
Network traffic monitoring

● Security Issues

● Performance Issues

● Accounting

● Misconfiguration

1

Get insights to perform management actions



Efficient Network Monitoring 
Applications in the

Kernel with eBPF and XDP

Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan 
Schmid

2



We need continuous high coverage

Telemetry 
records/
packets

SYN Flood

DNS 
Reflection

ECMP 
imbalance

Accounting

Unanswered 
SYN/ACKs

Increased 
DNS traffic 

Imbalanced 
traffic

3

Security Issues

Misconfiguration

Maintain 
counters

Billing

Deploy several 
applications in parallel 

to achieve high 
coverage

Monitoring applications

Continuously running 
them is costly



Network monitoring can be resource inefficient and inflexible

Several parallel 
apps 

Kernel bypass

Offload to network

Dedicate resources to app
Busy polling
High CPU consumption

Inefficient!

Limited resources
Constrained programming 
model
Still needs software 

Inflexible/convoluted 
deployments!

4

High packet 
rates



What can we do to address those challenges?

5

Support efficiently deployments of parallel applications

Provide better resource footprint and flexibility 



How can we do it?

6

Avoid redundant processing

Provide shared high-level statistics

Execute applications only when needed

Build on top of an efficient and flexible data plane  



7

Key opportunities

How can we address the challenges of current monitoring systems?



Despite differences, monitoring applications share similarities

T1 T2 T3 APP

T1 -> Ingest, parse and select packets of interest

T2 -> Compute relevant metrics for the application

T3 -> If conditions are met, send packet for application processing

ASL -> Execute application specific logic, detect conditions and generate events

T1 T2 T3 APPT1 T2 T3 APP
T1 T2 T3 ASL

Redundant logic!
All apps process all packets!

Monitoring Applications

8

T1 T2 T3 ASL



We can avoid redundant processing

T1 T2 T3 ASL2

ASL3

ASL1

No redundant processing!

Developers can write slimmer applications!

Shared tasks

9

Small resource footprint!



How can we address the challenges of current monitoring systems?

Key opportunities

We can avoid 
redundant 
processing



Provide shared high-level statistics

11

SYN flood attack Increase on the  # distinct flows/s

DDoS attack Shifts in protocol ratio

Detect anomalies

Traffic accounting 
#pkts/s
#bytes/s Billing



Provide shared high-level statistics

12

SmartNIC offloads

Metrics useful for all applications

Basic 
counters

#pkts/s
#bytes/s

Sketches 
(HLL)

#distinct 
flows/s



How can we address the challenges of current monitoring systems?

Key opportunities

We can avoid 
redundant 
processing

Provide 
shared 

high-level 
statistics



Execute applications only when needed

T1 T2 T3 ASL2

ASL3

ASL1Shared tasks

T1 -> Receive UDP packet.

SYN flood detector

14

T1

Bypass monitoring!



Execute applications only when needed

T1 T2 T3 ASL2

ASL3

ASL1Shared tasks

T1 -> Receive TCP packet. Parse packet.

T2 -> Compute # of distinct flows. Verify # flows/s < threshold.

SYN flood detector

15

T1 T2

Bypass monitoring!



Execute applications only when needed

T1 T2 T3 ASL2

ASL3

ASL1Shared tasks

T1 -> Receive TCP packet. Parse packet.

T2 -> Compute # of distinct flows. Verify # flows/s > threshold.

T3 -> Send to ASL1 (SYN flood detector)

ASL1 -> Identify attack src and dst. Generate event. Apply filter.  

SYN flood detector

16

T1 T2 T3

ASL1Send to monitoring 
app!



Execute applications only when needed

T1 T2 T3 ASL2

ASL3

ASL1Shared tasks SYN flood detector

17

T1 T2 T3

Send to monitoring 
app!

Traffic accountingASL2

Some applications need to be always on



Execute applications only when needed

T1 T2 T3 ASL2

ASL3

ASL1Shared tasks SYN flood detector

18

T1 T2 T3

Send to monitoring 
apps!

Traffic accountingASL2

Operators may want to deploy applications on demand

ECMP verifierASL3



How can we address the challenges of current monitoring systems?

Key opportunities

We can avoid 
redundant 
processing

 Execute 
applications 
only when 

needed

Provide 
shared 

high-level 
statistics



Build on top of an efficient and flexible data-plane

20

The eXPress 
Data Path

(XDP)

Resource 
sharing

No busy 
polling

High-performance

Customizable 
data-path

Orchestration

Boosted 
performance 

and efficiency



How can we address the challenges of current monitoring systems?

Consolidate tasks on a shared primitive 
built on top of efficient packet processing

We can avoid 
redundant 
processing

 Execute 
applications 
only when 

needed

Build on top 
of an efficient 
and flexible 
data-plane

Provide 
shared 

high-level 
statistics

Efficient high-performance high-coverage monitoring system



Our system architecture

22

User space

Network

formatted 
packet records

Packet headers

full packets

Kernel 
or NIC

Receiver

Filter 
Rules

A

High-level
monitor

B

High-level
metrics

Router

C

Controller

Selection/
Routing Rules

Kernel

Operator

Configure 
applications

Application 1

Application 2

Application N

automatic, 
on demand, 
or always on



Router overview

23

Controller

Selection/ Routing 
Rules

Router
APP

High-level 
metrics

Packets

1

2

condition
e.g., if #flows/s > 10k

selection
e.g., then proto == TCP -> SYN flood analyzer

Install rule

set of applications 
that need to receive 
the packet



Boosting efficiency and performance

24

Several million 
packets/sec

Traffic 
selection

Compute 
high-level 

metrics

Route packets 
though apps

Offload traffic 
selection 

match/action 
tables

Maintain basic 
counters, 

precompute 
parameters for 

sketches

Enrich packet 
with app 
routing 

information

SmartNIC offload

Host



Example applications

25

Traffic accounting

Half open TCP connections analyzer

DNS flow analyzer Maintains per flow statistics of DNS traffic

Tracks incomplete TCP handshakes

Counts # of packets and bytes per IP destination



Evaluation

26

Evaluate 

CPU efficiency 

Scalability 

In terms of throughput

As we add resources (CPUs)

HLL accuracy



Evaluation setup

27

12-core Intel 
Xeon (2.4GHz)

64 GB of RAM

Netronome Agilio 
CX SmartNIC (10 

Gbps)

12-core Intel 
Xeon (2.4GHz)

64 GB of RAM

Intel 82599ES (10 
Gbps)

DPDK’s pktgen (up 
to 12.5 mpps)

PCAP (CAIDA trace)
Telemetry records

System/Apps 
deployed in 1 

CPU core



Efficiency in CPU utilization

28

Offered load 2 mpps



Scalability in terms of throughput

29



Scalability as we add resources

30

Offered load 12.5 mpps



High-level monitoring accuracy

31

Inject SYN flood attack for 60s



Conclusion

32

High-performance/high-coverage continuous monitoring can 
be simple, flexible, light and efficient



Thank you!

33


