
Gene Matching Using JBits?

Steven A. Guccione?? and Eric Keller

Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 (USA)
fSteven.Guccione ,Eric.Keller g@xilinx.com

Abstract. As the emerging field of bioinformatics continues to expand, the abil-
ity to rapidly search large databases of genetic information is becoming increas-
ingly important. Databases containing billions of data elements are routinely
compared and searched for matching and near-matching patterns. In this paper we
explore the use of run-time reconfiguration using field programmable gate arrays
(FPGAs) to provide a compact, high-performance matching solution to accelerate
the searching of these genetic databases. This implementation provides approxi-
mately an order of magnitude increase in performance while reducing hardware
complexity by as much as three orders of magnitude when compared to existing
commercial systems.

1 Introduction

One of the fundamental operations in computing is string matching. Here, two linear
arrays of characters are compared to determine their similarity. This operation can be
found across a wide range of algorithms and applications. One area where string match-
ing has recently received a renewed interest is in the area of bioinformatics, in particular
in the area of searching genetic databases.

With the initiation of the Human Genome Project [2] in the early 1990s, the amount
of data to be searched, as well as the number of searches being performed on this data
has continued to increase. Because of the size and ongoing growth of this problem,
specialized systems have been commercially introduced to search these databases of
genetic information.

In this paper we present a system used to implement one of the most popular ge-
netic search algorithms, the Smith-Watermann algorithm, using run-time reconfigura-
tion. This approach provides not only smaller, faster circuits, but also reduces the input-
output requirements of the system while simplifying hardware / software interfaces.

2 The Smith-Watermann Algorithm

While many applications performing string matching look for an exact match to the
searched data, many other applications are interested in finding approximate matches.
This requires a somewhat more complex algorithm than the search for exact matches.

? This work was supported in part by DARPA in the Adaptive Computing Systems (ACS) pro-
gram under contract DABT63-99-3-0004.

?? Steven Guccione is now at QuickSilver Technology, Inc. steve.guccione@qstech.com



One area where inexact string matching has become important is in the searching
of genetic databases. The optimal algorithm for inexact search in the field of bioinfor-
matics is typically known asSmith-Watermann[8] and uses a dynamic programming
technique. The algorithm compares two stringsS andT by performing a pairwise com-
parison of each element in the two strings, then computing a score to determine the
similarity of the two strings. Figure 1 gives a two-dimensional representation of the al-
gorithm. The two stringsS andT are compared and intermediate valuesa, b andc are
used to produce the intermediate result,d. This calculation is repeated once for each
pairwise element comparison.

Tj

...
a b

Si � � � c d

Fig. 1. Pairwise comparisons in the Smith-Watermann matching algorithm.

The matching algorithm itself is given in Equation 1. If the elements being com-
pared are the same, the valuea is used to calculate the result valued. If the elements in
the two strings are not the same, then the value ofa plus somesubstitutionpenalty is
used. The result valued is determined by taking the minimum of this value, the value
of b plus someinsertionpenalty and the value ofc plus somedeletionpenalty.

d = min

8>><
>>:

�
a if Si = Tj

a+ sub if Si 6= Tj

b+ ins

c+ del

(1)

In the case where stringS is of lengthm and stringT is of lengthn, the algorithm
begins by comparingS0 andT0 and proceeds onward until a final value ofd is calculated
at the comparison ofSm andTn. This value is theedit distancebetween the strings.

3 The JBitsTM Implementations

Rather than using the standard VHDL design flow to implement the Smith-Watermann
algorithm, the Xilinxr JBits toolkit was used [5].JBitswas particularly useful in the
implementation of this algorithm because there were several opportunities to take ad-
vantage of run-time circuit customization.

There are four different opportunities for run-time circuit customization. Three of
these are the folding of the constants for the insertion, deletion and substitution penal-
ties into the LUTs. Rather than explicitly feeding a constant into an adder circuit, the
constant can be embedded in the circuit, resulting in (in effect) a customized constant



adder circuit. Note that these constants can be set at run time and may be parameters to
the circuit.

The fourth run-time optimization is the folding of the match elements into the
circuit. In genomic databases, a four character alphabet is used to represent the four
bases in the DNA molecule. These characters are typically denotedA for adenine,T
for thymine,G for guanine andC for cytosine. In this circuit, each character can be
encoded with two bits. The circuit used to matchSi andTj does not require that both
strings be stored as data elements. In this implementation, theS string is folded into the
circuit as a run-time customization. Note that the string values are not fixed constants
and will vary from one run to another. This means that the entire stringS is used as a
run-time parameter to produce the customized circuit.

This design uses a feature of the algorithm first noted by Lipton and Lopresti [7].
For the commonly used constants, 1 for insert/delete and 2 for substitution,b andc can
only differ froma by +1 or -1, andd can only differ froma by either 0 or 2. Because of
this, modulo 4 encoding can be used, thus requiring only 2 bits to represent each value.
The final output edit distance is calculated by using an up-down counter at the end of
the systolic array. The up-down counter is initialized to the match string length which
makes zero the minimum value for a perfect match.

Further optimizations were performed to more efficiently map the design to the
VirtexTM architecture. These optimizations make use of the Virtex carry-chain, which
reduced the delay of the circuit since general routing was not needed internal to the
processing element. The optimization is evident in Equation 2 which is equivalent to
Equation 1 . The equation is basically a wide or gate which is efficiently implementable
with the Virtex carry-chain. Another optimization evident from the transformed equa-
tion is the fact thatd is equal toa or a+ 2. Because of this, the least significant bits of
a andd are always equal. Therefore, only 1 bit is needed to representd.

d =

�
a if b or c equalsa� 1 or Si = Ti

a+ 2 if b andc equala+ 1 andSi 6= Ti

(2)

4 Other Current Implementations

As the computing demands of bioinformatics has continued to increase, commercially
available solutions to the problem of searching genetic databases have become avail-
able. Today, the three major systems used commercially all take different approaches. It
should also be noted that these systems all support a variety of matching algorithms in
addition to Smith-Watermann. Table 1 gives a comparison of the various technologies
currently available to perform Smith-Watermann matching. For a historical comparison,
theSplash 2work of Hoang has also been included.

5 Conclusions

A gene matching system using run-time reconfiguration and operating on a single
FPGA device has been presented. This system is able to perform Smith-Watermann



Table 1.This displays both performance and hardware size for various implementations.

Processors Updates
per DeviceDevices per sec

Celera (Alpha cluster)[1] 1 800 250B
Paracel (ASIC)[3] 192 144 276B

TimeLogic (FPGA)[4] 6 160 50B
Splash 2 (XC4010)[6] 14 272 43B

JBits (XCV1000-6) 4,000 1 757B
JBits (XC2V6000-5) 11,000 1 3,225B

matching at a rate of over three billion matches per second. This compares favorably
to the currently available systems used commercially in this field. In the area of perfor-
mance, the run-time reconfiguration approach provides an order of magnitude increase
over both custom ASIC and multiprocessor systems, while reducing the hardware com-
plexity by two to three orders of magnitude.

Such results would often indicate that some system parameter, usually flexibility,
has been lost. This, however, is not necessarily true. It is possible to use similar tech-
niques to implement other matching algorithms other than Smith-Watermann using run-
time reconfiguration. Interestingly, there may be little or no advantage to implementing
sub-optimal matching algorithms using this approach. Because this implementation ap-
pears to be limited more by data input / output than by processing power, implementing
a faster algorithm may not provide substantial increases in performance. This would
make the sub-optimal algorithms much less desirable.

As the field of bioinformatics continues to grow, and various fields from drug de-
sign to law enforcement come to rely on this technology, it is expected that interest in
high performance matching systems will also grow. Reconfigurable logic and run-time
reconfiguration promise to permit faster, less expensive systems to meet these needs.

References

1. Celera Genomics, Inc. World Wide Web site http://www.celera.com/, 2002.
2. Human Genome Project Information. World Wide Web http://www.ornl.gov/hgmis/, 2002.
3. Paracel, Inc. World Wide Web site http://www.paracel.com/, 2002.
4. TimeLogic, Inc. World Wide Web site http://www.timelogic.com/, 2002.
5. Steven A. Guccione, Delon Levi, and Prasanna Sundararajan. JBits: A java-based interface

for reconfigurable computing. InProc. 2nd MAPLD, 1999.
6. Dzung T. Hoang. Searching genetic databases on splash 2. InIEEE Workshop on FPGAs for

Custom Computing Machines, pages 185–191, April 1993.
7. Richard Lipton and Daniel Lopresti. A systolic array for rapid string comparison. InChapel

Hill Conference on Very Large Scale Integration, pages 363–376, 1985.
8. T. F. Smith and M.S. Waterman. Identification of common molecular subsequences.Journal

of Molecular Biology, 147:195–197, 1981.


