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Abstract. Asynchronous logic design has been around for decades. However,
only recently has it gained any commercial success. Research has focused on a
wide variety of uses, from microprocessor design to low power circuits. The fact
that design tools and designer experience are geared more towards synchronous
circuit design has limited the acceptance and popularity of asynchronous design.
The JBitsTM API provides low level access to the configuration of resources in
a Xilinx � FPGA. Because of the control given to the user, the JBits API is an
ideal design environment for implementing asynchronous circuits on mainstream
FPGAs. An asynchronous full adder was implemented on a Virtex � FPGA. The
design of the circuit is described as well as modifications to the design tools to
simplify asynchronous circuit specification.

1 Introduction

As ASICs increase in size, asynchronous circuits are often cited as a possible alternative
to standard synchronous circuit designs. Clock distribution can be a problem in larger
ASICs, whereas with an asynchronous circuit there is no clock. While synchronous cir-
cuits currently are the main design technique, asynchronous circuits have been designed
that are either faster or consume less power. The main problem with asynchronous de-
sign is the fact that commercial design tools are geared towards synchronous circuits.

The JBits API provides direct access into the configuration bitstream of a Xilinx
FPGA. It provides abstraction layers that provides a design environment similar to a
structural HDL while concurrently affording low-level control. The level of control is
ideal for asynchronous circuits. Using the JBits API, an asynchronous full adder was
implemented in a Virtex device.

2 Asynchronous Logic

Asynchronous logic has been actively researched for several decades [6] [8] [9]. How-
ever it has yet to reach mainstream use. Recently there has been a renewal of inter-
est among the research community. Commercial products are slowly coming to mar-
ket [5] [3] [7]. The advantages afforded by asynchronous logic are making it an in-
creasingly viable alternative to synchronous design as ASICs continue to grow in size.
The advantages generally cited are modularity, average-case performance, low power
consumption, and no clock distribution.



3 Asynchronous Design with JBits

The JBits API provides access into a Xilinx FPGA configuration bitstream. There is
access to every resource, such as routing programmable interconnect points (PIPs),
LUT values, and CLB configurations. Because of the level of control, the JBits tool kit
provides an ideal environment to design asynchronous circuits in mainstream FPGAs.
Research has either focused on implementing asynchronous circuits on mainstream FP-
GAs [10] or on creating architectures better suited for asynchronous designs [11] [4].
Payne [4], for example, suggests an architecture that has a programmable delay ele-
ment. However, with the JBits API, a programmable delay element can be implemented
by directly controlling the routing. Althouse [13] created a programmable delay in the
XC4000TM devices with a 50 ps resolution using the JBits API.

3.1 NCL Full-Adder

NULL Convention LogicTM [3] (NCLTM) is a technique similar to Delay Insensitive
Minterm Synthesis (DIMS) [12]. It uses four-phase signaling with a dual-rail com-
munication protocol. While DIMS uses C-elements and OR gates, NCL provides for
optimizations by allowing M-of-N gates. Using M-of-N gates results in smaller circuits
than what would be created with DIMS. The M-of-N gate works by transitioning to a
high value when M of the inputs are high. The transition to a low value does not occur
until all of the inputs are low. Figure 1 shows the implementation of a 2-of-3 gate in
a Virtex LUT. While it may appear that using feedback by going through general pur-
pose routing may cause a problem, it does not. Because of the signaling protocol, the
feedback only needs to have a shorter delay than the output going through circuitry that
requests the NULL or DATA phase, and through the circuitry of the previous stage that
sends the DATA or NULL signal. Also, hazards do not cause a problem because the
transitions that can occur on the LUT and the LUT configuration do not result in any
situations that cause hazards.

Fig. 1. Diagram showing the implementation of a 2-of-3 NCL gate in a Virtex LUT.

NCL is a case of a Quasi Delay Insensitive circuit. The delay sensitivity lies in the
orphan of a circuit [2]. However, the timing constraints are a lot less stringent than an



isochronic fork. In most cases the circuit can be considered delay insensitive. To analyze
the timing constraints, only partial circuits must be analyzed.

Pipelined circuits can be created using asynchronous registers. In NCL this involves
a circuit checking that the input has a complete data set. The register will pass the data
through once an acknowledge signal is sent from the circuit that will receive the data.
Once the data is passed through, the register will send a signal to the previous circuit
requesting a return-to-zero (or NULL) transition. Figure 2, shows an example of an
NCL register.
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Fig. 2. Diagram showing an 2 bit asynchronous register in NCL.

Using the JBits design tool, an NCL full adder was created. The full adder is pa-
rameterizable by allowing variable width inputs and requires three Virtex slices per bit.
The M-of-N gates were each made into cores and required a LUT with feedback. Inter-
connection between the M-of-N gates was done through the use of JRoute [1]. While
JRoute does not support the ability to specify a delay for a given net, this control is not
necessary when using NCL. Only a subset of the circuit needs to be analyzed for timing,
and if a problem is found it is handled in a special case, such as a programmable delay
element core. The special case would modify the net routed by JRoute with the use of
templates to add delay. Shown in Figure 3 is a single stage of an NCL full adder circuit.
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Fig. 3. Diagram showing the implementation of a full adder using NCL.



3.2 Modification to RTP Core Specification

The JBits run-time parameterizable (RTP) core specification provides a means for ab-
stracting away the low level configuration calls, thereby creating an environment simi-
lar to traditional hardware design languages (HDLs), while concurrently affording the
ability to make bitstream level modifications. However, the RTP Core specification did
not provide clean support for dual-rail asynchronous circuits. The problem occurred
when connecting high level cores; the Net and Bus classes were meant for single sig-
nals. However, in dual-rail logic a net is equivalent to a bus with two nets. For this a
DualRailNet was created. It extends the Bus class and can only be of width two. A Du-
alRailBus was also created and is similar to the Bus class, except that DualRailNet was
used in place of Net. A method to traverse the hierarchy of cores to the physical pins
was created. JRoute is then used to make the physical connections.

4 Results

One characteristic of asynchronous circuits is that they exhibit average case perfor-
mance. Shown in Figure 4 is a graph of the delay, in nanoseconds, through a 4-bit NCL
full adder for each combination of inputs. A Virtex device was used with a -6 speed
grade and the circuit requires 6 CLBs. The graph looks nearly identical with a carry in
of one as opposed to a carry in of zero. For a carry in of zero, the delay values range
from 3.0463 ns to 10.0507 ns with an average delay of 6.0356 ns. For a carry in value of
one, the delays range from 3.0537 ns to 10.0507 ns with an average of 6.2257 ns. The
variation in the delays comes from the degree to which the carry bit propagates. If it
must propagate through each stage then the delay will be longer than the case when no
stages produce a carry out and therefore the output will be equal to the delay of a single
stage. The average performance is worse than a synchronous full adder implemented
on a Virtex device because Virtex devices are designed for synchronous circuits and
contain such optimizations for common circuits as the fast carry chain. However, the
graph does show that average case performance is exhibited.

5 Conclusions and Future Work

An asynchronous full adder was created along with a synchronous interface. The JBits
design suite is believed to be an ideal environment for asynchronous circuitry because of
the level of control provided. Research in the field has been ongoing for several decades.
As more commercial applications find success with asynchronous design, CAD tools
will become more supportive. Further research into a combination of asynchronous
design and run-time reconfiguration is being explored. Run-time reconfiguration has
shown many advantages in synchronous systems that are possibly applicable to asyn-
chronous systems. The JBits API is an important tool to enable the design of run-time
reconfigurable systems.
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Fig. 4. Graph showing the delay, in nanoseconds, through the full adder circuit for each combi-
nation of inputs. The left graph has a carry in of 0, and right graph has a carry in of 1.
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