
Java Debug Hardware Models using JBits

Jonathan Ballagh
�
, Peter Athanas

�
, and Eric Keller

�

�
Virginia Tech

340 Whittemore Hall
Blacksburg, VA 24061�

jballagh, athanas � @vt.edu�
Xilinx Inc.

2300 ���	��
 Street
Boulder, CO 80301

Eric.Keller@xilinx.com

Abstract. This paper presents a methodology for extending FPGA bitstream-
level debug and simulation capabilities, through the inclusion of Java/JBits-based
hardware device models. Using the JBits API, behavioral hardware models can be
written in Java and used in simulations with the VirtexTM Device Simulator. Java
lends the advantages typically associated with object-oriented design languages
to FPGA bitstream-level debugging and simulation. This leads to more efficient
design of hardware models as well as more flexibility in testing. Java also pro-
vides unique capabilities that assist interaction with the Java Debug Hardware
Models (JDHM) during simulation. Also, the advantages of bitstream level de-
sign control and run-time reconfiguration capabilities provided by JBits offers
benefits over traditional simulation techniques.

1 Introduction

There has been much research in the area of run-time reconfiguration (RTR) [11–13].
JBits is a tool that has created new opportunities in the RTR field by providing the ability
to rapidly create and modify Xilinx � Virtex and XC4000TM FPGA circuitry at run time
by allowing direct access into the configuration bitstream. When the JBits environment
was first introduced, it required that debugging take place using physical hardware. Re-
cently a device simulator was introduced that works on bitstreams to emulate the FPGA
device in software. While this proved to be an important step, it didn’t provide a way to
simulate external hardware peripherals interacting with the FPGA. The drawback of the
Virtex Device Simulator (VirtexDS), therefore, was that it did not provide an intrinsic
scheme to bring data in and off of the device. This paper presents a methodology for
designing Java based Debug Hardware Models (JDHM) that provide the needed I/O
and external test bench control for the VirtexDS. The language constructs afforded by
Java allow for object oriented design as well as run-time interaction with the modeled
hardware object. These device models can range from RAM to a microprocessor. Using
JDHM along with the Virtex Device Simulator, both static and run-time reconfigurable
FPGA designs can be efficiently tested at the bitstream level. This approach provides a
bitstream-level debug and simulation environment where no hardware is needed.



2 JBits

JBits [1] is a Java API that provides access to every configurable resource in a FPGA.
Xilinx FPGAs [3] are SRAM based and have the ability to configure the device many
times. JBits initially intended to provide a solution to support Run-Time Reconfigu-
ration (RTR). RTR systems distinguish themselves by defining the circuits logic and
routing just prior to, or during operation. RTR systems typically modify the circuit
several times during the execution of the application. Because of the low-level design
capabilities, JBits provides the necessary tools to efficiently modify or create a design.
While JBits supports RTR, static designs are supported as well.

A typical JBits program creates logic in a new bitstream, modifies the logic and
interconnects in an existing bitstream, or performs an analysis of a bitstream. The JBits
API is built upon four main methods. The first two allow a bitstream to be read and
written from a file. Another method allows the setting of a resource, i.e. a programmable
interconnect point (PIP), to a certain value, i.e. on. The last method allows reading the
state of a resource from the bitstream. The rest of the JBits API is a set of constants that
define the configurable resources and their settings.

Communication can be done with an FPGA based board through the XHWIF API.
The Xilinx Hardware Interface is an API that provides methods to communicate with
FPGA based boards. This includes a method for reading bitstreams from the FPGAs.
There are methods to write bitstreams to the FPGAs, step a clock, and write to and read
from the memories on the board. Essentially, XHWIF provides a universal interface for
communicating with different boards.

2.1 JBits environment

While JBits is a powerful design tool, designing at this level can be very difficult for
all but the most trivial designs. Because of the object-oriented programming techniques
afforded by Java, tools can be built upon JBits to provide higher abstraction levels.
Tools such as JRoute [7], RTPCores [8], and JRTR [5] allow users the design control
that is acceptable to them. JRoute is a router that has methods with varying levels of
abstraction. A user can fully define each resource in a net, define a template to follow,
or allow an auto-router do the work. The JBits run-time parameterizable (RTP) core
specification provides a means for abstracting away the low level configuration calls,
thereby creating an environment similar to traditional structural hardware design lan-
guages (HDLs) while concurrently affording the ability to make bitstream level modifi-
cations. The JRTR API is an extension of the JBits API to take advantage of the partial
reconfiguration support provided by Virtex devices. This interface provides a caching
model that automatically tracks changes to configuration data and only the modified
data is written to or read back from the device.

3 Virtex Device Simulator

Another tool built on JBits is the Virtex Device Simulator (VirtexDS) [4]. The VirtexDS
works directly from the FPGA bitstream using JBits to analyze the resource configu-
rations of the device. Device level simulation has several advantages over traditional



design simulators such as contemporary VHDL simulators. The first benefit is that it
supports RTR. Other simulation environments address the issue of RTR. Lysaught pro-
poses using Dynamic Circuit Switching to provide simulation support for RTR [10].
JDHL, a Java based hardware description language that defines circuits using objects,
uses constructors and destructors to perform circuit reconfiguration during run-time [6].
Only JBits along with the VirtexDS, however, allow circuits to be synthesized and in-
serted into simulation at the bitstream level during execution. Using the JBits environ-
ment, circuit behavior during reconfiguration is accurately simulated as a result of the
direct FPGA hardware emulation approach used by the VirtexDS. Device level simula-
tion also has the advantage that it is implementation tool independent. The bitstream is
a common format between all tools, similar to EDIF but at a lower level. Another ad-
vantage over traditional simulators comes from the fact that the VirtexDS implements
the XHWIF API, thereby allowing users to transparently switch between the simulator
and an actual FPGA.

3.1 External Stimuli

An environment has been set up to allow users to create stimuli on any pin inside of
an FPGA by adding an event to the event queue in the VirtexDS. The pin can be any
resource inside of the FPGA and is not limited to IOBs. For example, an input to a CLB
can be set to a certain value. There is also the ability to read state information from
flip-flops internal to the FPGA.

When the VirtexDS is initialized it creates a server object called SimulatorServer.
Communication with the SimulatorServer object is accomplished using a client ob-
ject called SimulatorClient. The communication is accomplished using a stream based
socket network connection. While a TCP/IP connection is used, the client typically con-
nects to the server process running locally, rather than across the network. However, the
ability to communicate across a network is available if desired. The SimulatorClient
provides the user with a method, setPinValue(pin,value), which sets the given resource
to the value. There is also a method readPinValue(pin) which returns the current value
for that resource. Finally there is a method waitForStep() which waits for the VirtexDS
to process all events during the current clock cycle.

4 External Hardware Device Model Design

The VirtexDS, in conjunction with the XHWIF interface, provides accurate models of
the Xilinx Virtex device series. The inability of JBits to provide external stimulus into
the chip has burdened the usage of the language for large application designs. This
drawback is readily apparent in embedded system applications, in which the FPGA is
connected to external devices, such as RAM and FIFOs. Ideally, the FPGA bitstream,
including its interfacing to external peripherals, should be able to be tested for correct
operation before it is loaded onto physical hardware.

The idea of full-system simulation can be achieved by extending the functionality
of the SimulatorClient provided by the JBits API to correctly model the behavior of the
selected hardware devices using the Java programming language. The characteristics of



an external hardware peripheral can be described and encapsulated within a Java ob-
ject that extends the SimulatorClient class. These objects are then used in conjunction
with the VirtexDS, thereby expanding the capabilities of the simulator by providing the
functionality afforded by the hardware models. Figure 1. shows the interaction between
the hardware device model and VirtexDS in relation to a full JBits simulation environ-
ment. In using this approach, the capacity and size of these emulated external devices
becomes limited only by the memory and storage of the users host computer, rather
than the limitations imposed by physical hardware.

BoardScope
Debugger

Server

Device
Simulator

Bitstream

Hardware
Models

Client

XHWIF

Fig. 1. Diagram showing a full system simulation environment using JBits.

An additional motivation for the creation of Java based peripheral models is illus-
trated in the situation in which a user would like to design or test a bitstream using
an external peripheral that is currently unavailable or in the prototype stages. By first
modeling the new device in software, the user has the ability to modify or design a new
bitstream such that correct operation is guaranteed when the part finally becomes avail-
able. This can also be extended to situations where the FPGA to be used is unavailable.

4.1 Interfacing

The SimulatorClient class included in the JBits API provides a means in which the
emulated hardware device models can communicate directly with the VirtexDS. This
communication is accomplished using stream socket network connections. The Simula-
torClient provides the functionality required to read and write logic states of individual
Virtex FPGA pin resources using the readPinValue(pin) and setPinValue(pin, int) func-
tions. By expanding on these functions, n-bit data vectors can be read or written to a
defined pin array of length n. Vectors are read from the simulator using function read-
Vector(pin[]) and written using writeVector(pin[], int). All hardware models require
this basic functionality, and therefore should extend the SimulatorClient class.

At the top level of a JBits design the nets that connect to external hardware are
passed to the JDHM object. The class that each JDHM object extends from has a method
that translates each net to the pins that it connects to. Using that method to get what



pins each net connects to, the JDHM object will then be able to communicate with the
VirtexDS. When a circuit is reconfigured, the pins may change and the JDHM objects
will need to be passed the new nets. For non-JBits designs, the JDHM objects are just
passed a list of pins.

By using the functionality provided by the SimulatorClient, a hardware component
can be modeled using Java, constrained in functionality only by the size of the I/O pin
arrays. The inherent advantage lies in the fact that a specific core or a design with a
reliance on external stimuli can be verified for correct functionality at the bitstream
level using a Java application. Additional benefits of this approach include the flexi-
bility for run-time user interaction with the hardware objects and support for run-time
reconfiguration.

4.2 Operation

Bitstream-level verification can be accomplished by using the XHWIF API in con-
junction with the VirtexDS and instances of all required external hardware models. A
VirtexDS object must first be instantiated in order to create a model of the desired Vir-
tex device. The device is then configured with the bitstream using the XHWIF API. At
this time, an instance of each external hardware model must be created. Instantiating
the device model calls the constructor of the super class, SimulatorClient. This in turn
connects the device model to the simulator using a stream based socket connection.
Completion of these steps establishes the full simulation environment.

Device readback and clock stepping is then done using XHWIF. Since chip I/O is
done using the external hardware models, each model must be responsible for storing
and analyzing its own I/O data according to that designs particular verification require-
ments. These steps are most easily accomplished using BoardScope [2] as the GUI in
order to hide the XHWIF commands from the user. At this time, however, the external
hardware models must be instantiated outside of BoardScope.

4.3 Bitstream/Core Design Debugging and Verification

Previously, FPGA debugging at the hardware level was encumbered by the “black box”
nature of the configuration bitstream. The behavior of an individual signal could be
traced at the hardware level by incorporating additional routing into the design before
synthesis, in order to bring the signal to an unused IOB. This approach suffers in the
sense that a free I/O resource may be unavailable, and that selecting a different sig-
nal to view requires an additional synthesis overhead. While device readback is often
used for debugging, post processing of report files is often required to reconstruct logic
placement.

Although BoardScope provides graphical insight into the functionality of the bit-
stream, the debugging process is encumbered by the lack of support for device I/O.
While CLB logic can currently be programmed to generate input stimuli and control
signals for debugging, this method is extremely wasteful in terms of resource consump-
tion. This approach becomes extremely impractical when design operation involves
streaming large amounts of data through the FPGA, as is often the case in signal pro-
cessing applications. This approach also fails in cases where user interaction is desired.



An alternative approach, therefore, must be devised for bitstream design debugging and
verification.

The concept of the external hardware model can be extended for debugging pur-
poses. In essence, almost any test vector generation model can be applied to an existing
bitstream, with the addition of a JDHM object. Through correct interfacing, control over
all FPGA I/O can be passed to a Java application. During the simulation process, data
read back from the VirtexDS can be compared against a set of desired output vectors
for correctness. The Java application or hardware device model can inform the designer
of any inconsistencies with corresponding error messages to the screen or output file.

Graphical user interfaces can be built onto the external device hardware models,
such that when used together with BoardScope, provide for powerful system level
graphical bitstream debugging environments. Since the hardware models are written
in Java, a device customized GUI could easily be created using Java Swing or AWT
classes to wrap the I/O controls afforded by the model. The complexity of the debug-
ging process can be greatly simplified by using the hardware models GUI together with
BoardScope. The result is software level debugging at the hardware level.

4.4 Possible Applications

External Memory External memory devices, such as RAM, ROM, and FIFO devices
are easily described and modeled using Java and connected to the simulator. Mem-
ory contents can be loaded from a file at run-time or entered from a text prompt if
desired.

The external memory model approach affords many advantages over physical hard-
ware. Unlike their physical counterparts, selected memory addresses or blocks can
be displayed to the screen or written to a file whenever desired. Also, support can
be added so that the user can modify memory contents during operation if desired.
This becomes extremely valuable in the debugging process. Also, data files of any
length can be streamed through the bitstream design using an external FIFO model
used to provide input into the device. An additional FIFO model would read output
data from the device as it is streamed through and record it to the file or send it to
another application for processing. As a result, lengthy simulations complete faster
than traditional simulation tools as a result of the high speed nature of the VirtexDS.

Control Signals Simple control signals can be driven into the device through a simple
device model. The device model would offer control over the signals through a
GUI, text prompt, of file. For example, a GUI could be created with a RESET button
that controlled the reset line of the device. Features could also be created that would
allow for certain signals or buses to be enabled and disabled depending on the
designers preference. This aids in isolating and identifying design errors.

Microprocessor Interfacing FPGAs are often used in conjunction with microproces-
sors and microcontrollers. If the internal processor can be ported to Java, the pro-
cessor model can interact with the bitstream in the same manner as the physical
hardware.



4.5 Comparison with Other Methods

The JDHM environment provides several benefits over traditional FPGA design sim-
ulation and debug applications. The principle benefits include design verification at
the bitstream level, support for run-time reconfiguration, and flexibility in the simula-
tion environment and controls. Using a standard HDL for test bench creation, such as
VHDL, does allow for hardware modeling using a behavioral paradigm. However, that
approach is at the design level and does not necessarily provide an accurate model of
behavior once the design is run on physical hardware. The work flow that transforms
VHDL or Verilog down to a bitstream is a long pathway filled with many steps. Further-
more, some of these steps are quite complex and are prone to errors, such as behavioral
synthesis. As a result, the computational design specification is far removed from the
process that generates the bitstream. Validation of a design in this traditional flow re-
quires that each compilation step be error free, which is often impossible to accomplish.
VHDL design and debug environments also do not support run-time reconfiguration and
provide little in the way of flexibility. While other debug environments attempt to ad-
dress debug of run-time reconfigurable systems, they fail in many regards. JHDL [6]
provides an alternative to traditional HDLs, giving the designer device modeling and
hardware level debugging capabilities [9] using Java. While JHDL originally intended
to support RTR, it still relies on main-stream synthesis tools as a back end. Although
JHDL provides effective hardware debugging capabilities, it requires an FPGA hard-
ware platform that supports clock stepping and readback funtions. The VirtexDS, on
the other hand, requires no hardware to operate, and can therefore be used to simulate
and debug any Virtex configuration bitstream.

5 Conclusions and Future Work

An environment has been presented that demonstrates the use of Java as a language
to model hardware and interact with the Virtex Device Simulator to debug complete
FPGA-based systems. The JBits API was used to test the configuration bitstream design
of a Virtex device. The external hardware was created with Java behavioral models
that communicated with a device simulator through a stream based socket connection.
Experimental embedded system designs using peripherals that are unavailable can be
debugged and modified using the method of hardware models as described in this paper.
Using Java has many advantages over a hardware description language such as VHDL.
Among these advantages are flexibility and the ability to interact with the JBits API.
The JBits API, unlike traditional hardware description languages, supports run-time
reconfiguration as well as affording designers complete design control.

This environment is still under development and there are many improvements that
can be made. Currently only one VirtexDS is able to be open at a time. This imposes
a limit to only one chip per system. While memory usage could become an issue with
several Virtex devices being tested simultaneously, it provides a more realistic model of
the system. Using a network of computers, simulations could efficiently spawn out sev-
eral VirtexDS objects. Also, the environment presented here only supports synchronous
communication. The hardware models set stimulous and then wait for the clock on the
FPGA to be stepped. Having asynchronous events could provide additional flexibility



and a more accurate model for certain external devices. Work is being done to integrate
JDHM with the VirtexDS more closely. Currently java sockets are used which could
add an unnecessary overhead. Finally extensions to a GUI tool such as BoardScope
would make for a more user friendly debug environment. This extension would support
loading in a model of a system and instantiate the necessary hardware models.

Acknowledgements

This work was supported by DARPA in the Adaptive Computing Systems (ACS) pro-
gram under contract DABT63-99-3-0004.

References

1. S. A. Guccione and D. Levi, “XBI: A Java-based interface to FPGA hardware,” Configurable
Computing Technology and its uses in High Performance Computing, DSP and Systems En-
gineering, Proc. SPIE Photonics East, J. Schewel (Ed.), SPIE - The International Society for
Optical Engineering, Bellingham, WA, November 1998.

2. D. Levi and S. A. Guccione, “BoardScope: A Debug Tool for Reconfigurable Systems,”
Configurable Computing Technology and its uses in High Performance Computing, DSP and
Systems Engineering, Proc. SPIE Photonics East, J. Schewel (Ed.), SPIE - The International
Society for Optical Engineering, Bellingham, WA, November 1998.

3. Xilinx, Inc., The Programmable Logic Data Book, 1999.
4. S. McMillan, B. Blodget, and S. Guccione. “VirtexDS: A Virtex Device Simulator.” To be

presented at SPIE 2000, Boston MA, November 2000.
5. S. McMillan and S. Guccione, “Partial Run-Time Reconfiguration Using JRTR,” Proceed-

ings of the 10th International Workshop on Field-Programmable Logic and Applications,
Lecture Notes in Computer Science 1896, 2000.

6. P. Bellows and B. Hutchings, “JHDL-An HDL for Reconfigurable Systems,” Proceedings of
the IEEE Symposium on Field-Programmable Custom Computing Machines, April 1998.

7. E. Keller, “JRoute: A Run-Time Routing API for FPGA Hardware,” 7th Reconfigurable Ar-
chitectures Workshop, Lecture Notes in Computer Science 1800, pp 874-881, Cancun, Mex-
ico, May, 2000.

8. S. Guccione and D. Levi, “Run-Time Parameterizable Cores,” Proceedings of the 9th Inter-
national Workshop on Field-Programmable Logic and Applications, Lecture Notes in Com-
puter Science 1673, pp 215-222, 1999.

9. B. Hutchings, B. Nelson, and M. Wirthlin, “Designing and Debugging Custom Computing
Applications,” IEEE Design & Test of Computers, Volume 17 Issue: 1, pp 20-28, Jan.-Mar.
2000.

10. P. Lysaght and J. Stockwood, “A Simulation Tool for Dynamically Reconfigurable Field
Programmable Gate Arrays,” IEEE Transactions on Very Large Scale Integration of VLSI
Systems, pp 381-390, September 1996.

11. W. Luk, N. Shirazi and P. Cheung, “Compilation tools for run-time reconfigurable designs,”
IEEE Symposium on FPGAs for Custom Computing Machines, pp 56-65, April, 1997.

12. H. Schmit, “Incremental Reconfiguration for Pipelined Applications,” IEEE Symposium on
FPGAs for Custom Computing Machines, pp 47-55, April, 1997.

13. J. Burns, A. Donlin, J. Hogg, S. Singh, and M. deWit, “A Dynamic Reconfiguration Run-
Time System,” IEEE Symposium on FPGAs for Custom Computing Machines, pp 66-75,
April, 1997.


