatic generation of signals between
generated elements. This captures the key mapping:
from a software-oriented world to a hardware-
oriented world.

5. Experiment: an RPC server

5.1. Introduction

We have conducted several experiments in which
complete networked systems have been described
using HAEC. These descriptions were constructed
manually, although ultimately HAEC is intended as a
target for higher-level compilers, rather than for
human programmers. Here, we demonstrate the
capabilities of the HYPMEP soft platform and

HAEC itself by the design and implementation of an
end system that is a Remote Procedure Call (RPC)
server. This example shows the use of an FPGA in
an application typically regarded as being in the
software domain, but here facilitated by the ease of
use of the HYPMEP programming interface and the
efficiency of the generated hardware description.

The history of the Remote Procedure Call
paradigm [1,4] has been very centered on a
workstation-only distributed system model.
However, with the increasing use of FPGAs as the
basis for systems, it is desirable to extend this model
to FPGAs, thus making provision for truly
heterogeneous distributed systems. An FPGA-based
system for data capture could make use of RPC to
provide an NFS-based [5] file system to provide
access to its data. Alternatively, with a reverse
relationship, an FPGA-based client could log its
status every so often to a file on a workstation server.
Either direction of relationship allows inclusion of an
FPGA-based system without the need for any special
software running on workstations.

In our experiment, HAEC was used to define the
implementation of an RPC server with a gigabit
Ethernet network interface. Over this interface, the
IP and UDP protocols are used to underpin the RPC
protocol. Thus, including the Ethernet protocol,
there is a four-layer protocol stack in use. The server
supported the arbitrarily chosen procedures “int
add(x, y)” and “int mult(x, y)”, to add or multiply
two integers, respectively. These simple functions
are placeholders, since the main implementation
challenge is in the networking; in general, as has
been indicated earlier, arbitrary function blocks can
be hooked into our system. In addition to the
required RPC functionality, port mapper [6]
functionality was also implemented. This enables a
client to look up the UDP port number of the
‘program’ that is supporting the callable procedures.
(Note that the concept of a program is built in to the
terminology although, of course, we have no actual
program in our FPGA-based implementation.)

The required functionality of the system is as
follows. An RPC client will make a function call that
is directed to a remote procedure. This stimulates the
creation of an RPC message encapsulated in a UDP
segment, within an IP packet, within an Ethernet
frame. The RPC message itself contains header
information specifying the procedure being called,
followed by the parameters to the procedure. When
this message arrives at the FPGA-based system via
gigabit Ethernet, the various protocol headers must
be inspected and stripped off. After the header of the
RPC message has been checked and processed, the
parameters are passed to the hardware block
implementing the procedure. When this is finished,
the result is then encapsulated in an RPC message,
UDP segment, IP packet and Ethernet frame for
transmission back to the client.

As part of our experiment, we also implemented
exactly the same system specification on a 2 GHz
Linux workstation with a gigabit Ethernet interface,
using the built-in operating system support for the
Internet protocols. This was to allow measurement
of RPC processing times for both the FPGA-based
server and the workstation-based server, using a
different Linux-based workstation as the client in
both cases.

5.2. System architecture

Our system architecture, based on the HYPMEP
soft platform, is shown in Figure 4. Each of the
labeled components is described in HAEC, and gets
mapped to a block of hardware in the FPGA. Only a
single interface is needed in this application, for the
gigabit Ethernet. The RX thread is responsible for
reading data from the interface and placing it in a
buffer. In terms of HAEC, one line of code is needed
to say that the gigabit Ethernet interface is being
used, then one further line of code is needed for the
RX thread to connect to this interface. For the
buffer, again one line of code is needed to create the
memory, and one line of code is needed for the RX
thread to connect to this memory. READ and
WRITE instructions are used to access the memory.

When a message is fully received into the buffer,
the broadcast thread is activated by a non-empty
signal from the buffer. The broadcast thread is
simply responsible for reading from the buffer and

sending 32-bit words through a channel, denoted by
the thick link in Figure 4, to each of the other
threads. Each thread listening to the words broadcast
by the channel just specifies the address that it is
waiting for, and then is suspended.

The broadcaster starts the ETH thread when it
starts sending data. The ETH thread is then
responsible for checking the Ethernet MAC header.
If the Ethernet header is valid, then the ETH thread
starts the IP thread. Meanwhile the ETH thread
continues, to produce a speculative Ethernet header
for the outgoing frame containing the RPC result, and
place it in a memory. The IP thread is responsible for
checking the IP header. When the header is valid, in
particular that the protocol type indicates a UDP
segment, it will start the UDP thread. It will then
generate as much of a speculative IP header for the
outgoing return packet as is possible and puts it in a
memory. One field is the length of the IP packet,
which is unknown at this stage, since it depends on
which remote procedure is being called. Thus, the
thread waits for the RPC thread to tell it what the
result size is. The UDP thread checks the UDP
header, which includes examining the UDP
destination port to tell which RPC ‘program’, i.e.
group of procedures, is to be used. The program
number is given to the RPC thread when the UDP
thread starts it, as indicated by an arrow between the
two threads. Like the ETH and IP thread, the UDP
thread generates a speculative outgoing UDP header.

The RPC thread decodes the RPC message and
generates the return RPC message. The decoding
involves deserializing the parameters and passing
them to the relevant function block, which is attached
via a hook. When the RPC thread can determine the
length of the return message – which may be before
the function is completed – it tells the IP thread.
This is shown as an arrow between the RPC thread
and the IP thread. Finally, when all four threads –
ETH, IP, UDP, and RPC – commit their respective
parts of the message into the memories, the TX
thread then transmits the response.

Note the concurrent execution of the threads in
this system, a latency-reducing feature not possible
with a pipelined concurrency system architecture.

5.3. Experimental results

We implemented our system on a Xilinx XC2VP7
Virtex-II Pro platform FPGA [11], which includes
eight multi-gigabit transceivers. The standard Xilinx
ISE 6.1 tools [11] were used to produce the
programming bitstream for the FPGA from the
VHDL hardware description produced by our
compiler. The FPGA was on a Xilinx ML300 board
[11], which brings out four optical gigabit ethernet
connections from four of the gigabit transceivers.

Memories

Receive TransmitGigabit ethernet

IP
thread

+

TX Thread

ETH
thread

RPC
thread

UDP
thread

broadcast
thread

*

RX Thread

Figure 4. Architecture of the RPC server.

The ML300 board was connected, by a fiber optic
cable, to a Linux workstation fitted with a NetGear
GA621 gigabit Ethernet card. RPC calls were made
from the workstation to the FPGA, and back, through
this physical networking.

The basic required performance of our FPGA-
based system was dictated by its external interface,
which had to operate at a one gigabit per second line
rate. Since the interface block used had an 8-bit
interface, this means that the RX and TX threads had
to run at 125 MHz. The other threads in the system
all used a 32-bit data width, which means that they
could operate at one quarter of this speed, namely
31.25 MHz. Both of these required frequencies were
comfortably met by our automatically synthesized
system.

Given that gigabit line rates could be dealt with,
the next metric of interest was the latency of the
server, that is, the response time to a remote
procedure call. The latency of the FPGA-based
system was calculated to be 2.16 µs for each of the
RPC calls used in the experiment. To compare this
figure to a workstation-based server, the same client
workstation made 900 successive calls to a server
workstation, which had a 2 GHz Pentium-4 processor
and 512 MB of RAM. The local response time of
the workstation-based server was measured to be 15
ms total for the 900 calls, compared with just 2 ms
total for 900 calls to the FPGA-based system. That
represents a 7.5X speedup for the FPGA
implementation over a high powered workstation. As
the chosen functions (add and mult) are extremely
fast with either technology, this processing time
essentially only represents the protocol handling
time.

For the FPGA-based implementation, the area
used on the device is also of interest. Our circuitry
required 2600 programmable logic slices and five
embedded block RAMs. This area represents less
than 2% of the biggest device in the Virtex-II Pro
family, and fits within the second smallest family
member. It should be noted that half of the area was
actually used to implement the gigabit Ethernet MAC
interface, which was a predefined netlist.

In terms of the system description, 869 lines of
HAEC were required. When processed by the
compiler, this generated 2950 lines of VHDL for
input to the backend tools. We have noted this
approximate 1:3 expansion factor in our other
experiments with compiled HAEC descriptions.

A final, and highly important, measurable result
was the development time. It took only two weeks
for a non-hardware expert to design, implement and
fully debug this system. This demonstrates the ease
of use factor, even though the abstraction level of
HAEC is not really intended for human use.

6. Conclusions and future work

Our overall research aim is to demonstrate that
modern programmable logic devices, particularly
FPGAs, have capabilities that are well suited for
them to be used as first-order components in
networked systems. In this paper, we have focused
on the programming mechanism for a hyper-
programmable architecture for networked systems,
which feeds into a compiler that deals automatically
with various hardware-like features, notably clock
management.

Our RPC experiment reported here demonstrated
two important points. First, the functionality of the
system itself indicates how FPGA-based systems
might be comfortably integrated into heterogeneous
distributed systems alongside processor-based
systems. Second, the fact that the fully working
system was constructed by a non-hardware expert in
just two weeks, is an excellent demonstration of the
promise of our general approach.

In future work, we plan further refinement,
generalization and extension of the HYPMEP
architectural model, guided by feedback from various
networked system experiments like the one reported
in this paper.

References

[1] Birrel, A. and B. Nelson. “Implementing remote
procedure calls”, ACM Transactions on Computer Systems
2(1), Feb 1984, pp.39-59.

[2] Brebner, G., “Multithreading for Logic-Centric
Systems”, Proc. 12th International Conference on Field-
Programmable Logic and Applications, Sep 2002, pp.5-14.

[3] CloudShield Technologies, Inc.,
www.cloudshield.com.

[4] Internet RFC 1057, “RPC: Remote Procedure Call
Protocol Specification version 2”, Jun 1988.

[5] Internet RFC 1094, “NFS: Network File System
Protocol specification”, Mar 1989.

[6] Internet RFC 1833, “Binding Protocols for ONC RPC
Version 2”, Aug 1995.

[7] Kohler, E., R. Morris, B. Chen, J. Jannotti and M.
Kasshoek, “The Click Modular Router”, ACM
Transactions on Computer Systems 18(3), Aug 2000,
pp.263-297.

[8] Novilit, Inc., www.novilit.com.

[9] SDL Forum, www.sdl-forum.org.

[10] Teja Technologies, Inc., www.teja.com.

[11] Xilinx, Inc., www.xilinx.com.

