StepNet: A Compositional Framework with Reduced
Querying for Homing Complex Network Services

Azzam Alsudais*, Shankaranarayanan Puzhavakath Narayanan§, Bharath Balasubramanian®, Zhe Huang§, Eric Keller*

*University of Colorado at Boulder, ¥ AT&T Labs Research

Abstract—Homing or placement of network elements on cloud
infrastructure is a crucial step in the orchestration of network
services, involving complex interactions with several cloud and
network service controllers. Network Service Providers (NSPs)
currently follow a traditional approach akin to existing VM
and VNF placement techniques that involves hand-crafting ser-
vice specific heuristics for homing network services. However,
operational experience from a Tier-1 NSP shows that existing
approaches do not scale well when network services evolve and
their requirements change. Further, these approaches require
extensive and repetitive querying of the various controllers (e.g.,
to check customer eligibility or capacity), placing significant
burden on the resources at the controllers. We propose StepNet,
a compositional homing framework that allows service designers
to easily mix and match homing requirements to create instances
of the homing problem, enabling greater agility of service
creation and evolution. StepNet adopts an incremental approach
to querying that provides near optimal homing solutions, while
reducing the cumulative time spent by all of the data sources
responding to queries for each homing request (query cost). Our
evaluation with production traces from a Tier-1 NSP shows a
reduction in query cost of 92% for over 50% of the requests.

I. INTRODUCTION

Network Service Providers (NSPs) offer fundamental net-
working capabilities such as managed dedicated internet con-
nectivity, Wide Area Networks, Virtual Private Networks,
Voice Over IP, and Secure Cloud Connectivity. A critical step
in provisioning these services for their customers is identifying
either optimal locations for creating the network elements
of the network service or reusing existing service instances
(among several thousands providing the required capabilities)
that can be shared among services. This process, referred to as
the Homing problem', is performed based on a wide variety
of constraints influenced both by the customer Service Level
Objectives (SLOs) [1] and the NSP such as network latency,
bandwidth capacity, and infrastructure capabilities.

Figure 1 shows an overview of the topology and homing re-
quirements of a virtual Customer Premise Equipment (vCPE)
residential broadband service, a simple but illustrative real-
world network service offered by many NSPs. vCPE connects
a residence to the vG at the Service Provider Edge (PE).
The Bridged Residential Gateway (BRG) is the vCPE located
at the residential customer premises, while the vGMux is a
shared network service at the PE that maps layer-2 traffic
between a subscriber’s BRG and its unique vG, ensuring
traffic isolation between multiple customers. In the homing

"Henceforth the word Homing refers to the Homing of network services
978-3-903176-32-4 © 2021 IFIP

—‘ Homing Requirements (Constraints) }—

1) Distance: vGMux instance within X miles of

customer’s location

2) Affinity: vG and vGMux should be at the same
cloud site

3) Hardware capabilities: vG requires NUMA

4) Cloud feasibility: cloud site has required capacity

LG — vGhrux]

Logical
Subscriber
Link and is permitted to host vG'

5) Service-ins feasil
required capacity and is permitted to host the

ility: vGMux instance has

subscriber

Device 1
i Device 2 >@

i Device n

7 S Homing Objective
mn Pick closest cloud site to the subscriber’s location

Fig. 1: Homing a Residential Broadband service.

terminology, the vCPE comprises of two demands - vG and
vGMux, and two types of candidates - (i) PE cloud sites
(called ‘cloud’ candidates), where new vG instances can be
created, and (ii) existing instances of the vGMux service
(called ‘service’ candidates), which can be shared by the new
vCPE instance with other subscribers. The goal for homing
the vCPE service, is to drive the selection of a close PE site
to host the vG for a given customer, where an existing shared
vGMux provides the required cross-connect capability. Finally,
the homing requirements for the vCPE service are defined
through five different constraints as shown in the figure.

Traditionally, NSPs have viewed homing as a constraint-
based mapping of resources to requirements that has been
explored in works on virtual machine (VM) placement [2]-[7],
virtual network function (VNF) placement [8]-[11], capacity
planning [12], facility location [13], [14] and replica placement
in datastores [15], [16]. However, our detailed analysis of the
service requirements and production homing traces of a Tier-1
NSP, reveal several challenges with this traditional approach
as the number of network services and their operational
complexity increases. In the next few paragraphs, we describe
the two most significant challenges among them.

Evolving Service Requirements. Network services are
complex with widely varying requirements that change as the
service evolves. For example, the VCPE residential broad-
band service is typically offered with many pricing tiers,
SLAs, and add-on features (e.g., added security) that alters
the service requirements quite significantly. Developing hand-
crafted heuristic optimization models for each service (and
its variants) is a time-consuming and complex offline process
with several cycles of testing and validation (order of months).
Further, even simple updates to an existing service may often
result in an entirely new formulation (e.g. linear to non-linear
constraints) that will necessitate a significant amount of time
before deployment. Clearly, this runs counter to the goal of
evolving and maintaining systems in an agile manner.

Aggregating Data during deployment. The homing ser-
vice requires extensive interactions with tens to hundreds
of SDN, Cloud, and Network Service controllers in order
to identify a feasible placement decision. This results in
repeated queries to the controllers to check for run-time factors
such as customer eligibility to use certain service instances
or the availability of capacity in a certain cloud-site. Since
these controllers are primarily responsible for running and
managing the life-cycle of these network services, NSPs rate-
limit these repetitive homing related queries to the controllers,
which limits the scale of the homing system as a whole. Our
analysis of homing traces of a Tier-1 NSP showed that, if
left unchecked, these queries would often exceed the allowed
rate at the controllers (2x for ~50% of the time) and further,
these controllers cumulatively spent more than 400 seconds
per homing request to answer queries for ~50% of the homing
requests. While pre-provisioning resources may help limit the
need for such querying, in practice, resulting in massive over-
provisioning and requires repetition when services evolve.

We address these challenges through a novel system, Step-
Net that is based on two key innovations. First, we introduce
a novel compositional framework where homing instances of
a service can be described through a declarative template that
consists of compositional blocks through which a service de-
signer can specify service requirements, including constraints
and homing objectives. These abstractions have clearly defined
structures, functional behavior, and APIs. These compositional
blocks can be mixed and matched by service designers to
create new homing requests with considerable ease as their
customer requirements evolve.

Second, we introduce an online incremental approach to the
homing problem which is designed to minimize the number
of queries made to the controllers, while maintaining good
solution quality. It does this through two key approaches:
(1) rather than evaluating the entire solution space, we start
with a small set of potential solutions, ordered based on the
objective value, and gradually expand this set until a good
solution is found, (ii) we sequentially evaluate the feasibil-
ity of constraints, performing the least expensive (in terms
of queries) first, such that we can prune candidates before
needing to evaluate the more expensive constraints.

We evaluate StepNet guided by production traces and 12
network services obtained from a Tier-1 NSP. Using the
compositional framework, we generated over 1200 variants
of these services supporting varied constraints and demands
with just a few days of work. We demonstrate agile service
evolution by supporting new run-time objectives and common
heuristics for optimization with a few hundred lines of code.
Next, we show that the incremental approach adopted by
StepNet, reduces the cumulative time spent by all of the data
sources responding to queries for each homing request (i.e.,
query cost) by > 1,000 seconds for 50% of homing requests,
and by > 10,000 seconds for 20% of homing requests, while
maintaining close to optimal solution quality.

In summary, this paper makes the following contributions:

« Highlighting critical challenges in homing gleaned from

our detailed analysis of the service requirements and the
production homing traces of a Tier-1 NSP (§II).

« A novel system, called StepNet, that addresses these
challenges through a compositional framework (§1II) for
designing homing instances and an incremental approach
to solving them (§1V).

« Extensive evaluation using production traces, proving
StepNet’s efficacy (§V).

II. BACKGROUND AND MOTIVATION

Typically, the process of homing in NSPs involves two
distinct phases - (1) an offline “design” phase when the
network service-specific homing heuristics are built and an
estimated set of resources are pre-provisioned for homing
an anticipated number of service instances, and (2) a “run-
time” phase where the actual homing decisions are made
for each service instance as they are created by the service
orchestrators. We now describe the current approaches adopted
by NSPs for homing, highlighting the challenges observed
with these approaches based on interactions and operational
experience with a Tier-1 NSP.

A. Design Phase: Challenge of Evolving Services

In the offline or design phase of the homing process the
service developer generates the service model, i.e., service
demands, constraints and objectives described in §I, and
develops service-specific optimization models and heuristics
for homing the service, drawing from several works on VM
and VNF placement [3]-[11], [17], [18]. These works typically
formulate the placement problem using integer linear program-
ming (ILP) or mixed integer linear programming (MILP), and
propose tailor-made heuristics to relax and solve the problem
for a specific use-case (e.g., SG network slicing).

Our discussions with a Tier-1 NSP revealed that this ap-
proach of developing service-specific heuristics, validating and
testing them before production deployment, requires a signifi-
cant Time To Market (TTM) (order of months) and resources.
Further, services are often updated, creating new variants of
them. For example, consider the case when a NSP wants to
provide a new price-tiered offering or add a new firewall func-
tion for some subscribers. This requires additional constraints
or demands that affect both the heuristic optimization models
(e.g., from a linear filtering constraint to a quadratic coupling
constraint) and the underlying formulation of the homing
heuristic. The new heuristic has to go through the entire
cycle of testing and validation before production deployment,
requiring a considerable amount of time. Clearly, the current
approach compromises both evolvability and maintainability
of network services, negating the benefits of virtualization.

Work in the peripheral space of optimizing software-defined
networks seeks to simplify the optimization formulation pro-
cess. For instance, SOL [19] and Chopin [20] provide a limited
set of high-level APIs (e.g., add link capacity constraint) to
software-defined networking (SDN) applications to efficiently
manage network resources. SDN applications, then, need to
consume those APIs, and the framework will model those

Cloud Controllers ==
Service Controllers =

00 1000 200 400 600 800
Query Time (ms) Time (seconds)

1

(a) Individual query latency by
type of controller.

(b) Total Time spent by con-
trollers per homing request.

Fig. 2: Homing queries analysis for a week-long trace of a Tier-1 NSP.

high-level API calls as LP/ILP programs, and then solve
them to find the best solution. However, these works assume
complete knowledge when performing the optimization, so
the addition or change of one service would require re-doing
the whole optimization. VNF placement approaches [8]-[11],
[17], [18] have the same disadvantage.

As evidenced above, the evolutionary nature of network
services makes it impractical to design a specific model
and heuristic for each possible service (and its variants). To
address this problem, we present a compositional framework
for homing in §III where new demands and constraints can
be added with minimal development effort, different heuristics
can be utilized with no changes to the service model, and
service models can be added or changed without affecting
existing services.

B. Run-time phase: Challenge of Aggregating Data

The online phase of homing begins when a new network
service instance needs to be created by a service orchestrator,
which invokes the homing service along with instance spe-
cific run-time inputs like Subscriber ID, Subscriber Location,
etc. The homing service retrieves the pre-built models and
heuristics from a model repository, and aggregates the data
required by the models to run the heuristic on a solver like
CPLEX [21]. The homing recommendations are then returned
to the orchestration workflow that creates and configures these
network elements based on these recommendations.

As we can see, a key aspect of the online phase is ag-
gregating the data required for solving the homing heuristics.
One approach used in practice by NSPs involves estimating
the resources required for deploying an anticipated number of
service instances and then reserving capacities for the tenant
in the cloud. These pre-provisioned resources are inventoried
in a centralized location, ready to be allocated through their
respective Cloud and Service controllers when new service
instances are created. This approach, however, suffers from
two major problems: (i) reserving resources based on expected
load across instances of the service often results in tremendous
over-allocation, and (ii) as services evolve, this step needs to
be performed repeatedly.

An alternative involves collecting the data on demand,
which requires querying various data-sources, which include
different inventories (for relatively static information), and
multiple cloud and service controllers (for dynamic informa-
tion). For example, consider the constraints for the vCPE ser-
vice (Figure 1). Relatively static information such as Distance,

Affinity and Hardware capability can be maintained in in-
ventories/databases. However, the cloud feasibility constraint,
evaluated at the cloud controller is inherently dynamic, and
requires run-time parameters like subscriber information (e.g.,
customer-key) and service instance information (e.g, tenant-id)
to evaluate whether a given cloud instance can support creating
a new network element of the service for the subscriber.
Similarly, the service-instance feasibility constraint, evaluated
at the service controller, requires run-time querying to evaluate
whether an existing vGMux service instance has sufficient
capacity/resources, and authenticated to support the new vCPE
service for the given subscriber.

These queries place significant burden on the cloud and ser-
vice controllers, which are primarily responsible for life-cycle
management of the cloud and service instances. For instance,
a SDN Controller that manages flow control needs to perform
topology and configuration operations like injecting routes
into the network based on operator specified rules, besides
performing periodic management and monitoring activities for
the services (e.g., BGP connections). These controllers, which
are primarily designed for service life-cycle management as
opposed to large-scale query processing, are easily over-
burdened with a large number of repeated queries coming from
the homing service. Hence, network operators typically rate-
limit such queries coming from external services. Further, it
is impractical for the NSP to re-design these controllers to
process larger query volumes since they often depend on third
party software. For example, the NSP we worked with built
their SDN controller on top of the ODL controller [22].

To quantify the burden of queries at the controllers, we
analyzed a week long trace of all homing related queries
issued to all cloud and service controllers in a Tier-1 NSP. We
make the following observations. First, the homing service
would send queries at a rate at least twice the allowed rate
for 22% and 44% of the time, to the least and most loaded
controllers (w.r.t., homing queries) respectively. To cope with
this rate, the controllers queue those queries — resulting in
unwanted delays. Second, both cloud and service controllers
take a significant amount of time to process and respond to
those queries. Figure 2a shows the CDF of the query latency
observed at those controllers. As the graph shows, service
controllers’ query latency was more than 1 second for 20% of
the queries. Third, as a result of both heavy query processing
as well as query queuing, solving a single homing request
takes a long time. Figure 2b shows the CDF of the total time
spent by the controllers per homing request. The graph shows
that about 50% of the homing requests required more than 400
seconds of controller’s time across all controllers. With NSPs
creating thousands of service instances every day, querying the
service and cloud controllers for every new service instance
is prohibitively expensive and time-consuming.

We address this challenge through an incremental approach
in §IV, where we query instantaneous capacity and other
required information during the run-time phase to avoid the
wastage of pre-provisioning, but at the same time ensure a far
reduced burden of querying at the controllers.

ITI. StepNet - A COMPOSITIONAL HOMING FRAMEWORK

As described in §II-A, traditional homing approaches re-
quire significant changes in the underlying heuristic opti-
mization models when the service composition or homing
constraints evolve, because optimization models have tight
dependencies across the demands, constraints and objective
functions. In this section, we describe how we address this
challenge through our novel compositional homing framework,
StepNet. Through this framework, homing instances of a ser-
vice can be described through a declarative template that con-
sists of compositional blocks which are abstractions that spec-
ify demands, candidates, constraints, objective functions, data-
sources and heuristic optimization algorithms (terms defined
in §1, §II). These abstractions have clearly defined structures,
functional behavior and APIs. Our notion of composability
is that, as long as homing instances are created by mixing
and matching these compositional blocks, our incremental
approach (see §IV) can provide a solution. This enables service
designers to create new homing requests with considerable
ease as their customer requirements evolve.

Standardized Compositional Behavior. The composition
blocks, specifically the constraints and objective functions,
have standardized interfaces and pre-established functional
behaviors. For instance, all constraints are designed as plugins
exposing a common interface, solve (homing-context,
candidate-set, where the homing-
context is an object that captures the current state of
the homing request being processed including the demands,
constraints, and input parameters. The candidate-set is an input
set of candidates which are found feasible until the point when
the current constraint is invoked. The data-sources specify
what data sources need to be queried to collect information
required to evaluate the constraint. All constraints exhibit a
consistent filtering behavior, which eliminates zero or more
candidates that do not meet the constraint’s requirements,
and returns a subset (not necessarily a strict subset) of
the input candidate-set. Similarly, all objective functions
expose the interface compute (optimization-goal,
normalization-function, cost-function). The
optimization-goal can be to minimize/maximize, while the
cost-function can represent different metrics like latency,
utilization, dollar costs, etc, while the normalization-function
allows joint optimization with multiple metrics like latency
and utilization by normalizing these values.

Library of Composition Blocks. We distill our detailed
study of production services to create a library of composition
blocks [23], through which a service designer can obtain
common demands, constraints and objective functions. For
example, our library contains the candidate types of ‘cloud-
region’ and ‘service-slice’ and the associated inventories. The
service designer simply needs to mention the VNFs that cor-
respond to these demands. Similarly, the library also contains
the constraints for zone and capacity and only the instance
specific details like the demands and the actual bandwidth
(among others) need to be specified. The library elements for

data-sources),

the objective function and heuristics operate in a similar way.

Listing 1 Structure of a Homing template instance

RUN-TIME PARAMETERS:
instance-id 'id of current service instance
— being created'

heuristic 'Best—fit'
customer-id 'id!'
vpn-key 'vpn-k1'
DEMANDS :
VNF-X:
cand-type : 'cloud-region'
inventory : 'cloud-controller'
VNE-Y:
cand-type : 'service-slice'
inventory : 'network-srvc-provider'
CONSTRAINTS:
cons—=2:
demands [VNF-X, VNF-Y]
type 'zone'
zone : 'cloud-region'
qualifier : 'same'
cons—C:
demands [VNF-Y]
type 'capacity'
resources {'BW' : '1Gbps'}
subscriber—-info: {'id' customer-id,
'key' vpn-key}
OBJECTIVE-FUNCTION:
f1l:
f-type 'cost'
demands : [VNF-X, VNF-Y]

Homing Template. To enable service designers to specify
various compositional blocks, we provide a declarative tem-
plate inspired by OpenStack’s Heat template [24], appropri-
ately extended to support the composition blocks described
below. Listing 1 shows the structure of a homing specification
for the example of the vCPE service described in Figure 1.
The RUN-TIME PARAMETERS block captures the run-time
inputs required for homing, like subscriber information and
authentication keys that are typically used to evaluate the con-
straints (e.g., vpn-key is used in cons-C). The DEMANDS block
represents the network elements of the service, the candidate
types for each of these elements and the inventory source
from which these candidates can be drawn. The CONSTRAINTS
block lists the constraints, their parameters and the specific
demands to which the constraint applies. Some constraints
are pertinent to a specific demand (e.g., bandwidth capacity
required by a VNF), while some constraints span multiple
demands (e.g., distance between two VNFs of the service).
The OBJECTIVE-FUNCTION block specifies the target metric
optimization like dollar costs, latency, etc. Except for the
DEMANDS block, the other composition blocks are optional. For
instance, some real-world network services do not have any
hard constraints, but require optimality of an objective function
metric. Finally, the heuristic algorithm that invokes these
constraints and objective functions to meet the service homing
requirements, can be selected as a part of the composition.
For instance, the same homing template instance shown in
Listing 1 can be used with either a heuristic best-fit search
algorithm or a shortest-path search algorithm?.

To illustrate how our compositional framework allows ser-
vice evolution, consider the example of vCPE service (Fig-

2This template serves as an example and is not intended to be an exhaustive
description of all possible composition blocks.

ure 1) providing an added Firewall (vF) function such that the
cloud site hosting the VF has sufficient capacity and the VF is
co-located with the vG. The vF would be a new demand in
the DEMANDS block, and the co-location requirement for the
vF can be easily added by modifying the Affinity constraint to
include the vF along with the vG and vGMux. The capacity
requirement would be a new cloud feasibility constraint added
to the CONSTRAINTS block. This compositional framework
supports over 1000 instances of production services (see §V)
with varying demands and constraints ranging from traditional
use-cases like WAN, Private Virtual Networks, and even
futuristic network services such as 5G Network Slicing [25].

IV. INCREMENTAL APPROACH TO HOMING

As described in §II-B, traditional homing approaches place
substantial burden on the controllers that need to be queried
for run-time information as part of the homing process. We
propose an incremental approach that minimizes the queries
made to the controllers while maintaining a reasonable level of
solution quality, by leveraging two independent dimensions:

« Objective-based candidate ranking: we limit the num-
ber of candidates against which the constraints shall be
evaluated by incrementally increasing the set of candi-
dates used until a quality solution is found (i.e., we incre-
mentally explore the overall search space of candidates).

o Cost-based ordered constraint evaluation: we order
constraints such that the least expensive constraints are
evaluated first. In doing so, we can more quickly prune
out candidates that are not feasible, and only evaluate the
most expensive constraints when we know the rest of the
constraints are feasible.

In this section, we first describe an overview of the incremental
approach (IV-A), and then we expand on the two key concepts
that enable it: objective-based candidate ranking (IV-B) and
cost-based ordered constraint evaluation (IV-C).

A. Incremental Approach Overview

The incremental approach, in a nutshell, iteratively and
carefully expands the search space until it satisfies certain
stopping criteria. We highlight our incremental approach in
Algorithm 1. The main procedure, FINDSOLUTION, is called
for each homing request (an instance of the template presented
in Listing 1) and should return a solution (if any). In order
to obtain the initial set of potential candidates to pass into
FINDSOLUTION for each of the demands, StepNet queries
multiple data-sources, including the NSP inventory and cloud
controllers to determine what candidates can be used by each
demand. We treat this as a fixed (minimal) cost for each
homing request. To enable the incremental approach, we first
rank the candidates (§IV-B) for each of the demands (line
2) in a way that favors “good” candidates that have a higher
chance of yielding quality solutions. The second step, which
is triggered by the solution call in line 11, is to evaluate the
constraints in a cost-based order (§IV-C), from most to least
expensive, to enable early elimination of candidates.

Algorithm 1 Incremental Algorithm
Input:

r : instance of a homing request consisting of: demands, constraints,

objective function, and a set of initial candidates for each demand

p : instance of a heuristic algorithm (e.g., best-fit, exhaustive)

step : incremental step (candidate subset) size

tol_thresh : local solution tolerance threshold
1: procedure FINDSOLUTION(r, p, step, tol_thresh)
2: RANKCANDIDATES(7)
3 best = null > keep track of best solution
4 tolerance = 0 > used for stopping_condition
5: Start with empty available-candidates for each demand
6: while True do
7
8
9
0
1

if stopping_criteria then

break
for each d € r.demands do

increment available-candidates[d] by step
sol = p.solution(r, available-candidates) > triggers
constraints evaluation

12: if sol = null then

13: step = step * 2

14: go to 6

15: step = original size

16: if first solution or sol is better than best then

17: best < sol

18: tolerance = 0

19: else > sol did not improve solution quality
20: tolerance ++

21: return best

Incremental Search Space Exploration. For each demand,
we start with an empty set of available-candidates (line 5)
— the set of candidates that should be ready for constraint
evaluation. In each iteration, then, we increment this set by a
step (line 10), which is set to some percentage of the whole
set of initial candidates (e.g., 2%).

We note that in each iteration, we include the union set of
available-candidates of all previous iterations plus the current
one such that C(; 4y = C_1,9)JC); where C; 4 represents
the available-candidates set for demand d in iteration ¢ and

!, represents the new candidates added in iteration 4. This is
necessary since we cannot discard candidates from previous
iterations as it will break dependencies imposed by pairwise
constraints. Such constraints could force us to choose one
candidate for demand X in one iteration, and choose another
candidate for demand Y in a different iteration.

Optimizer Independence of the Incremental Approach.
After populating the available-candidates set for each of the
demands in r, we pass r and available-candidates to the opti-
mizer instance (line 11) where it evaluates the constraints for
those available-candidates. By making the optimizer agnostic
to how candidates are made available, the network operator can
plug in any optimization algorithm (i.e., optimizer instance)
without modifying the logic of how candidates should be
added to the available-candidates set. All the optimizer does
is evaluate the constraints for available-candidates (triggered
by the solution call on line 11), and according to its logic,
decide what candidates to choose for which demand.

Adaptive Steps. Assigning a small value to the step size
(step) helps reduce the number of queries to be sent by re-
ducing the number of candidates against which the constraints

are evaluated. However, when there are no feasible candidates
in the first few iterations, the incremental algorithm can take
a long time to find the first solution. To avoid this, we make
the step adaptive such that each time the optimizer is not able
to find a solution (line 12), we double the step size (line 13).
When any solution is found, we restore the original step.
Terminating the Incremental Loop. After getting a solu-
tion sol (line 11), the incremental algorithm evaluates it, and
decides whether to accept it (lines 17-18) or to tolerate it by
incrementing the tolerance counter (line 20 — when sol is
not “better” than the best solution so far, by comparing their
objective values). The incremental algorithm terminates when
certain stopping_criteria are met such as when tolerance
exceeds tol_thresh, a tolerance threshold that can be specified
by the operator. Another metric that can be incorporated into
the stopping criteria is an upper limit on the number of queries
that can be made. We describe our stopping criteria in §V.

B. Objective-based Candidate Ranking

Since we incrementally increase the set of candidates avail-
able to be evaluated until we find a good solution (calculated
on line 11 in Algorithm 1), we can reduce querying if we
can find a good solution in as few iterations as possible.
This requires that the candidates in early iterations are “good”
candidates, so we do not have to proceed to later iterations. To
rank the candidates, we leverage the objective function in the
following manner. First, we construct a tree where each level
in the tree consists of the lists of candidates for a given demand
(where each demand is its own level). Each node is connected
to the nodes in the next level down (for the next demand),
with an edge weight that is set to the added cost of including
the given candidate for that demand in the solution according
to the objective function. For demands that are not part of the
objective function, edge weights are all set to the same value
for that demand. A solution path, then, is one candidate from
each level in the tree. The rank of the candidate is based on
the best solution-path value among each of the solutions paths
that cover that candidate.

While the objective function does not indicate whether the
candidate is a feasible candidate, it does indicate whether it
could be a good candidate. We use this to determine how to
incrementally increase the set of candidates used in a given
iteration. This, in turn, reduces the number of candidates we
need to test for feasibility, which is the expensive part of
homing. Interestingly, limiting the set of candidates to only
those with the best objective values can actually improve the
solution quality of the optimization heuristic (see §V), because
it increases the chance of selecting a better local optimum.

Note that, objective-based candidate ranking in itself does
not incur much query overhead since most services that we
found in the Tier-1 NSP do not optimize (i.e., their objective
functions) for run-time information.

C. Cost-based Ordered Constraint Evaluation

We choose to evaluate constraints in a sequential, ordered
manner to eliminate additional queries for candidates once

we know they are infeasible. Unlike static constraints (lo-
cation proximity, zone, etc), evaluating run-time constraints
(instance-feasibility, network latency, efc) against a set of
candidates triggers queries to be sent to collect run-time
information for those candidates. Clearly, static constraints
are the least expensive to evaluate since they do not require
queries, and evaluating them first helps prune the set of
candidates before getting to evaluate run-time, and therefore
more expensive constraints. Doing so allows us to evaluate all
constraints, but against a smaller set of candidates.

When the static constraints indicate that a candidate is still
feasible, we need to start evaluating the run-time constraints. In
§II-B, we saw that different queries have different costs, and as
such, we still would like to order the constraints. Determining
how expensive a run-time constraint is to evaluate cannot be
directly derived from the constraint properties. So, instead, we
propose using past query logs to help calculate a real-time cost
for each of the constraints that StepNet supports. We assign
the rank (or cost) of a constraint as follows: C(cons) =1 x f,
where [and f are the median latency and frequency of queries
triggered by constraint cons in past logs within a recent time
window, respectively. Performing this offline task periodically
allows our constraint ranking function to adapt to continuous
changes in the network as well as adapt to new constraint
types. To bootstrap the process when logs are not available,
we assign equal ranks to run-time constraints, and after solving
a number of homing requests, we re-evaluate these ranks.

V. EVALUATION

In this section, we validate our key contributions of the
compositional homing framework (§III), and the incremental
approach (§IV) by answering these two key questions: (i)
can we easily compose homing requests for various network
services using StepNet’s compositional blocks? And (ii) does
the incremental approach significantly reduce the query cost
while retaining quality of solution?

A. Experimental Setup

Implementation We have implemented StepNet in Python
with ~10k LoC. Our current implementation supports 10
types of constraints, 3 optimization heuristics, and 7 objective
functions — all of which are implemented as plugins with
APIs that can be easily consumed. StepNet consists of many
components (controller, interpreter, optimizer, data router, etc)
that are designed as microservices that can scale indepen-
dently. Due to space constraints, we defer the design and
implementation of this micro-services architecture to a future
paper. This implementation is now being deployed in the
production network of a tier-1 NSP.

Trace-driven Evaluation. We collected 7 consecutive days
of longitudinal homing traces from the production logs of
a tier-1 NSP, which includes the homing requests, query
parameters, query responses and latency observed for the

3We note that our incremental approach is independent of and orthogonal
to the constraint type (be it quantitative or qualitative), and only affects the
number of candidates being processed by the constraint.

queries sent to the different controllers. We used data collected
from the trace to comprehensively emulate various aspects
of a homing service running in production by following the
same distribution found in the trace for the following aspects:
feasibility/capacity responses (i.e., whether a cloud site has
enough capacity to home a given demand), query latency,
geographical location density (i.e., how many cloud sites
per country). With our emulation framework, we emulate a
total of 2400 cloud sites and service instances (i.e., potential
candidates), enabling us to evaluate StepNet at a large scale.

B. Supporting Flexible Service Composition

The traditional approach to homing, where new optimization
models and heuristics are designed for each new service
offering, incurs significant effort that runs counter to the
requirements of maintainability and evolvability of services in
NSP infrastructures (§1I). One of the main goals of StepNet is
to easily accommodate new network services by allowing ser-
vice designers to compose homing requests for such services
by mixing and matching different constraints and objective
functions through our compositional framework.

Easy Service Composition. To demonstrate StepNet’s abil-
ity to accommodate various services, we obtained 12 service
models from a tier-1 NSP, ranging from simple ones (1
demand, 1 constraint) to more complex ones (6 demands, 42
constraints), covering single-homed as well as multi-homed
services. In a few days, the service designers could generate
the homing requests for those services using the template
in Listing 1. Further, for each of the 12 services, then, we
generate 100 instances that have different run-time parameters
(required capacity, customer location, efc), while ensuring
that we retain the same service model including demands,
constraints, and constraint types as observed in production.
This enabled us to create 1200 homing request instances with
which we can test the incremental approach.

Supporting Service Evolution. Our base implementation
of StepNet could support all the constraints required for the
12 services. However, a run-time objective function (minimize
resource utilization) required by one of the services was not
originally part of our implementation. With only 78 lines of
code, we were able to implement this function along with the
necessary data hooks to query cloud controllers for resource
utilization information. This highlights the ease with which
StepNet can adapt to evolving service/business requirements.

Supporting Pluggable Optimization Heuristics. Since our
incremental approach is decoupled from the specific opti-
mization heuristic, contrary to existing solutions that design
a service-specific heuristic for each use-case/service, we can
plug-in a variety of optimization heuristics through our com-
positional framework (line 11 in Algorithm 1). To demonstrate
this aspect, we wrote two basic heuristic algorithms: random
and shortest-path first (SPF), as well as a state-of-the-art
optimization heuristic: backtracking best-fit (BACBF).

The Random heuristic randomly assigns a feasible candidate
to a given demand. The SPF heuristic, on the other hand,
is more comprehensive. It exhaustively identifies the best

BACBF-inc SPF-inc BACBF-inc SPF-inc trever
Random-inc = = * Random-inc = = *
1 T — T
2 » .
08t P L R .
Ed :
b ey}
o 0.6 X 9 p 06 i, 1
[a) a (=) N]
@] ¥ o]
04 ! : 041 i, :
| I
»
02+ o | 1 02 p 1
N e 4
it e B R . 0wt . .
0 100 200 300

s 100 10K
Reduction in Query Cost (seconds)

(atTogo scale) Solution Quality Improvement %

(a) Reduction in query cost

Fig. 3: Results of running 1200 homing requests. This shows that the
incremental approach not only reduces query cost (left) for all three
heuristics, but it does so while improving solution quality (right).

(b) Improvement in solution quality

candidate-demand mappings that optimize the objective value
based on an implementation of Dijkstra’s algorithm [26]. The
BACBEF heuristic is a modified version of the best-fit optimiza-
tion heuristic augmented with a backtracking ability. Best-fit
has proven very effective in recent placement optimization
studies [8], [27], [28]. For details on how we implement each
of these optimization heuristics we refer the reader to [29].

C. Reducing Query Cost with the Incremental Approach

We evaluate StepNet’s incremental approach to answer the
following questions: (1) how much cost is the incremental
approach able to reduce? (2) does the incremental approach
impact solution quality (i.e., objective value)? (3) is there a
benefit to objective-based candidate ranking? and (4) is there
a benefit to cost-based constraint ordering?

To answer these questions, we ran a set of experiments eval-
uating StepNet on CloudLab [30]. We use the three heuristics
described in §V-B with two configurations: with the incremen-
tal approach described in §IV (where we let the incremental
approach decide what candidates the heuristic should see —
denoted with inc) and without it (where we pass all potential
candidates to the heuristic — denoted with all). Doing so
yields six heuristic variants: Random-all, Random-inc, SPF-
all, SPF-inc, BACBF-all, and BACBF-inc. Since the SPF-all
configuration is the most comprehensive, we treat its solution
for a given homing request as a baseline to measure how good
the solutions of other heuristic configurations are. Moreover,
we timeout SPF-all (and for that matter all heuristics) after 30
minutes of processing time, and use the best solution it could
calculate at that point.

Incremental algorithm parameters. For the incremental
versions of the heuristics, we set the step size (step) to 2%
of the initial candidate set (while enabling adaptive steps),
and we used a minimum of 5% improvement of any two
successive solutions as our tolerance threshold (tol_thresh).
We also used a relaxed stopping_criteria throughout our
experiments that terminates the incremental algorithm if either:
tolerance > 1, processing timeout (30 minutes) is reached, or
the total number of queries exceeds 2K queries. We generated
these parameters by experimenting with a range of values and
selected ones that yielded the best outcome. We note that we

enable ordered constraint ranking for both incremental and
non-incremental versions in our evaluation.

How well does the incremental approach work?

We ran experiments with the 1200 homing requests, that we
generated for the 12 services described earlier, through all six
configurations described above. For each homing request, we
measure two key metrics: query cost and solution quality. The
query cost is the cumulative time spent by all data sources in
responding to queries issued for a given homing request, which
represents the “load” placed on the corresponding controllers.
The solution quality is a percentage value that shows how close
a given heuristic’s objective value to the baseline’s (SPF-all)
objective value. A value greater than 100% indicates that a
solution is better than the baseline.

Does the incremental approach reduce query cost? Fig-
ure 3a shows reduction in query cost with the incremental
approach over the non-incremental approach for all the heuris-
tics. The X-Axis shows the reduction in query cost, while
the Y-Axis shows the CDF of the fraction of 1200 homing
requests. From the graph, we make several observations. First,
the incremental approach reduces the query cost across all
three heuristics, highlighting the benefits of our incremental
approach. Next, the incremental approach was able to re-
duce the query cost when compared to the non-incremental
heuristics by more than 1K seconds for about 80% of homing
requests (and by more than 10K seconds for 20% of homing
requests). Finally, the incremental approach was able to (not
shown in Figure 3a) reduce 60% of the query cost for 80%
(and 95% for 20%) of the homing requests.

Does the incremental approach impact solution quality?
Figure 3b shows the CDF of the percentage improvement in
solution quality with the incremental approach over their non-
incremental counterparts for all the three heuristics. The incre-
mental approach improves the solution quality for the majority
of cases for the BACBF (50%) and Random (70%) heuris-
tics, and provides comparable solution quality for the SPF
heuristic. The benefits primarily come from the incremental
algorithm’s ability to intelligently rank candidates by favoring
those that could lower the objective value (for minimizing
objective functions) while limiting the search space. This, in
turn, helps the heuristics terminate at a better local optimum.
For a small fraction of homing requests, the incremental
approach degrades the solution quality by at most 43% due
to its limiting the candidate search space. We argue that
this is a reasonable trade-off especially when considering the
substantial reductions in query cost. Henceforth, due to space
constraints, we only show results for the BACBF heuristic,
since it consistently outperforms the others.

Objective-based vs. random candidate ranking. We now
compare BACBF-inc for 100 homing requests for the same ser-
vice with two configurations of candidate ranking: (1) random
candidate ranking, and (2) objective-based candidate ranking.
Figure 4a shows a scatter plot with the solution quality along
the X-Axis and query cost along the Y-Axis. A value greater
than 100% for the solution quality indicates a better solution,

Random Ranking Disabled Enabled

Objective-based Ranking

Cost-based Constraint Ranking

S
=

:g F : 1 L E

£ . N =

S 1 4 S

22" 82

@ 5 2 93 IK

zZ g

D o 1 B

s 2]

) ©= 100

g 1 B

2 5]

=2 =3

&4 &

10 L m A S S
0 25 50 75 100 125 150 0 25 50 75 100 125 150

Solution Quality % Solution Quality %

(a) Objective-based candidate
ranking vs. random ranking

(b) Enabling/disabling cost-based
constraint ranking

Fig. 4: Key features of the incremental approach (using BACBF-inc):
objective-based candidate ranking (a) and cost-based constraint ranking
(b), provide significant benefit to solution quality and query cost.

while a value less than 100% indicates a degradation in the
solution quality. As observed from the graph, while objective-
based ranking does not provide significant value in terms of
query cost, it provides significantly better (3x for 50% of
requests) solution quality (X-Axis).

Benefits of cost-based constraint ordering. Finally, we
run 100 homing requests through two configurations of the
BACBF-inc heuristic: (i) with the cost-based constraint ranking
and (ii) without constraint ranking. We select one of the 12
services that had the most number of constraints — 42 con-
straints spread across 6 demands of the service. To highlight
the penalty of incorrect ranking, we reversed the ordering of
constraints for the latter configuration (ii). Doing so provides
us with a lower bound for parallel constraint evaluation (i.e.,
the same candidate set is evaluated by all constraints).

Figure 4b shows a scatter plot with the query cost along the
Y-Axis and solution quality along the X-Axis. We observe that
the query cost increases by at least one order of magnitude,
when cost-based constraint ranking is disabled. Further, this
leads to significant degradation in solution quality (higher
objective values). In theory, constraint-ordering should not
affect the final outcome of an algorithm and hence the quality
of the solution. However, in our experiments, evaluating query-
intensive constraints (i.e., with cost-based ranking disabled) in
the initial stages of constraint evaluation causes the incremen-
tal algorithm to hit the time-out limit of 30 minutes.

VI. CONCLUSION

Homing of VNFs is a crucial part of the life-cycle man-
agement of complex network services. Traditional approaches
to homing adopted by NSPs are service-specific and do not
easily accommodate service evolution, critically affecting the
maintainability of these services. Further, homing involves
burdensome querying of several cloud, SDN and service
controllers, the query cost of which needs to be limited.
Our compositional homing framework, StepNet, was designed
to solve these challenges, catering to a growing number of
services. Our results show that our incremental approach is
able to provide good quality solutions, while reducing query
costs by 92% for half of the homing requests when compared
to non-incremental approaches.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90-97, 2015.

G. Jung, M. A. Hiltunen, K. R. Joshi, R. K. Panta, and R. D.
Schlichting, “Ostro: Scalable placement optimization of complex
application topologies in large-scale data centers,” in 35th I[EEE
International Conference on Distributed Computing Systems, ICDCS
2015, Columbus, OH, USA, June 29 - July 2, 2015, 2015, pp. 143-152.
[Online]. Available: https://doi.org/10.1109/ICDCS.2015.23

X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE. 1EEE, 2010, pp. 1-9.

J. T. Piao and J. Yan, “A network-aware virtual machine placement
and migration approach in cloud computing,” in Grid and Cooperative
Computing (GCC), 2010 9th International Conference on. 1EEE, 2010,
pp- 87-92.

W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Computer Networks, vol. 57,
no. 1, pp. 179-196, 2013.

K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen,
“Reducing electricity cost through virtual machine placement in high
performance computing clouds,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2011, p. 22.

V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee, “Application-aware virtual machine migration in data
centers,” in INFOCOM, 2011 Proceedings IEEE. 1EEE, 2011, pp.
66-70.

M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Network
function placement for nfv chaining in packet/optical datacenters,”
Journal of Lightwave Technology, vol. 33, no. 8, pp. 1565-1570, 2015.
H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in /0th International Conference on
Network and Service Management (CNSM), 2014, pp. 418-423.

M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Cloud
Networking (CloudNet), 2015 IEEE 4th International Conference on.
IEEE, 2015, pp. 255-260.

A. Patel, M. Vutukuru, and D. Krishnaswamy, “Mobility-aware vnf
placement in the lte epc,” in 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN). 1EEE, 2017,
pp- 1-7.

K. M. Bretthauer, “Capacity planning in manufacturing and computer
networks,” European Journal of Operational Research, vol. 91, no. 2,
pp. 386 — 394, 1996. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0377221794003025

R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh,
“Survey: Covering problems in facility location: A review,” Comput.
Ind. Eng., vol. 62, no. 1, pp. 368-407, Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.cie.2011.08.020

R. Z. Farahani, M. SteadieSeifi, and N. Asgari, “Multiple criteria
facility location problems: A survey,” Applied Mathematical Modelling,
vol. 34, no. 7, pp. 1689 - 1709, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0307904X09003242
R. Mayer, H. Gupta, E. Saurez, and U. Ramachandran, “Fogstore:
Toward a distributed data store for fog computing,” in 2017 IEEE Fog
World Congress (FWC). 1EEE, 2017, pp. 1-6.

M. Karlsson and C. Karamanolis, “Choosing replica placement heuristics
for wide-area systems,” in 24th International Conference on Distributed
Computing Systems, 2004. Proceedings. 1EEE, 2004, pp. 350-359.
D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency-
aware service function chain placement in 5g mobile networks,” in 2079
IEEE Conference on Network Softwarization (NetSoft). 1EEE, 2019,
pp. 133-141.

N. Kodirov, S. Bayless, F. Ruffy, I. Beschastnikh, H. H. Hoos, and A. J.
Hu, “Vnf chain allocation and management at data center scale,” in
Proceedings of the 2018 Symposium on Architectures for Networking
and Communications Systems. ACM, 2018, pp. 125-140.

V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using sol.” in NSDI, 2016, pp. 223-237.

[20]

[21]
[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

V. Heorhiadi, S. Chandrasekaran, M. K. Reiter, and V. Sekar, “Intent-
driven composition of resource-management sdn applications,” in Pro-
ceedings of the 14th International Conference on emerging Networking
EXperiments and Technologies, 2018, pp. 86-97.

IBM, “Ibm ilog cplex optimization,” 2020. [Online]. Available:
http://www.cplex.com/
OpenDaylight, “Opendaylight,” 2020. [Online]. Available: https:

/Iwww.opendaylight.org/

ONAP, “Homing specification guide.” https://wiki.onap.org/display/DW/
OOF-HAS+Homing+Specification+Guide, 2020.

Openstack, “Openstack heat orchestration template,” 2020.
[Online]. Available: https://docs.openstack.org/heat/rocky/template_
guide/hot_guide.html

FE T. A. Council, *“5g mnetwork slicing whitepaper,” 2018.
[Online]. Available: https:/transition.fcc.gov/bureaus/oet/tac/tacdocs/
reports/2018/5G-Network- Slicing- Whitepaper-Finalv80.pdf

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269-271, 1959.

J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-
saving virtual machine placement in cloud data centers,” in 2013
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. 1EEE, 2013, pp. 618-624.

M. Ghobaei-Arani, M. Shamsi, and A. A. Rahmanian, “An efficient
approach for improving virtual machine placement in cloud computing
environment,” Journal of Experimental & Theoretical Artificial Intelli-
gence, vol. 29, no. 6, pp. 1149-1171, 2017.

A. Alsudais, S. P. Narayanan, B. Balasubramanian, Z. Huang,
and E. Keller, “Iterative plugin design and implementation,” 2020.
[Online]. Available: https://wiki.onap.org/display/DW/Iterative+Plugin+
Design+and+Implementation

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in Proceedings of
the USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1-14.
[Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

