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Abstract. This paper introduces the notion of a software decelerator, to be used
in logic-centric system architectures. Functions are offloaded from logic to a pro-
cessor, accepting a speed penalty in order to derive overall system benefits in
terms of improved resource use (e.g. reduced area or lower power consumption)
and/or a more efficient design process. The background rationale for such a strat-
egy is the increasing availability of embedded processors “‘for free’ in Platform
FPGAs. A detailed case study of the concept is presented, involving the provision
of a high-level technology-independent design methodology based upon a finite
state machine model. This illustrates easier design and saving of logic resource,
with timing performance still meeting necessary requirements.

1 Introduction

The research literature in field-programmable logic contains many examples of ‘hard-
ware accelerators’. In short, these concern a processor-centric system model: algorithms
are executed on a processor, with certain key functions being performed by an associ-
ated programmable logic array, the intention being to achieve greater overall perfor-
mance. The exact arrangements may vary from the tightly-integrated case of a proces-
sor with an augmented instruction set (e.g. [3]) to the more loosely-coupled case of a
processor interacting with a co-processing logic device (e.g. [6]).

This paper is concerned with a logic-centric system model, of the sort described
for example in earlier papers by Brebner [2]. Here, the main computational focus is on
logic circuitry, with other components — in particular processors — viewed as addi-
tional system components rather than central system components. Aside from computa-
tional differences, there are implied architectural differences, notably concerning serial
data access and shared buses, features both tailored to processor behavior. The logic-
centric model is well-suited to systems that react to, and are driven by, inputs received
over time. Thus, in contrast to the usual processor-centric model, the environment, not
the computer, is the controlling force. We feel that this view of will be of increasing
relevance to real-life systems in the future.

In the logic-centric model, it is fairly natural to invert accepted wisdom about system
organization. In this paper, we consider the benefits of ‘software decelerators’, inverting
the notion of hardware accelerators. The basic idea is that algorithms are executed in
programmable logic, with certain functions being performed by an associated processor.
In general, this direction of migration is not likely to lead to speed increases — indeed
quite the opposite — which is why we use the word “decelerator’. Thus, there have to
be other motivations that lead to an overall increase in the quality of the design process



and/or the resulting systems. We discuss various possible motivations in this paper,
and then describe one detailed case study experiment where the main motivation was
to provide a high-level, technology-independent design methodology based upon finite
state machines.

In this case study, the software decelerator technique concerns finite state machines
being implemented on the embedded processor of a Platform FPGA. With this ap-
proach, the cost of implementing a machine in terms of logic resource usage is greatly
reduced, since the processor is always present on the Platform FPGA, whether it is
used or not. The emphasis differs from that of some conventional state machine de-
sign methodologies, such as Esterel Studio, the principal aims being to consume as few
logic resources as possible, optimize the interfacing between logic and processor, and
run code directly from the processor’s built-in cache.

The paper is organized as follows. Section 2 considers the technological background
that motivates software decelerators as a viable concept in system design. Then, Section
3 describes the case study, and Section 4 discusses the experimental results. Finally,
Section 5 contains some conclusions and directions for future work.

2 Technological background

2.1 Emergence of Platform FPGAs

Early Field Programmable Gate Array (FPGA) architectures consisted of an array of
similar programmable logic elements interfaced to interconnection elements. With the
emergence of the Platform FPGA, architectures have evolved to a pre-defined mix of
very different elements. Today, for example, the Xilinx Virtex -11 Pro Platform FPGA
contains configurable logic blocks, input/output blocks supporting many different I/O
standards, distributed BlockRAM memories, internal access to the configuration mem-
ory, digital clock managers, gigabit transceivers, dedicated multiplier blocks and em-
bedded PowerPC 405 processors. Platform FPGAs present both unique design chal-
lenges and unique design opportunities. An important point is that the mix of resources
is pre-determined by the FPGA vendor rather than by the designer, and so the partic-
ular set of resources will be present whether the designer makes use of them or not, a
situation unlike that in ASIC design.

Therefore, in designs that aim to maximize the use of the resources of a certain
device size, the designer will often make decisions which on the surface appear non-
intuitive. For example, in designs which use little BlockRAM memory but use many
configurable logic blocks (CLBs), a designer may choose to implement certain logic
functions by lookup tables in BlockRAM rather than in CLBs. This is despite the fact
that this approach wastes much of the BlockRAM data width, and does not take advan-
tage of their dual-port nature. Such an approach would be unthinkable in ASIC design,
but makes a lot of sense in Platform FPGA design. This use of pre-existing resources in
unusual ways is likely to become more and more prevalent as the mixture of resources
becomes richer and richer. The overall message is that one has to be very fluid in terms
of how and where computation, storage and communication are carried out in systems.

The logic-centric system paradigm is one approach to assist in managing the po-
tential design space. This focuses on inputs, outputs and programmable logic circuitry



as the core system architecture, with all other components (memory, processors, etc.)
being seen as assists to the circuitry. Of course, it is also possible to view the system in
other ways. For example, in a more conventional processor-centric manner, the Virtex 11
Pro can also be seen as a “motherboard on a chip’, and indeed it has been demonstrated
as such, with the Linux operating system running on the PowerPC processor.

2.2 Motivation for software decelerators

The concept of using software decelerators derives directly from the discussion of using
Platform FPGA resources in unusual ways, and focuses on processors in particular for
non-standard treatment. In fact, what is sought here is not necessarily a completely dif-
ferent and unusual harnessing of processors, rather some balance between the long and
rich legacies of processor development and software engineering, and the new context
of the logic-centric system.

The more general backdrop to this reconsideration of the role of processors is an
examination of the role of any kind of universal machine within a logic-centric system.
Other examples, simpler than a traditional microprocessor, would be programmable
state machines or microcontrollers. In all such cases, there is a basic trade-off between
speed — one normally expects a universal machine implementation of a function to
be slower than a bespoke implementation — and other issues as diverse as chip area
requirements and ease and speed of implementing new functions.

So far, in the development of Platform FPGAs that include processors, there has
largely been a drive to maximize processor clock rates, reflecting a view either that the
processor is the central system component or perhaps that the processor plays a key
time-critical supporting role in the system. This drive parallels the continuing race to
increase clock rates of microprocessor chips (although, very recently, there has been
acknowledgement that raw speed is not everything, power consumption being of im-
portance in an increasing proportion of systems). It is our belief that, as far as Platform
FPGAs are concerned, the clock rate of the processor may not be the dominant concern
for many future systems. This follows from a prediction that the processor may either
be called upon relatively infrequently to carry out work in the logic-centric system, or
may be called upon to perform work of a non time-critical nature. One recent example
of such a system is the high throughput, low latency mixed-version IP router developed
for the Virtex-11 Pro [2].

As soon as the clock rate requirement is relaxed, it becomes possible to focus the
treatment of a processor on other goals, like saving logic resource by employing the
processor plus its supporting cache memory. In this paper, the goal is to combine this
particular trade-off with the provision of a particular high-level design flow that hides
the nature of the implementation from the user. A more straightforward and obvious
application of software deceleration is just to make the overall system implementation
process easier by allowing a designer access to the wide range of software tools (and
human expertise) to implement functions on the processor, rather than implementing
logic circuitry.

To ensure that software decelerators provide the anticipated benefits, and do not im-
pose resource demands on an overall logic-centric system design, nor impose unnatural
design methodologies on the user, there are some particular attributes that are desirable:



— The overall area consumed by a software decelerator implementation should not be
greater than its logic circuitry counterpart unless there are other strong benefits.

— The interfacing between logic circuitry and processor should consume minimal
programmable logic resources, and should be designed to shield the processor from
the logic and vice-versa.

— The method of capturing designer intent should be independent of the actual im-
plementation mechanism chosen for the Platform FPGA unless there is a particular
benefit in permitting the use of certain familiar tools.

— The designer should be able to get accurate timing information, and resource usage
information in general, for the overall logic-centric system, taking into account the
behavior of the various non-logic system components that are being harnessed.

The case study that is presented in the subsequent sections illustrates that it is feasible
to meet these goals, in the framework of software decelerator use.

3 Casestudy: FSM-based design methodology

Finite state machines (FSMs) are an important component of many digital systems, and
can be implemented well on FPGAs. Particular FSMs may contain a large number of
states, and may involve much computation to determine the next state and the state
outputs based on varying inputs. However, they may actually have relatively relaxed
timing constraints compared to the rest of a system, an atrribute that points to possible
software decelerator implementation.

The case study problem tackled was to implement FSMs as an example of a soft-
ware decelerator. Referring back to three desirable attributes defined in Section 2.2, the
interfacing hardware should consume minimal resources and act as a shield between
the processor and the rest of the system — the rest of the system should not know it is
working with a processor. Capture should be implementation independent, that is, the
designer should not be aware that an embedded processor is being targeted. Finally, ac-
curate timing and resource usage information should be obtainable so that the designer
is able to get hardware-like metrics. The net effect of using a software decelerator in a
system where the processor would otherwise be idle is that logic resources are freed,
without penalizing the designer in terms of design style or quality of timing informa-
tion.

There has been a fairly substantial body of prior work on implementing finite state
machines in software. Perhaps the most notable effort is the Berekeley POLIS sys-
tem [1]. POLIS is a complete co-design solution, which uses the codesign finite state
machine (CFSM) as the central representation of the required system behavior. One sig-
nificant difference between a CFSM and a classical FSM is that a CFSM allows that the
reaction time to events will be non-zero, unlike the FSM which assumes a synchronous
communication model.

POLIS allows the designer to implement CFSMs in either software or hardware,
and since this is a co-design solution — a single CFSM can be partitioned into multiple
CFSM sub-networks, and have different target implementations. The hardware CFSM
sub-networks are constructed using standard logic synthesis techniques, and in this case
a CFSM can execute a transition in a single clock cycle.



A CFSM sub-network chosen for software implementation is transformed to a pro-
gram and a simple custom real time operating system (RTOS). The program is gener-
ated from a control/data flow graph, and is coded in C. The designer can use a timing
estimator to find quickly the speed of the software, or instead produce an instrumented
version of the code and run this on an actual processor. The instrumented version counts
the actual cycles used, giving a more accurate way of extracting timing information. The
custom RTOS consists of a scheduler for organizing the execution of the procedures,
using policies such as rate-monotonic or deadline-monotonic scheduling. The RTOS
also includes 1/0 drivers. The case study here is rather different in nature from POLIS,
as it has very different aims, including minimizing logic-processor interfacing and code
size.

3.1 System description

The case study involved producing a tool which takes a textual representation of a finite
state machine and produces: a hardware platform that can be interfaced to existing logic
circuitry; software to run on the embedded processor; and a timing report. The tool flow
is shown in Figure 1.
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Fig. 1. Tool flow

3.2 Design entry

A number of methods are available for capturing FSMs. Tools such as Esterel Studio
or Xilinx’s StateCAD allow a designer to capture graphically the FSM as a state transi-
tion diagram. Designers annotate the state transition diagram with conditions for taking
branches, and define the calculations for the state outputs. Alternatively, FSMs can be
described in a conventional HDL. In order to support the maximum number of possible
design methods, an XML grammar was defined to capture the functionality of an FSM.
In a file containing a description following this grammar, the interface of the machine
is specified first. For example:



(variables)
(variable name="rst” dir="in" width="1" registered="true”/)
(variable name="clk” dir="in" width="1" registered="true” /)
(variable name="phy_ad” dir="in" width="5" registered="true” /)
(variable name=“mdio_tristate” dir="out” width="1" registered="true” /)
(/variables)

After this, the description specifies the states. An initial tag specifies the global
conditions for the state machine, such as reset input, clock input, reset state, and syn-
chronous or asynchronous reset. A description of the individual states follows this. A
state has equations and transitions associated with it. Each equation assigns some value
to an output. Input, constants and basic operators (add, sub, and, or, etc.) are used to
form the right-hand side of the equation. Transitions include the next state and the con-
dition when the transition occurs. Equations can also be associated with transitions. The
time when the equation is executed depends on where the equation is located — in the
state or in the transition.

(state name="stateADD”)
(equations) (equation Ihs="out0” rhs="inl + in2” /) (/equations)
(transitions)
(transition condition="else” next="state1”)
(equations) (equation Ihs="ready” rhs="“1" /) (/equations)
(/transition)
(/transitions)
(/state)

3.3 Logic-processor interfacing

In a conventional SoC design containing processors, the processor is normally con-
nected to the rest of the logic via a system bus or other on-chip network [5]. The pro-
cessor is a master on the network, initiating and responding to transfers. Since multiple
masters may be present in a bus-based system, an arbiter is needed, and masters must
first request the bus from it. In the case of an SoC implementation using Virtex-11 Pro
Platform FPGAs, the logic required to generate the arbiter, the bus itself and the bus
interfaces on each of the slaves is implemented in the fabric of the FPGA.

Examining the interface of the PowerPC to the logic fabric in the Virtex-1l Pro,
there is some flexibility in choosing a method of transferring information between the
processor and the logic, and vice-versa. In essence though, for all methods, communi-
cation is done over a bus at the processor/logic boundary. Three data buses are natively
interfaced to the PowerPC: the On-Chip Memory (OCM) bus, and the Device Control
Register (DCR) and Processor Local Bus (PLB) buses from the CoreConnect family of
SoC interconnect.

The logic design task in the tool development was to take the XML description of
the FSM, and produce the interfacing harness as illustrated in Figure 2. The role of
this harness is to shield the software decelerator, so in effect the FSM code running on
the processor looks like an FSM implemented in logic — that is, the rest of the system
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Fig. 2. Software decelerator architecture

should not see any processor specific signals. Moreover, the philosophy is to allow logic
to communicate with software using the minimum amount of interfacing.

To interface with the embedded PowerPC processor, it is necessary to use one of
the three native buses mentioned above. Simplifications to the interface logic can be
made by relying on the fact that only one master (the processor) is present and that
it only talks to one slave (the logic circuitry). In each case, the slave can assume it is
being addressed all the time, and can simply write outputs and read inputs directly to
and from the data bus. For the DCR and the PLB buses, the master interface in the
processor assumes the existence of an acknowledge signal, but the logic to do this is
very simple.

State machines are normally driven by a clock that dictates when the machine should
move between states. For software decelerators in general, there will not be a relation-
ship between the clocks of the rest of the system and the processor. For the state machine
and general decelerators, there are two methods for dealing with clocks.

The first method is to use the clock for the state machine directly, as if it were a
normal input. Since the processor operates at a much higher frequency than the rest of
the system, it is possible for the processor to poll the clock input, and begin processing
when it detects a rising edge. The limitation with this method for finite state machines
is that the worse case state execution dictates whether the system will meet the timing
requirements or not. Figure 3 shows a simplified timing diagram using this method.
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clock inputs next state outputs clock

Processor
clock

Activity

Fig. 3. Simplified timing diagram



A second method is to generate a clock pulse from the processor itself using a
memory-mapped one-shot circuit. In this case, states would be allowed to take a differ-
ent number of processor cycles to complete — the clock pulses would simply appear
after a different number of processor cycles, but the external circuits would know when
their inputs and outputs have been clocked.

3.4 Timing generation

The ability to get accurate timing information is crucial to the success of the software
decelerator technique. The designer needs to be confident that the overall system, in-
cluding the decelerator, meets overall timing constraints. To do this, a measure of the
delay through the software decelerator is required, in exactly the same way as in hard-
ware design, where the delay through logical elements is required.

Li and Malik present a good discussion of the state of the art of determining the
worst-case execution time for software [4]. Similar techniques would be needed for
general software decelerator use, where arbitrary code structures are permissible. How-
ever, in the case study, the structure of the software is strictly under the control of the
tool. Therefore, with a knowledge of the execution times for each instruction type, the
tool itself can count the number of processor cycles. Since the program runs out of
cache and the time to perform bus transfers to the rest of the system is known, this cycle
count is very accurate. This is different to the approach used by POLIS which generates
execution characteristics by instrumenting and running code.

3.5 Software design

Section 2.2 stated that interfacing should consume minimal resources, to make the soft-
ware decelerator a value proposition to the designer. Similarly, other support for the
processor (e.g. memory and clock control) should consume minimal resources. In the
case of the PowerPC, it is possible to reduce external memory requirement to zero by
using the instruction and data caches as main memory. This means that the whole exe-
cutable needs to fit inside the 16Kb instruction cache. In the FSM case under consider-
ation, where no lavish software support is required, extremely complex state machines
would still fit inside the 16Kb limit.

It was decided to use assembly code directly for the software implementation. This
had two specific advantages. The first advantage is that using assembler simplifies the
problem of extracting timing information as described in Section 3.4. The other is that
the PowerPC instructions mfdcr and mtdcr, which move data from and to the DCR bus
respectively, can be used if the DCR bus is chosen as the interface. These instructions
move data between a specified general-purpose register and the DCR, and thus are
difficult to deal with from compiled high-level languages.

Every state uses the same template to create output assembly code. The most com-
plex task is the translation to assembly code of the equations to determine the next
state and the state outputs. Inputs are only read if they are used in these equations. The
conditions for translations use the same method to calculate the value of the condition.



Special care was taken to maximize the usage of registers and only use the cache mem-
ory if needed. This can lead to more efficient code — a useful feature since the state
machine is already operating at a much lower frequency than the FPGA fabric.

4 Experimental results

The tool was used on three state machines from the networking domain, with very dif-
ferent performance and 1/O requirements. In each case, the clock is supplied by the
system’s environment. The first state machine (rs232echo) was an RS232 protocol han-
dling machine, which echoed received inputs onto outputs, and the second one (miim)
handled the Media Independent Interface (MII) of an Ethernet MAC which runs at
2.5MHz. The third state machine (tx_host_io) handles the host interface to a 10G Ether-
net MAC. This machine clearly has a need for high performance, and is included here
as an illustration of a case where a software decelerator is not likely to be chosen as
the implementation technique. The first table shows the results for a direct logic circuit
implementation from synthesized VHDL.

Machine | Input|Output|Number |Registers|LUTs| Required
width| width |of states frequency
rs232echo| 3 1 12 92 111 | 115 kHz
miim 33 | 20 33 26 61 |2.5MHz
tx_host_io| 90 | 94 5 142 | 320 (156 MHz

To determine the possible real estate savings through using a software decelerator,
the new tool was run targeting each of the three available buses. The resource usage and
the relative savings in terms of LUTs used compared with the direct logic implementa-
tion for each of the buses is shown in the next table.

OCM DCR PLB
Machine ||Registers|LUTs| Ratio ||Registers|LUTs| Ratio ||Registers|LUTs| Ratio
rs232echo 1 4 |3.6% 2 6 |54% 4 8 |7.2%
miim 20 38 |62.3%| 21 40 |65.6%| 23 42 168.9%
tx_host_io 94 75 |23.4%| 95 77 124.1%| 97 79 [24.7%

The OCM-based implementations are the smallest of the three for each example.
Also, the OCM is as fast as the PLB bus for processor/logic interaction — in both
cases they take four processor cycles, as opposed to the DCR which takes nine proces-
sor cycles. These figures assume the system bus operates at half the frequency of the
PowerPC core, that is the PowerPC operates at 350MHz, and the bus clock runs at 175
MHz. In order to determine timing figures, each of these machines was implemented
using the new tool, targeting the OCM bus. The final table shows the results for each of
the example machines.

Machine | Worst-case | Worst-case |% of time|Code size| Code size
performance|performance| in /O | (kbytes) |as % of cache
(cycles) (MHz)
rs232echo 40 8.75 30.95% | 1416 8.6%
miim 74 4.730 25.22% | 2968 18.1%
tx_host_io 135 2.593 33.99% | 1952 11.9%




The rs232echo would work at all required baud rates, and the performance of the
miim state machine is well inside the required 2.5MHz limit. These examplesillustrate a
software decelerator delivering the required performance, rather than an unnecessarily
high performance. The tx_host_io state machine however, and as expected, does not
operate at anything like the required frequency, and is an example of a case where
high performance is very much the key focus. In each case, the code only occupies a
fraction of the cache. Thus, it would be possible to run multiple state machines, that is
multiple software decelerators, on the same processor, as long as any cumulative timing
requirements are still be met.

It can be seen that 1/0 occupies a large proportion of time in each machine, and
is clearly a limiting factor in the machine speeds that can be achieved. In the case of
state machines, it may be possible to exploit the rich routing resources of the FPGA,
and introduce parallel transfers by packing the inputs required for each state into a
single word. This would require adjustments to the input multiplexor shown in Figure
2. The parallelized input signals could then be unpacked inside the processor by shift
and masks or alternatively, instructions could be applied directly to the packed signals.

5 Conclusions and future work

The research reported in this paper has introduced software decelerators as a mechanism
for harnessing the resources of an embedded processor in a Platform FPGA, making the
point that maximizing raw processor speed is not likely to be an issue in many logic-
centric systems. An application of this philosophy has been demonstrated through the
FSM-based design methodology. This experiment shows encouraging results in terms
of overall resource usage and ease of design. Future work will focus on various aspects,
including: further study of the implications of adopting a logic-centric system model;
automatic selection and synthesis of apt logic-processor interfaces; characteristic of soft
and hard embedded processors; FSM-based architectural components; and the provision
of domain-specific high-level design entry and tools.
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