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Why should we care about Linux 
Networking?
● Kernel functions

○ Firewall, forwarding
● Management tools

○ Iproute2, iptables, …
● Control Plane

○ FRR, StrongSwan
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Linux Networking in Practice

>kubectl apply -f . /my-manifest.yaml
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Pod1 Pod2 Pod3

Ipvs
Iptables
Routing
Bridge

Ipvs
Iptables
Routing
Bridge

Service

Example: Deployment with 3 Pods (containers) and a Service

Host 1 Host 2

Linux kernel Linux kernel



Linux Networking is Rich

4



But, Linux Networking is Slow

Linux Networking is Rich
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Alternate Pipelines Emerged

Kernel Bypass
● DPDK
In-kernel Network Bypass
● XDP/eBPF

6

Bypass Linux networking to gain performance
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● DPDK
In-kernel Network Bypass
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Bypass Linux networking to gain performance

Lose Linux’s ecosystem

Need to reimplement services



Can we just make Linux network faster?
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Why is Linux Slow?
Because it’s general
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Why is Linux Slow?
Because it’s general

Parsing, allocating and 
populating complex data 
structures (e.g., skb)
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Why is Linux Slow?
Because it’s general

Parsing, allocating and 
populating complex data 
structures (e.g., skb)

Long critical path of all 
functions and corner cases
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Insights for Redesigning Linux
1. Linux mixes fast / slow path processing in a single 

data path

– Instead, instantiate fast path in a specialized 
execution environment

1. Not everything is needed all the time

– Instead, compose a minimal data plane 
automatically based only what is needed
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Is this redesign even possible today?
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What we need is a fast-path execution 
environment that …

1. Is efficient

2. Enables secure/dynamic code injection

3. Enables interaction with Linux
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Three challenges remain
1. Break down Linux network processing

– Fast and slow path
2. Make this redesign transparent to the rest of the 

system
– Leverage Linux’s ecosystem

3. Dynamically create a fast path
– Light and supports what is configured

16



Introducing 
Transparent Network Acceleration 

(TNA)
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Break down Linux network 
processing

TNA (Fast Path) Linux Kernel (slow path)
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…



Break down Linux network 
processing

TNA (Fast Path) Linux Kernel (slow path)

Handle corner
/complex cases

Manage state
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…

Linux provides completeness of processing 



Break down Linux network 
processing

TNA (Fast Path)

Access state

Linux Kernel (slow path)

Handle corner
/complex cases

Manage state

Composable fast path modules and 
bpf helpers

Linux provides completeness of processing 
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…
Send to slow path



Break down Linux network 
processing

Few simple tasks
Handle majority of packets

TNA (Fast Path)

Access state

Linux Kernel (slow path)

Handle corner
/complex cases

Manage state

Composable fast-path modules and 
bpf helpers

Linux provides completeness of processing 
TNA allows processing common case packets with minimal overheads
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…
Send to slow path



Make this redesign transparent 
to the rest of the system
User (or tool) configures Linux network
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Linux Kernel



Make this redesign transparent 
to the rest of the system
User (or tool) configures Linux network
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Linux Kernel

>brctl addbr br0
>brctl addif br0 enp4s0f0
>brctl addif br0 enp4s0f1

Create a bridge



Make this redesign transparent 
to the rest of the system
User (or tool) configures Linux network
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Linux Kernel

>ip route add 192.168.200.0/24 via 192.168.200.10
>ip route add 192.168.100.0/24 via 192.168.100.10

Manipulate routes



Make this redesign transparent 
to the rest of the system
User (or tool) configures Linux network
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Linux Kernel
Add filtering rules

>iptables -d 192.168.100.100 -A FORWARD -j DROP
>iptables -d 192.168.200.100 -A FORWARD -j DROP



Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA
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Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Introspects the Linux kernel
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Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Builds a dependency graph representing 
the configured services
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Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

Automatically composes a fast path by 
mapping each node into one or more FPMs
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Dynamically create a fast path
TNA controller

Fast Path

Linux Kernel

TNA

And deploys it at the XDP layer
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Preliminary evaluation
3.4-3.8x faster than Linux and 
1.6-2x faster than Polycube
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Pktgen
(source)

TNA
Linux

Polycube

Pktgen
(sink)

Bridge



Conclusion
• We propose a redesign of the Linux 

network stack
–  Make it faster

• This is realizable with technology 
currently available on the Linux kernel

32



Future Work
• Comprehensive analysis of Linux network 

stack
– Decompose/accelerate more subsystems

• How to ensure the correctness of the data 
plane

• Explore debugging mechanisms
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Thanks!
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