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Detecting Unseen Anomalies in Network Systems by
Leveraging Neural Networks
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Abstract—Despite all the progress achieved in recent years
in detecting anomalies in network systems, detecting unseen
anomalies such as zero-day attacks still remained a challenging
task. Traditional signature-based Network Intrusion Detection
Systems (NIDS) cannot detect such anomalies as there exists no
known signature for them. Moreover, Machine Learning-based
(ML-based) NIDS trained with a vanilla supervised learning
method cannot detect them as they come from a different
distribution compared to what the model has been trained on.
Domain adaptation techniques help transfer the knowledge gained
from a labeled source domain to an unlabeled target domain.
Such techniques have the potential to make a model trained on
a dataset containing a few network attacks to detect new types
of anomalies that might happen in the future. However, recent
domain adaptation methods have been mostly designed for images
and provide very limited benefits when applied to network traffic.
In this paper, we introduce Proportional Progressive Pseudo-
Labeling (PPPL), an effective approach for building a more
general domain adaptation technique that can be leveraged to
detect unseen anomalies in network systems. At the beginning
of the training phase, PPPL progressively reduces target domain
classification error, by training the model directly with pseudo-
labeled target domain samples, while excluding samples with
pseudo-labels that are more likely to be wrong from the training
set and postponing training on such samples. Our evaluation
conducted on the CICIDS2017 dataset shows that PPPL can
significantly outperform other baselines in detecting unseen
anomalies with up to 58% improvement based on the average F1
score.

Index Terms—Anomaly detection, intrusion detection system,
domain adaptation, deep learning, transfer learning, zero-day
attacks.

I. INTRODUCTION

THe important role that computer networks play in our
everyday lives provides a great incentive for attackers

to interfere with them to take advantage of the available
resources, access sensitive data, or deny legitimate users access
to a specific service. The cost of these attacks on exploited
businesses can be huge. Based on one estimation, the average
cost of a denial of service (DoS) attack on a company was $1.7
million in 2018, and the average cost of all cybercrimes on
each affected company was $13 million [1]. Based on another
estimation, the annual cost of cybercrime on the whole world
was estimated to be around $6 trillion in 2021 [2]. But the
monetary cost for exploited businesses is not the only problem
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with these attacks. In fact, their impact can be much harsher,
such as wide-scale power outages [3].

The severe adverse effects of these cyber-attacks have forced
companies to invest billions of dollars in designing and building
better tools to earlier detect and potentially prevent them [4].
Network Intrusion Detection Systems (NIDS) are one line of
defense against such attacks. Despite all the progress made
in designing better NIDS in recent years, they still struggle
to detect zero-day attacks because they rely on signatures of
known attacks. Zero-day attacks will bypass these signature-
based NIDS as there exists no known signature for these attacks.

An alternative approach is to utilize a machine learning
model to detect these new and unseen anomalies. Different
unsupervised learning methods have been proposed to tackle
this problem in the past. However, models trained with these
methods can only detect different network attacks while
generating a high number of false alerts or false positives,
which happen when the model classifies traffic as malicious,
but it is in fact benign. Any attempt to bring down their false-
positive rates significantly deteriorates their ability to detect
real malicious traffic. But, a good NIDS should be able to
detect a variety of network attacks while keeping false alerts
at a low level, because a high false-positive rate significantly
increases the workload of security experts in sorting through
all the traffic labeled as malicious to identify the real attacks.

Supervised learning can also be used, where one labels a
portion of network traffic that also includes some of the known
attacks and trains a model using this dataset in a supervised
fashion to detect anomalies in the future. However, while such a
model works well in detecting network attacks that are included
in the training set, it does not work well in detecting unseen
anomalies that might happen in the future. This could happen
with unseen attacks, whose characteristics are different, though
likely similar, from those the model is trained on them. It could
also happen because the input data distribution can constantly
change, and we might observe a domain gap between the
current data distribution and that which was used to train our
model. In such cases where we observe a domain shift in input
data, the model cannot do a good job of detecting different
types of anomalies. [5], [6].

In this paper, we try to answer the following question: How
can we train a model to detect unseen network anomalies that
might have different characteristics compared to those we used
to train a model? Unsupervised domain adaptation methods
are used to address such problems where there is a domain
shift between data distributions of a labeled source domain and
an unlabeled target domain. Recently, many different domain
adaptation methods have been proposed [7]–[17].
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Despite different techniques used in recent approaches, one
common flaw among them is that they do not generalize
well across different types of inputs - in particular, network
traffic. Some of the methods, such as [9], [12], are intrinsically
designed for images, as they do image-to-image translation
at the pixel level or need specific data augmentation that
should be applied to them at the pixel level. Therefore, there
is no straightforward way to apply these techniques to other
input types such as network traffic. For the other approaches,
they either leverage adversarial loss [8], [11], [18] or other
techniques such as clustering [7]. One common problem with
those approaches is that there is no guarantee of preventing the
wrong alignment of the target samples. In other words, target
domain representations from one class can get aligned with
another class during the domain adaptation, leading to lower
performance of the model. In addition, the complexity and the
large number of hyperparameters that some of these methods
have weighs on this problem as there is no straightforward way
to find the hyperparameters that minimize the target error due
to the lack of a labeled validation set for the target domain.
Therefore, more complexity leads to less generalization.

In this paper, we introduce Proportional Progressive Pseudo-
Labeling (PPPL), a more general domain adaptation technique
that works across different input types. PPPL assigns pseudo-
labels to the target samples and trains the model directly with
them. Key to PPPL is that it tries to minimize the number of
target samples that will align with a wrong class by excluding
uncertain samples from the training set at the beginning of the
training procedure and progressively bringing them back into
the training loop with a weight proportional to their certainty.
For this, we assume that we can guess the proportions of
target samples that belong to each class. Note that while we
do not know the individual labels in the target domain, the
class proportions can be guessed in many cases. We consider
three different scenarios with regard to this condition. In fact,
this paper is an extension to our conference paper [19] in
which we assumed that target domain class proportions can be
guessed accurately. In this paper, in addition to that scenario,
we evaluate our method in a scenario in which we consider
some different levels of error in the ratio of malicious traffic in
the target domain. Moreover, we further relax this assumption
and discuss how PPPL can be modified to work in a more
realistic scenario in which there is no information about the
target domain class proportions.

Our experiments on the CICIDS2017 [20] network intrusion-
detection dataset demonstrate that our approach is superior to
other baselines for the anomaly detection task in network traffic.
Our evaluation shows that PPPL significantly outperforms
other baselines in detecting unseen anomalies with up to 58%
improvement based on the average F1 score.

II. BACKGROUND

In general, unsupervised domain adaptation is the process of
mitigating the domain shift between a labeled source dataset
and an unlabeled target dataset to transfer the knowledge gained
from the source dataset to the target dataset. These techniques
are leveraged during the training of a model and the goal

is to make a model predict target samples more accurately
without directly labeling them. For example, domain adaptation
techniques can enable an image classifier that was trained on
labeled images with white backgrounds to more accurately
classify unlabeled images that are captured with a webcam
from the objects in an ordinary office [7], [8]. Recent methods
that have been proposed for domain adaptation leverage a
wide range of techniques to make a classifier achieve better
results on the target domain. Some of them, such as [9],
[12], are explicitly designed for images. Hoffman et al. [12]
introduced CyCADA, an image-to-image translation method
in which they combined generative adversarial networks with
cycle-consistency constraints at the pixel level and semantic-
consistency constraints at the feature level to reduce the domain
shift between the source and target domains. French et al. [9]
built their domain adaptation method on top of the mean
teacher [21] idea and called it self-ensembling (SE). Basically,
in addition to training a model with source samples and cross-
entropy loss, two different stochastic transformed versions
of each target sample are fed to two different models called
student and teacher, and the squared difference of their outputs
is minimized. As French et al. described in their paper, for
some datasets, the transformations they used for their stochastic
data augmentation are highly tuned towards that dataset and
therefore, cannot be easily applied to other input types. This
group of works is intrinsically designed for images and cannot
be applied to other input types in a straightforward manner.

The second group of methods can be applied to different
input types as their focus is to mitigate the gap between the
source and the target domains in the feature space at some
intermediate layer of a deep network. The adversarial domain
adaptation is the basic idea behind a large portion of recent
approaches [8], [11], [18]. In these works, the classifier is
trained jointly with a domain discriminator like a GAN [22].
The discriminator is trained to distinguish between source
and target samples based on their representation captured
from an intermediate layer of a deep network, while the
classifier itself is trained in a way to fool the discriminator
that results in generating domain invariant features. Ganin
et al. [11] proposed Domain Adversarial Neural Network
(DANN) in which they augment a classifier with a domain
discriminator and train them in an adversarial fashion by back-
propagating the reverse gradients of the domain classifier
to learn domain invariant representations. Long et al. [8]
designed Conditional Adversarial Domain Adaptation (CDAN)
in which they condition the domain discriminator on the
cross-covariance of domain-specific feature representations and
classifier predictions, as well as on the uncertainty of the
classifier to prioritize the discriminator on the easy to transfer
samples. While we also model target domain uncertainty
into our PPPL method, our approach differs from approaches
like CDAN as they model the uncertainties into the domain
discriminator. Doing so makes those approaches deal with the
complications of training GANs, whereas in our approach there
is no discriminator and we model uncertainty directly into the
classification loss. This results in less complexity and greater
generalization.

Beyond adversarial domain adaptation methods, there are
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also other approaches like Contrastive Adaptation Network
(CAN). Kang et al. [7] mitigate the gap between the source
and target domains at some feature space through an alternating
optimization method in which they initially cluster target
samples into multiple different groups with some complicated
clustering method, and then they assign some pseudo-labels
to them. They then train the model by minimizing intra-class
discrepancy and maximizing inter-class discrepancy. Similar to
CAN, we also assign some pseudo-labels to the target samples,
but unlike CAN, we do not use any clustering method. We
instead assign the pseudo-labels directly based on the model
predictions. This, again, leads to less complexity and greater
generalization. As we will show in the evaluation section, while
these domain adaptation methods perform well in the image
classification task, they do not provide the same level of benefit
for detecting unseen anomalies in network traffic.

Therefore, our method differs from other domain adaptation
methods in two major ways: one important difference is that
PPPL reduces the domain gap between the source domain and
the target domain at the final layer of the network (logit space),
whereas other domain adaptation methods reduce domain gap
at input space (such as in CyCADA) or at some intermediate
representation of the inputs (such as in CDAN, DANN, etc.).
Another major difference between PPPL and other domain
adaptation methods is that when using other methods, in
addition to training the main model, some extra components
should also be trained. For example, in adversarial domain
adaptation methods such as CDAN and DANN, a domain
discriminator also gets trained jointly with the main model,
or in CAN, we need to alternate between training the main
model and optimizing a clustering algorithm, constantly. In
contrast, in PPPL we only train the main model and no extra
optimization step or extra model is required. This reduces the
number of hyperparameters used in PPPL compared to other
methods and makes it a more suitable unsupervised domain
adaptation method.

Semi-supervised learning (SSL) methods [21], [23]–[27] are
also used to train a model with a combination of labeled
and unlabeled samples and have the potential to be used
for detecting unseen anomalies in the network traffic. Many
recently proposed SSL methods add a loss term, calculated
based on the unlabeled data to make the model generalize better
to unseen data. As discussed by Berthelot et al. [28], these SSL
methods can be categorized into three different classes. Some
of these techniques [23], [24] aim to minimize the entropy of
the model’s outputs on unlabeled data to make the model output
more confident predictions on the unlabeled data. The second
class of SSL methods [21], [25], [26] regularizes the model to
have consistent outputs when provided with different perturbed
versions of the same unlabeled input. Finally, the last class of
SSL methods [27] aims to make the model generalize better by
leveraging some generic regularization techniques to prevent
the model from overfitting the training data. MixMatch unifies
all of these techniques to benefit from all of them. In MixMatch,
first, the model will be provided with K random perturbed
versions of each unlabeled sample, and a unique probability
vector will be "guessed" and assigned to all of those K inputs
to achieve consistency regularization. Then, this probability

vector will be sharpened by adjusting the "temperature" of
this categorical distribution to minimize its entropy. Finally, to
achieve generic regularization, for each batch of the labeled
and unlabeled data points, a new batch will be created in which
each sample is built from a linear combination of two random
samples from the original batch. In the end, the model will
be trained with the labeled samples by using cross-entropy
loss and with the unlabeled ones by minimizing the L2 norm
of model outputs and the "guessed" labels. While we also
assign some pseudo-labels to the unlabeled samples during our
training procedure, we do not mix up the samples. Also in
contrast to MixMatch, we model the certainty of our guessed
labels into the training procedure and postpone the training on
the less certain samples. Furthermore, unlike MixMatch we
directly reduce the domain gap between labeled and unlabeled
samples in the logits space and have fewer hyperparameters.
As we will show, all of these differences make PPPL generalize
better than MixMatch and get better results on the anomaly
detection task in the network traffic.

III. DESIGN INSIGHTS

Our goal is to train a neural network with the help of
a labeled source domain in order to detect unseen anoma-
lies in an unlabeled target domain. In other words, given
a set of labeled samples known as source domain S =
{(xs

1, y
s
1), (x

s
2, y

s
2), ..., (x

s
Ns

, ysNs
)} such that yi ∈ Y = {0, 1}

and another set of unlabeled samples known as target domain
T = {xt

1, x
t
2, ..., x

t
Nt
} which come from two different data

distributions our goal is to train a model F : x 7→ y to predict
ŷti ∈ Y to maximize the F1-score on the target domain. In
doing so, we essentially can label a portion of network traffic
containing a few network attacks and be able to detect new
types of anomalies in the rest of the unlabeled traffic with the
help of our approach. In the rest of this section, we provide
some insights that helped us to design our approach. Then, in
the following section, we explain how we incorporate these
insights to design PPPL.

A. Insight 1 - when training with pseudo-labels mean square
error is a better choice

As we mentioned earlier, we want to assign pseudo-labels
directly based on model predictions to the target domain
samples and train the model with them. For training, there are
two choices here: We can feed the outputs of the final layer
of the model to a Softmax function and train the model with
the cross-entropy (CE) loss. We can also directly minimize the
distance of the final layer outputs and the one-hot encoding of
the labels with mean square error loss (MSE). We argue that
for such a setting, MSE is a better choice. First, consider the
Softmax function, which is defined as follows:

σ(z)i =
ezi

ΣM−1
j=0 ezj

for i = 0, 1, ...,M − 1

where M is the number of classes. Note that because of the
nature of this function, there is no one-to-one mapping between
the probabilities (outputs of the Softmax layer) and the logits
(inputs of the Softmax layer). That is to say, many different
points in the logit space can be mapped to a single vector
of probabilities. For example, when there are only 2 classes,
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(a) (b) (c)

Fig. 1: The illustration of training a model on the correct target domain samples. In (a) there are three target domain samples,
and only point A is predicted correctly. When we train the model on point A and label it as 1, the model learns that close
proximity of A should also be classified as class 1 as illustrated in (b) and therefore, point B also will be classified correctly.
Then this effect gets propagated to the points near B and therefore point C will be classified correctly in the next iteration as
illustrated in (c).

both of the points [1, 100] and [200, 299] will be mapped to
the [ 1

1+e99 ,
e99

1+e99 ]. This means that potentially, the points that
belong to the same class can form multiple different clusters
in the logit space. More specifically, the target domain samples
and the source domain samples that share the same label or
pseudo-label can fall into different clusters. On the other hand,
when we train the model with MSE, the points that have
real or pseudo-label Ci will fall into one single cluster very
close to the point [0, ..., 0, 1, 0, ...0] where the i-th index is 1
after we train the model on them. This characteristic is more
desirable as it mitigates the domain gap between the source and
the target samples at the logit space and forces the model to
learn features in the earlier layers of the network that leads to
indistinguishable representations at the logit space between the
source and the target domain samples. From another point of
view, if we had a domain discriminator to distinguish between
the source and the target samples’ logits it could be completely
fooled. Therefore by using MSE loss in this setting, we get the
same advantages of adversarial domain adaptation techniques
without being worried about the complications of training
GANs.

B. Insight 2 - training only on correct samples gradually
reduces the target error

Consider a model pre-trained on the source domain. We
argue that we can make the model predict more target domain
samples correctly if we further train this model on the target
domain samples that are already classified correctly. Also, we
argue that if we do this technique for more iterations, we can
gradually reduce the target error further.

To understand this better, consider a model pre-trained on
the source domain. Also, as illustrated in Figure 1 consider
some samples (e.g., A, B and C) from the target domain
that belongs to the same class (e.g., class 1) and fall into
close proximity of each other at some middle representation
of the network. Assume that we assign pseudo-labels to these
samples directly based on model predictions. Suppose that
some of these pseudo-labels are correct and some are wrong
(e.g. ŷA = 1, ŷB = 2, ŷC = 2). If we exclude wrong samples
(B, C) and train the model only on correct samples (A), then
the model learns that the points (B) near these points (A)
are also more likely to be from the same class (class 1) and
potentially some of them will get a correct pseudo-label in the
next iteration. This effect gets propagated to the points near B
(C) in the next iteration. Therefore, excluding wrong samples
and training only on correct samples gradually reduces the
target error.

To further show this, in Figure 2 we demonstrate the results
of such training on three different domain adaptation tasks from
the CICIDS2017 dataset. This dataset is discussed in more
detail in Section V-A. For each of these tasks, the model was
trained on a source domain that includes some of the network
attacks and the results are reported on a target domain that
consists of different types of network attacks. As can be seen
in all cases, the model progressively learns to detect unseen
anomalies in the target domain better. Note that F1 scores keep
increasing during the first few epochs for all three cases. After
10 epochs, the results achieved with this method are better than
the results of any other domain adaptation approach that we are
aware of by a large margin. In other words, we can significantly
reduce the target error only by assigning pseudo-labels to the



HASHEMI et al.: DETECTING UNSEEN ANOMALIES IN NETWORK SYSTEMS BY LEVERAGING NEURAL NETWORKS 5

Fig. 2: F1 scores reported for the target domain when trained
only on the correct predictions for three different domain
adaptation tasks.

target samples directly based on the model predictions and
training the classifier with them. We just somehow need to
determine in which cases the model is wrong to exclude them
from the training procedure.

C. Insight 3 - an uncertainty metric can guide which predic-
tions are wrong

Unfortunately, there is no straightforward way to know
which of the model predictions are correct and which ones
are wrong on the target domain as we do not know the target
domain’s labels. But, among all samples that are predicted
as the same class, there is a relation between the model’s
certainty and the chance of wrong predictions. We capture
the model’s certainty with the difference between the two
scores that the model outputs for each sample and call it the
certainty score. This difference becomes smaller as in some
intermediate representations of the inputs the points get further
away from the same-labeled source points, falling into sub-
spaces that are not well explored by the model or when they
fall in close proximity to other points with different labels
meaning getting closer to the decision boundaries. Thus, in
such cases, it becomes more likely to get predicted wrongly.

This characteristic can also be seen in Figure 3. In general
when the certainty score decreases among samples that are
given the same pseudo-label, a larger portion of predictions
becomes wrong. For this figure, we first trained the model on
the source domain for each of the aforementioned tasks with
MSE loss. Then, the ratio of wrong predictions to all of the
target samples that are predicted as benign and their certainty
scores fall into the interval [ i−1

10 , i
10 ] is calculated.

Fig. 3: The ratio of wrong predictions at different levels of
model certainty.

D. Insight 4 - the timing of inclusion of a wrong-prediction
matters

While we can predict better, we cannot know for sure which
predictions are correct, and therefore it might be inevitable we
assign some wrong pseudo-labels to some of the target samples
and train the model on them. But one thing that is important is
the time when we train the model on the target samples with
the wrong pseudo-labels. We argue that the early inclusion
of such samples into the training procedure deteriorates the
model’s performance on the target domain more than later
inclusion. This is because of the same phenomenon that we
discussed in insight 2: When we train a model on a target
sample with a wrong pseudo-label, it would be more likely
for the model to assign that wrong label to the points that are
in close proximity of that wrong sample. Then, this wrong
label propagates to the neighborhood of these newly affected
samples in the next iteration. Therefore, the earlier we train the
model on a wrong sample, the further its impact will propagate,
the more the model’s performance deteriorates on the target
domain.

This problem can also be seen in Figure 4. For this figure,
for each of the tasks mentioned in the second insight, we
trained the model the same way we discussed but we also
included some samples with wrong pseudo-labels into the
training procedure at different epochs (epochs 1,4,7, and 10).
The size of the wrong pseudo-labeled samples in each task is
set to be at most 10% of the target domain sample size. For
all of the cases, we trained the model for ten epochs. In this
figure, we illustrate the change in the F1 score of the target
domain when the wrong pseudo-labeled samples were included
in the training loop at epochs 1, 4, and 7 in comparison with
when they were included at epoch 10. Therefore a larger bar
shows a greater decrease in the F1 score. As can be seen, the
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Fig. 4: The negative impact of early training on wrong pseudo-
labels.

earlier the model gets trained on the wrong samples, the more
its ability to detect unseen anomalies deteriorates. For example,
for the B → C task, if we include the wrong pseudo-labeled
samples at the first epoch of training, the final F1 score will
be almost 8% lower than when we postpone their inclusion to
epoch 10.

IV. PROPORTIONAL PROGRESSIVE PSEUDO-LABELING
(PPPL)

In this section, we first demonstrate our method for a scenario
in which target domain class proportions are known to us.
Then we discuss how this method can be extended to work for
scenarios in which such information is not available.

A. PPPL with Prior Knowledge about Target Domain Class
Proportions

Based on the insights we discussed, we designed our
approach. In a nutshell, based on the second insight, we know
that if we use a model pre-trained on the source domain, assign
pseudo-labels to the target samples with it and exclude the
wrong pseudo-labels the model progressively gets better. Also,
based on the first insight, we know that using MSE loss is
better than CE loss for such a setting. Unfortunately, we cannot
find out exactly which pseudo-labels are wrong since we do
not know the target labels. However, based on the third insight,
we know that the ratio of wrong predictions increases as the
model certainty decreases. In addition, based on the fourth
insight, we know that it is better to postpone training the model
on such samples.

Algorithm 1 describes our approach in more detail. The
inputs are F , which is the model pre-trained on the source
domain, Xs, which is the set of all source domain samples,
Ys, which is the set of all the source domain labels, Xt, which

Algorithm 1 Proportional Progressive Pseudo-Labeling

1: procedure PPPL(F,Xs, Ys, Xt, CPt)
2: for i← 1 to 45 do
3: N ← 10 + 2× i
4: St ← F (Xt)
5: PLt ← argmax(St)
6: CSt ← CalcCertaintyScore(St)
7: Wt ← CalculateWeight(CSt, PLt, N)
8: X ′

t, Y
′
t ,W

′
t ← Adjust(Xt, PLt,Wt, CPt)

9: X ′
s, Y

′
s ,Ws ← Select(Xs, Ys)

10: Train(F,X ′
s, Y

′
s ,Ws, X

′
t, Y

′
t ,W

′
t )

11: end for
12: end procedure

is the set of all target domain samples and CPt, which is
the set of target class proportions that are guessed or known
from other sources. We first train the model (F ) on the source
domain samples (Xs, Ys) with the MSE loss function (based
on insight 1). Then in each iteration of the algorithm, we first
get the score which is a vector with size 2 (2 is the number of
available classes) for each of the target samples (line 4) and
assign a pseudo-label to that sample based on its largest score
(line 5). Then, for all of the target samples, we calculate the
"certainty score" (line 6) and then assign a weight value to
each of the target samples based on its certainty score (line 7).
This weight will be used later during training to control the
impact of each sample on the model parameters.

The function CalculateWeight(CSt, PLt, N), first groups
all of the samples that are assigned the same label. Then, for
each group, it assigns a weight between [0.2−1.0] to N% of the
samples and 0 to the rest of the samples of that group. Within
each group, the weights are monotonically assigned based on
the certainty scores such that a sample with a larger certainty
score will be assigned a larger weight. More specifically, if the
number of samples that fall into the top N% for a given group
is Lc then the weights for those samples are calculated as
follows: wj =

1
tj

where tj = 1 + 4
Lc
× j in which j ∈ [0, Lc)

and wj is assigned to the j-th sample with the largest certainty
score.

For better illustration, in Figure 5, we show the weights that
will be assigned to the target samples with the same pseudo-
label at epochs 1, 20, and 45 of our method. We assumed
that the size of this group would remain at 1000 during the
whole training. As can be seen, a non-zero weight will be
assigned to only 10% of the samples, during the first epoch.
This essentially means that the other 90% of the samples that
have a lower certainty score will be excluded from training
in the first epoch. Also, note that we include more samples
in the training data in the later stages of our approach. For
example, 50% of the samples will be included in the training
data, at epoch 20, and at the final epoch, all the samples will be
included. Using this weighting strategy decreases the chance
of training on wrong samples in the early epochs by excluding
the less certain samples (designed based on insights 3 and 4).
Also, for the samples that will be included at each epoch, we
assign a smaller weight to the less certain samples to decrease
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Fig. 5: The illustration of weights assigned to the target samples
with the same pseudo-label.

the impact of those that are assigned wrong pseudo-labels
and potentially are among the included samples on the model
parameters (designed based on insight 3).

There is also another way we try to reduce the number of
wrong samples which is based on guessed class proportions
(line 8). In the Adjust function, for each label, we first calculate
the ratio of samples with that pseudo-label to the whole target
domain sample size. Then, during the first 30 iterations of our
algorithm, we change the pseudo-labels of the most uncertain
samples of the class whose ratio is higher than its corresponding
guessed ratio to the opposite class. Because it means that the
model predicted samples with that label more than what we
expected. For cases where the target dataset is very imbalanced,
this technique helps the model detect anomalies better in the
early iterations of the algorithm. For the rest of the iterations,
we train the model with the exclusion of the least certain
samples which are predicted more than their expected class
proportions. Because we expect some of these predictions to
be wrong. Therefore, from the class that is predicted more
than its expected value, we keep excluding the most uncertain
predictions until the ratio of remaining samples becomes equal
to our expected ratio (designed based on insights 2 and 3).

In addition to the target samples, we also select some samples
randomly from the source domain at each epoch to train the
model on them. We do this because in the initial iterations of
our algorithm we only include a small portion of the target
samples, and we do not want to make the model overfit to them.
We also assign a weight equal to 1 to these source samples as
all of their labels are correct. Finally, with the combination of
pseudo-labeled target samples and these source samples, we
train the model with MSE loss (designed based on insight 1).
More specifically, the loss function we use for training is as
follows:

LossPPPL =
1

N

N∑
i=1

wi||F (xi)− yi||22

in which yi is the one-hot encoding of (pseudo)label assigned
to sample xi and N is the total number of included samples

at the current epoch.

B. PPPL with No Prior Knowledge about Target Domain Class
Proportions

While having knowledge about target domain class propor-
tions can help to better detect unseen anomalies in network
systems, PPPL can also be used in more realistic scenarios in
which such knowledge does not exist in advance.

In this situation, instead of fixed class proportions, we run our
algorithm by enforcing adaptive class proportions as follows:

CPt = (1− w).CPt−1 + w. ˆCPt

CP0 = CPsrc

where CPsrc is the source domain class proportions, ĈP is the
class proportions calculated based on the pseudo-labels assigned
to the target domain samples, and w is a hyperparameter in
the range of [0, 1]. In other words, during the first iteration
of our algorithm, we enforce source domain class proportions.
Note that the source domain class proportions can always be
calculated as we know the source domain labels. Then, during
the next iterations, we update these values using an exponential
moving average of the predicted class proportions of the target
domain (which are calculated based on their assigned pseudo-
labels).

In this formula, w controls how strongly we want to enforce
source domain class proportions: When w is 0, we enforce
the source domain class proportions during all the iterations
of our algorithm, which will be beneficial for the cases where
the source domain class proportions are very similar to the
real target domain class proportions. On the other hand, as w
grows, we make our estimation to be more similar to the latest
predicted target domain class proportions, which might be more
beneficial for the cases where source domain and target domain
class proportions are different. Therefore, different values of w
lead to models which have different detection rates. Since we
do not know which w works the best, in order to detect unseen
anomalies with PPPL in this scenario, we train an ensemble of
models, each using a different w and average their predictions
to calculate our final score as follows:

FinalScore =
1

K

K∑
i=1

Fi(x)

where K is the total number of models in our ensemble, each
of Fi is a model trained with a different value of w, and Fi(x)
is the output of a model, which is a 2−dimensional vector.

If we could find a way to select the model which detects
anomalies in the target domain better in the ensemble of
our models, then the average detection rate could be further
increased. Note that since we do not know the labels of the
target domain samples, there is no straightforward way to select
the best model. However, we can approximate the detection rate
in the target domain with the help of source domain samples.
Among the models that we train, we expect the one that detects
different perturbed versions of anomalies in the source domain
with a higher rate to generalize better and therefore have a
higher chance of detecting anomalies in the target domain. In
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practice, we defined a new metric to measure the generalization
capacity of each of the models in our ensemble as follows:

GeneralizationScore =

20∑
i=1

F1(Xsrc + 0.01× i×R, Ysrc)

R ∼ Uniform(0, 1), X ∈ [0, 1]

where R is a random matrix with the same size as Xsrc which
is generated from a Uniform distribution, and F1(.) is the
F1 score calculated for a given model when provided by a
perturbed version of the source domain samples. In other words,
the generalization score of a model is the summation of the
F1 scores calculated on the source domain when perturbed
with different levels of noise and a higher value shows better
generalization capacity. Therefore, in our second approach,
instead of getting the average of the models’ outputs in our
ensemble, we select the one with a higher generalization score
and only use that model to detect unseen anomalies in the
target domain. In the evaluation section, we show how using
these two techniques can help us to relax our assumption about
target domain class proportions and make our method work in
a more realistic scenario.

V. EVALUATION

In this section, we evaluate PPPL’s ability to detect unseen
anomalies in network traffic. We first demonstrate how well
PPPL can perform when the target domain class proportions can
be guessed accurately, and then we show how this assumption
can be relaxed.

A. Dataset

To evaluate how well PPPL can detect unseen anomalies
in network traffic, we used the CICIDS2017 dataset [20]. We
built three different subsets from this dataset such that each
one consists of different types of network attacks as follows:

• Domain A: FTP-Patator, SSH-Patator.
• Domain B: DoS Slowloris, DoS Slowhttptest, DoS Hulk,

DoS GoldenEye, Heartbleed.
• Domain C: Web attacks, Infiltration.

We consider the traffic collected in each of these datasets as
one domain and define 6 domain adaptation tasks between
each pair of them as follows: A→B, A→C, B→A, B→C,
C→A, and C→B. In order to classify the packets in this
dataset, we first preprocessed them with the same method
described by Hashemi et al. in [29]. More specifically, we
first grouped packets based on their source and destination
IPs. Then, from each packet, we extracted some features from
its Ethernet header, IP header, TCP header, and UDP header.
We also extracted the inter-arrival time (the time between the
current packet and the previous one in the same group), and
direction (whether the packet is from the sender or receiver)
of each packet. In total, we extracted 29 features for each
packet. Finally, within each group, we concatenated the feature
vectors of every 20 consecutive packets together to feed them
to the classifier. Given this preprocessing method, the A, B,
and C domains contain 573,544, 685,241, and 462,031 samples,
respectively. Also, all of these domains are imbalanced. That is

to say, a large portion of the packets in each of them are benign,
and only a small portion is malicious. More specifically, the
percentage of malicious traffic in the A, B, and C domains are
2.2%, 18.2%, and 2.7%, respectively. For evaluation we report
the F1 score which equals to TP

TP+0.5(FP+FN) . We decided
to use this metric because true negatives (benign samples that
are predicted as benign) are not considered in the F1 score,
which makes it a good metric for scenarios where we have
imbalanced datasets, such as anomaly detection in network
traffic. In addition, both false positives (benign samples that
are predicted as malicious) and false negatives (malicious
samples that are predicted as benign) equally affect the F1
score. Therefore, when a model achieves a higher F1 score, it
means that its total wrong predictions (FP+FN) are fewer than
the other ones.

B. Baselines

We compare PPPL with three different baselines: CAN [7],
CDAN [8] and MixMatch [28]. CAN and CDAN are among the
best domain adaptation techniques to the best of our knowledge,
and MixMatch is one of the best semi-supervised learning
methods, which has been recently published. More specifically,
CAN is state-of-the-art for the Office-31 [30] dataset. Kang
et al. in their evaluation showed that CAN outperforms many
other baselines such as Domain Adversarial Neural Network
(DANN) [11], [18], Joint Adaptation Network (JAN) [13],
Multi-adversarial Domain Adaptation (MADA) [17], Deep
Adaptation Network (DAN) [31] and Self Ensembling (SE) [9].
Also, CDAN is among the best adversarial domain adaptation
techniques that we are aware of. Long et al. in their evaluation
showed that CDAN outperforms many other methods such as
DAN [31], Residual Transfer Networks (RTN) [32], DANN
[11], [18], Adversarial Discriminative Domain Adaptation
(ADDA) [33], JAN [13] and CyCADA [12]. Finally, Berthelot
et al. [28] showed that MixMatch can outperform several other
semi-supervised learning methods such as Π-Model [25], [26],
Mean Teacher [21], Virtual Adversarial Training [34], Pseudo-
Label [24] and MixUp [35] on multiple datasets. Therefore by
comparing our approach with CAN, CDAN, and MixMatch
and outperforming them, the superiority of PPPL over many
other baselines can be inferred.

C. Implementation Details

To evaluate PPPL on the CICIDS2017 dataset, we imple-
mented our method in the TensorFlow framework and run our
experiments on a system with 32 GB of RAM, a 3.6Ghz Core-
i7 CPU, and an Nvidia TITAN V GPU. For each of the six
domain adaptation tasks we defined, we first trained a two-layer
fully-connected network (2048→ 2) with ReLU non-linearity
after the first layer on the source domain. We decided to use a
simple model architecture with only one hidden layer as such
a model does not need to make lots of computation. Therefore
it can process network traffic faster than a model with multiple
hidden layers. During this phase, we trained the model for six
epochs with a batch size of 256 using Adam [36] optimizer
and adjusted the learning rate by ηp = η0(1 + α)−β where
η0 = 0.0001, α = 0.001, β = 0.75 and p = i/5 where i is
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TABLE I: Results of all methods on the CICIDS2017 dataset. The numbers reported in this table are F1 scores.

Method A → B A → C B → A B → C C → A C → B Avg

Only-Src 0.055 0.215 0.028 0.087 0.010 0.016 0.068
CDAN 0.007 0.004 0.006 0.013 0.000 0.025 0.009
CAN 0.662 0.169 0.123 0.333 0.000 0.005 0.215

MixMatch 0.000 0.000 0.000 0.708 0.000 0.650 0.226

PPPL 0.967 0.634 0.821 0.661 0.818 0.956 0.810

the number of iterations passed from the beginning of the
training. Since this dataset is imbalanced, in each epoch, we
first downsampled the benign inputs to become the same size
as malicious inputs and then trained the model on them. For
the domain adaptation phase, we trained the model using Alg.
1. During this phase, we also used the Adam optimizer with
a learning rate of 0.0001 and a batch size of 256, and also,
similar to the initial phase, at the beginning of each epoch of
our algorithm, we balanced our dataset. 1

To evaluate other baselines, we used the codes published by
the authors of those methods and trained the same model on
each of the domain adaptation tasks we defined. We evaluated
these methods on our network traffic dataset with several
different hyperparameters and reported the best result they
could achieve.

D. Scenario 1: Perfect Knowledge about Target Domain Class
Proportions

To see how well PPPL can detect unseen anomalies in the
network traffic, we first consider a scenario in which the target
domain class proportions can be accurately guessed. Table I
shows how PPPL performs in this situation in comparison
to other baselines. As can be seen, our baselines perform
very poorly on this dataset. In contrast, PPPL significantly
improves the detection rate of unseen anomalies compared
to only training on the source domain in all of the domain
adaptation tasks, and also it is 58.4% better than the best
baseline we compared with based on the average F1 score.

E. Scenario 2: Inaccurate Knowledge about Target Domain
Class Proportions

Since it might not always be feasible to accurately guess the
ratio of malicious traffic, in the second scenario, we evaluate our
approach in a situation where some error exists in the guessed
target domain class proportions. More specifically, for each of
the domain adaptation tasks in this dataset, we modified the
anomalous class proportion such that |ĈP a−CPa| = E×CPa.
where E ∈ {0.1, 0.2, ..., 0.7}, CPa is the real ratio of the
malicious traffic in the target domain, and ĈP a is the guessed
one.

Figure 6 demonstrates how our method performs in such
a scenario. In this figure, the leftmost bar shows the average
F1 score across all six domain adaptation tasks when there is
no error in the guessed class proportions, and the other bars
show the same metric while we considered different levels of

1For more details, please see https://github.com/s-mohammad-
hashemi/AD_PPPL.

Fig. 6: Average F1 score across all the six domain adaptation
tasks defined on the CICIDS2017 dataset when the guessed
ratio of malicious traffic used in the PPPL algorithm has some
error.

error. The right-most bar also shows the detection rate in the
target domain when we only train the model on the source
domain. Note that even when there is a 70% error in the
guessed malicious traffic ratio, the detection rate only drops
by 3% compared to the case when the target domain class
proportions are guessed accurately. Also, note that it is still
71% better compared to the case where we only trained the
model on the source domain samples. Therefore, in a scenario
where the target domain class proportions can be guessed but
with some error, our method still performs significantly better
than other baselines in detecting anomalies in network traffic.
More details on how PPPL performs on each individual task
in this scenario can be found in Table IV in the appendix.

F. Scenario 3: No Prior Knowledge about Target Domain Class
Proportions

In this scenario, we want to further relax the condition
related to the target domain class proportions and see how well
PPPL can detect anomalies when there is no prior knowledge
about the target domain class proportions with the help of the
ensemble method we described in Section IV-B.

In practice, for each of our domain adaptation tasks, we
trained two models with w = 0.1 and w = 0.7. Figure 7
shows how PPPL in this scenario performs compared to the
case when we have accurate knowledge about target domain
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Fig. 7: Average F1 score across all the six domain adaptation
tasks defined on the CICIDS2017 dataset when there exists no
prior knowledge about target domain class proportions.

class proportions. In this figure, each bar is the average F1 score
across all the six domain adaptation tasks in the CICIDS2017
dataset. Note that while the detection rate drops compared to
the case where we know the target domain class proportions
accurately, the average F1 score of our method in this scenario
is 0.698, which is still significantly better than the other
baselines. Our approach still detects unseen anomalies 63%
better than just training on the source domain and 47.2% better
than MixMatch as the best baseline on this dataset.

In addition, using the model selection approach we described
in Section IV-B, as shown in Figure 7, we could further increase
the detection rate to 0.737 based on the average F1 score which
is 66.9% better than just training on the source domain and
51.1% better than the best baseline. More details on how PPPL
detects anomalies in this scenario for each of the individual
tasks can be found in Table V in the appendix.

G. Generalization of PPPL on Other Datasets

In this section, to evaluate how well PPPL generalizes, we
report its performance on three other datasets that we built
based on public datasets created for the evaluation of NIDS. In
these datasets, the features for each record are extracted using
very different feature extractors compared to the one we used
in our earlier evaluations on the CICIDS2017 dataset.

1) Datasets: For evaluation of the generalization of PPPL,
we created 3 different domain adaptation tasks as follows:

Case 1: For this case, we used the CIC-ToN-IoT dataset
[37] to build our source domain and target domain. The source
domain consists of 50,000 benign records which are randomly
sampled from all the benign records and 5,000 malicious
records which are randomly sampled from the password class.
The target domain consists of another 50,000 benign records
which are randomly sampled from the remaining benign records
and 5,000 malicious records which are randomly sampled from
the ransomware class. So, the goal, in this case, is to see
how well a model trained on password attacks can detect

TABLE II: Comparison of PPPL with other baselines on the
CIC-ToN-IoT and NF-UNSW-NB15 datasets. The numbers
reported in this table are F1 scores.

Method Case 1 Case 2 Case 3

Only-Src 0.052 0.000 0.488
MixMatch 0.000 0.000 0.4382

PPPL S1 0.689 0.957 0.682
PPPL S2 0.688 0.957 0.687

PPPL S3 Ensamble 0.596 0.458 0.681
PPPL S3 Model Selection 0.594 0.458 0.682

ransomware attacks. Each data point in the original CIC-ToN-
IoT dataset had 83 features. Six of these features (Flow ID, Src
IP, Src Port, Dst IP, Dst Port, and Timestamp) do not capture
the intrinsic characteristics of the traffic. So we removed them
from our dataset and used the remaining 77 features for training
the models.

Case 2: For this case, we also used the CIC-ToN-IoT dataset.
In this case, the source domain consists of 50,000 benign
records which are randomly sampled from all the benign
records, and 1,000 malicious records which are randomly
sampled from the injection class. The target domain consists
of another 50,000 benign records which are randomly sampled
from the remaining benign records and 5,000 malicious records
which are randomly sampled from the backdoor class. So, the
goal, in this case, is to see how well a model trained on
injection attacks can detect backdoor attacks.

Case 3: For this case, we used the NF-UNSW-NB15 dataset
[38]. The source domain consists of 50,000 benign records
which are randomly sampled from all the benign records and all
the records from the Shellcode and Analysis attacks. The target
domain consists of another 50,000 benign records which are
randomly sampled from the remaining benign records and all
the records from the Worms, Backdoor, and DoS attacks. So, the
goal, in this case, is to see how well a model trained on shell-
code and analysis attacks can detect worms, backdoor, and DoS
attacks. Each data point in the original CIC-ToN-IoT dataset
had 12 features. Four of these features (IPV4_SRC_ADDR,
L4_SRC_PORT, IPV4_DST_ADDR, L4_DST_PORT) do not
capture the intrinsic characteristics of the traffic. So we removed
them from our dataset and used the remaining 8 features for
training the models.

2) Implementation Details: For these three datasets, we
used the same implementation details that we described earlier.
The only difference is that, for these three cases, we did not
downsample the benign inputs in each epoch of PPPL.

3) Results: Results of the evaluation of PPPL on these three
datasets can be found in Table II. In this table PPPL S1 is
for evaluation of our method in scenario 1, PPPL S2 is for
evaluation of our method in scenario 2 when the error rate
is set to be 70% and PPPL S3 is for evaluation in scenario
3. As can be seen in this table, even though these datasets
have been created with very different feature extractors, PPPL
can still detect unseen anomalies in the target domains and it
significantly outperforms the baselines in all of these cases.
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VI. DISCUSSION

In this paper, for the first time, we proposed to formulate
the problem of detecting unseen network attacks as a domain
adaptation problem. As we showed, other domain adaptation
methods provide very limited improvement when used for
detecting unseen anomalies in network traffic. Therefore, we
introduced PPPL as a new domain adaptation method that can
work well on top of features extracted from network traffic.
But, PPPL was not designed to only work for network traffic.
It should also provide some improvement when used for other
scenarios where we have datasets with similar characteristics
(e.g., structured feature vectors, imbalanced dataset).

To use PPPL for detecting unseen anomalies, one first needs
to collect a labeled dataset, which includes the normal behavior
of the network in addition to some known attacks. Then a model
can be trained using this dataset, and the PPPL method could
be used to help us detect different types of network attacks in
another un-labeled dataset that we are interested in.

As we have shown in our evaluation, while we can signifi-
cantly improve the detection rate of unseen network attacks, we
cannot completely distinguish between benign anomalies and
malicious anomalies. However, leveraging a domain adaptation
method such as PPPL in building an NIDS has the potential
to make the system better distinguish between these two
types of anomalies. In other words, our approach enables
the model to become adapted to types of benign anomalies
that happen gradually and eventually become the new normal
over time. Without using a domain adaptation method, these
benign anomalies would be flagged as malicious. Our approach
has its own limitations and cannot distinguish between benign
anomalies that are very different from current normal traffic and
just happen for a short period of time. Also, to train a model
using PPPL two existing datasets are required. Therefore, it
cannot be trained on real-time network traffic. We leave working
on these issues for future work.

VII. RELATED WORK

Network intrusion detection systems (NIDS) focus on
observing the network flow between computers to detect
malicious anomalies between different computers in the net-
work. NIDS are often categorized into three groups: signature-
based, anomaly-based, and other ML-based techniques. We first
give a short overview of signature-based and anomaly-based
techniques, and then provide a thorough review of other ML-
based NIDS, which is the main focus of this paper. The major
difference between our method and other methods we discuss
in this section is that our method incorporates both labeled
data and unlabeled data in the training phase to detect unseen
anomalies, whereas other methods used for detecting anomalies
in the network traffic are either trained in an unsupervised
fashion (with unlabeled data) or with a vanilla supervised
method (i.e., only with labeled data). Table III shows methods
used in each related work. We refer interested readers to the
survey papers on NIDS such as Molina-Coronado et al. [39].
Signature-based Techniques. This technique uses known
attacks and detects malicious flows by matching the observed
traffic to a known attack [40]. Since these techniques rely on

TABLE III: Methods used in the related work

System Methods

Anomaly-
based
NIDS

1. Grey Wolf Optimizer + Convolutional Neural
Network [45]
2. Deep Reinforcement Learning [47]
3. Adversarial Autoencoders [49]
4. Long Short-Term Memory + Convolutional
Neural Network [50]
5. Graph Neural Network [52]
6. Graph Neural Network + Generative Adversarial
Networks [53]

ML-based
NIDS

1. Support Vector Machines [54]
2. Decision Trees [55], [56]
3. K-Nearest Neighbors [57]
4. Bayesian optimization [58]
5. Radial Basis Function (RBF) [59]
6. Gradient-based Feature Engineering [60]
7. Relevance Vector Machine [61]
8. Multi-Layer Perceptron [62]
9. Gated Recurrent Unit [62]
10. Self-Organizing Maps [62]

known patterns, they are known to be ineffective in identifying
zero-day attacks [41], [42]. Therefore, other approaches are
often used to generalize and detect new classes of attacks.
Anomaly-based Techniques. The techniques based on anoma-
lies define normal behaviors and use them to detect mali-
cious flows that depart from the norm [43]. Statistical-based,
knowledge-based, and machine learning-based methods are
pervasively adapted to infer the normal model of system
behaviors in an offline mode and use them to detect anomalies
online [44]. Garg et al. [45] proposed a technique that
combines grey wolf optimizer [46] for feature selections
with convolutional neural networks (CNN) for training with
minimum feature engineering. Their experiments show that
the hybrid model outperformed the standard CNN as well as
traditional techniques such as support vector machine (SVM).
DEEPGUARD [47] proposed a deep reinforcement learning
(Deep-RL) technique to monitor network traffics for anomaly
detection. At run-time, they use a Deep-RL controller as
a policy network to match normal traffic flow, maximizing
both performance and security. ADRAN [48] uses adversarial
autoencoders [49] to learn the normal behavior of network
flows in the latent representation with arbitrary distributions.
CANNOLO [50] uses Long Short-Term Memory (LSTM)-
autoencoders to learn the normal behavior of Controller Area
Networks (CANs). At runtime, it computes the difference
between the reconstructed and the real sequence to detect
anomalies. Abdallah et al. [51] proposed a hybrid model of
convolutional neural network (CNN) with a long short-term
memory network (LSTM) to detect anomalies in software-
defined networks (SDNs). They showed that such combinations
improve the precision of detecting new intrusions to the
SDNs, which are not being seen during the training. Rather
than inferring normal behaviors and detecting anomalies by
measuring the deviation of traffics from the norm, we focus
on training ML models that discriminate between normal and
anomaly traces that go beyond the training distributions and
detect unknown patterns of attacks.

Anomaly detection techniques have been also proposed
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beyond network traffic analysis [52], [53]. Recently, Zhou
et al. [52] proposed a graph-based learning method to detect
unseen anomaly nodes on networks. Their main observation is
that the unseen anomaly is often closely mixed with normal
behaviors, whereas the seen anomaly is often well-discriminated
from the normal ones. Therefore, they require learning a normal
model of networks that has complex representations to be
separated from unseen anomalies, while it pushes away a
seen anomaly with a simpler representation. First, they divide
datasets into five groups as follows: the normal training set,
seen anomaly training set, the normal test set, seen anomaly
test set, and the unseen anomaly test set. Then, they adapt
graph neural networks (GNNs) to represent graph nodes in
low-dimensional representation in latent space. Then, they used
Gaussian Mixture Model (GMM) algorithms to further cluster
nodes into fine-grained patterns to effectively discriminate
unseen abnormal patterns from other classes. Finally, they used
multi-hypersphere graph learning to infer normal behaviors
where the objectives are to discriminate normal nodes from
unseen anomaly nodes while pushing seen anomaly nodes far
away. Ding et al. [53] tackle the problem of finding anomalies
in attributed networks that generalize to unseen nodes. They
focus on modifying a standard graph neural network (GNN)
to represent anomaly nodes and use generative adversarial
networks (GANs) to generate new data including anomaly
ones that deviate from the training distribution. Our approach
is crucially different in that we specifically focus on network
traffic (i.e., dynamic behavior of latent graph models) rather
than abnormal nodes in the arbitrary network graphs (i.e., static
behavior of underlying graphs).
ML-based Techniques. As illustrated by Tsai et al., [63],
traditional machine learning techniques such as support vector
machine (SVM) [54], decision trees [55], [56], k-nearest
neighbor (KNN) [57], Bayesian optimization [58], and radial
basis function (RBF) [59] have been significantly used to detect
network attacks. Injadat et al. [58] used novel training sample
size reductions, feature engineering, and hyperparameter tuning
to improve the performance of network intrusion detection
systems. Upadhyay et al. [60] used gradients to identify
important features and automate the feature engineering step in
intrusion detection systems. In addition to being unable to detect
anomalies from unknown distributions, these techniques still
require feature engineering to infer an accurate NIDS classifier.
Closer to our work, Wu et al. [61] proposed an adaptive
intrusion system that used ensemble incremental learning to
detect attacks including those with possible distribution shifts.
In particular, they used an ensemble of Relevance Vector
Machine (RVM) [64] to represent different data distributions
and adapt to the new data distribution by taking the weighted
majority vote. However, their approach is limited to simple
linear functions and cannot generalize to complex decision
boundaries. In contrast, our approach used deep neural networks
with domain adaption that can infer functions with arbitrarily
complex shapes and do not require feature engineering. Di
Mauro et al. [62] performed experiments on the effectiveness
of various state-of-the-art deep learning in detecting network
intrusions. The experiments include multi-layer perceptron
(MLP), convolutional neural networks (CNNs), recurrent neural

networks (RNNs), long short-term memory (LSTM), gated
recurrent unit (GRU) [65], WiSARD [66], learning vector
quantization (LVQ) [67], and self-organizing maps (SOM) [68].
In doing their experiments, they consider coarse-grained
features (e.g., source and destination Port), time-based features
(e.g., inter-arrival times between two flows), flow-based features
(e.g., length of a flow), packet-based features (e.g., number of
packets in a flow), and flag-based features (e.g., number of
packets with active TCP/IP flags). Overall, they found that the
MLP-based architectures, CNN, RNN, LSTM, and GRU show
a high accuracy (an average of 99%) in the single-class dataset
such as DDoS attack. With different classes of attacks in the
dataset (DDoS, Portscan, and Adware), they found that simpler
DNN architectures such as MLP show the highest overall
accuracy. However, Di Mauro et al. [62] did not consider the
performance of deep learning architectures when inferred for
unknown attacks with different distributions.

VIII. CONCLUSION

In this paper, we proposed Proportional Progressive Pseudo-
Labeling (PPPL), a simple and novel method for domain
adaptation that can be used to build a more accurate NIDS
capable of detecting unseen anomalies in network traffic.
We showed how the knowledge about target domain class
proportions can be leveraged to better detect unseen anomalies,
and we also showed how PPPL can be modified to work in
more realistic scenarios in which no prior knowledge about the
ratio of malicious traffic exists. PPPL aims to progressively
reduce the error on the target domain by assigning pseudo-
labels to the target domain samples and training the model
with them while excluding samples with more likely wrong
pseudo-labels from the training set and also postponing training
on such samples. Experiments on a network traffic dataset
consisting of multiple different attacks confirm the superiority
of our approach compared to other strong baselines in detecting
unseen anomalies with up to 58.4% improvement in detection
rate based on the average F1 score.

IX. ACKNOWLEDGEMENTS

This work was supported in part by NSF and VMware as
part of the NSF SDI-CSCS program (grant number 1700527).

APPENDIX

Details of PPPL’s performance for each individual task in
the second and third scenarios can be found below:
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TABLE IV: Results of PPPL on the CICIDS2017 dataset in scenario 2 where the ratio of malicious traffic in the target domain
is known by different levels of error. The numbers reported in this table are F1 scores.

Method Error A → B A → C B → A B → C C → A C → B Avg

PPPL

No Error 0.967 0.634 0.821 0.661 0.818 0.956 0.810
10% 0.968 0.616 0.818 0.669 0.777 0.961 0.801
20% 0.966 0.632 0.824 0.667 0.792 0.961 0.807
30% 0.967 0.596 0.826 0.671 0.739 0.960 0.793
40% 0.969 0.587 0.830 0.666 0.712 0.962 0.787
50% 0.970 0.586 0.834 0.665 0.672 0.960 0.781
60% 0.970 0.580 0.830 0.666 0.665 0.961 0.779
70% 0.966 0.588 0.824 0.671 0.683 0.963 0.782

Only-Src - 0.055 0.215 0.028 0.087 0.010 0.016 0.068

TABLE V: Results of PPPL on the CICIDS2017 dataset in scenario 3 where there exists no prior knowledge about the ratio of
malicious traffic in the target domain.

Task A → B A → C B → A B → C C → A C → B Avg

Ensemble of models

F1 score 0.888 0.612 0.569 0.499 0.676 0.946 0.698

Model selection

Model 1 (w=0.1) F1 score 0.622 0.611 0.278 0.328 0.773 0.918 0.588
Generalization score 2.843 5.003 2.506 4.558 14.228 9.118 -

Model 2 (w=0.7) F1 score 0.969 0.611 0.785 0.674 0.300 0.953 0.715
Generalization score 3.532 4.521 3.196 4.110 11.503 9.876 -

Selected model Number 2 1 2 1 1 2 -
F1 score 0.969 0.611 0.785 0.328 0.773 0.953 0.737
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