
1

Getting back what
was lost in the era

of high-speed
software packet

processing

Marcelo Abranches1, Oliver
Michel2 and Eric Keller1

(1) University of Colorado, Boulder. (2) Princeton

University

Hotnets, 2022. Austin, TX.

Why should we care about Linux
Networking?
● Kernel functions

○ Firewall, forwarding
● Management tools

○ Iproute2, iptables, …
● Control Plane

○ FRR, StrongSwan

2

Linux Networking in Practice

>kubectl apply -f . /my-manifest.yaml

3

Pod1 Pod2 Pod3

Ipvs
Iptables
Routing
Bridge

Ipvs
Iptables
Routing
Bridge

Service

Example: Deployment with 3 Pods (containers) and a Service

Host 1 Host 2

Linux kernel Linux kernel

Linux Networking is Rich

4

But, Linux Networking is Slow

Linux Networking is Rich

5

Alternate Pipelines Emerged

Kernel Bypass
● DPDK
In-kernel Network Bypass
● XDP/eBPF

6

Bypass Linux networking to gain performance

Alternate Pipelines Emerged

Kernel Bypass
● DPDK
In-kernel Network Bypass
● XDP/eBPF

7

Bypass Linux networking to gain performance

Lose Linux’s ecosystem

Need to reimplement services

Can we just make Linux network faster?

8

Why is Linux Slow?
Because it’s general

9

Why is Linux Slow?
Because it’s general

Parsing, allocating and
populating complex data
structures (e.g., skb)

10

Why is Linux Slow?
Because it’s general

Parsing, allocating and
populating complex data
structures (e.g., skb)

Long critical path of all
functions and corner cases

11

Insights for Redesigning Linux
1. Linux mixes fast / slow path processing in a single

data path

– Instead, instantiate fast path in a specialized
execution environment

1. Not everything is needed all the time

– Instead, compose a minimal data plane
automatically based only what is needed

12

Is this redesign even possible today?

13

What we need is a fast-path execution
environment that …

1. Is efficient

2. Enables secure/dynamic code injection

3. Enables interaction with Linux

14

What we need is a fast-path execution
environment that …

1. Is efficient

2. Enables secure/dynamic code injection

3. Enables interaction with Linux

15

Three challenges remain
1. Break down Linux network processing

– Fast and slow path
2. Make this redesign transparent to the rest of the

system
– Leverage Linux’s ecosystem

3. Dynamically create a fast path
– Light and supports what is configured

16

Introducing
Transparent Network Acceleration

(TNA)

17

Break down Linux network
processing

TNA (Fast Path) Linux Kernel (slow path)

18

…

Break down Linux network
processing

TNA (Fast Path) Linux Kernel (slow path)

Handle corner
/complex cases

Manage state

19

…

Linux provides completeness of processing

Break down Linux network
processing

TNA (Fast Path)

Access state

Linux Kernel (slow path)

Handle corner
/complex cases

Manage state

Composable fast path modules and
bpf helpers

Linux provides completeness of processing

20

…
Send to slow path

Break down Linux network
processing

Few simple tasks
Handle majority of packets

TNA (Fast Path)

Access state

Linux Kernel (slow path)

Handle corner
/complex cases

Manage state

Composable fast-path modules and
bpf helpers

Linux provides completeness of processing
TNA allows processing common case packets with minimal overheads

21

…
Send to slow path

Make this redesign transparent
to the rest of the system
User (or tool) configures Linux network

22

Linux Kernel

Make this redesign transparent
to the rest of the system
User (or tool) configures Linux network

23

Linux Kernel

>brctl addbr br0
>brctl addif br0 enp4s0f0
>brctl addif br0 enp4s0f1

Create a bridge

Make this redesign transparent
to the rest of the system
User (or tool) configures Linux network

24

Linux Kernel

>ip route add 192.168.200.0/24 via 192.168.200.10
>ip route add 192.168.100.0/24 via 192.168.100.10

Manipulate routes

Make this redesign transparent
to the rest of the system
User (or tool) configures Linux network

25

Linux Kernel
Add filtering rules

>iptables -d 192.168.100.100 -A FORWARD -j DROP
>iptables -d 192.168.200.100 -A FORWARD -j DROP

Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

26

Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Introspects the Linux kernel

27

Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Builds a dependency graph representing
the configured services

28

Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Automatically composes a fast path by
mapping each node into one or more FPMs

29

Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

And deploys it at the XDP layer

30

Preliminary evaluation
3.4-3.8x faster than Linux and
1.6-2x faster than Polycube

31

Pktgen
(source)

TNA
Linux

Polycube

Pktgen
(sink)

Bridge

Conclusion
• We propose a redesign of the Linux

network stack
– Make it faster

• This is realizable with technology
currently available on the Linux kernel

32

Future Work
• Comprehensive analysis of Linux network

stack
– Decompose/accelerate more subsystems

• How to ensure the correctness of the data
plane

• Explore debugging mechanisms

33

Thanks!

34

