
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021 597

Software Packet-Level Network Analytics at
Cloud Scale

Oliver Michel , John Sonchack, Greg Cusack, Maziyar Nazari, Eric Keller, and Jonathan M. Smith, Fellow, IEEE

Abstract—As networks grow in speed, scale, and complex-
ity, operating them reliably requires continuous monitoring and
increasingly sophisticated analytics. Because of these require-
ments, the platforms that support analytics in cloud-scale
networks face demands for both higher throughput (to keep
up with high packet rates) and increased generality and pro-
grammability (to cover a wider range of applications). Recent
proposals have worked toward these goals by offloading analytics
application logic to line-rate programmable data plane hardware,
as scaling existing software analytics platforms is prohibitively
expensive. The rigid design and constrained resources of data
plane devices, however, fundamentally limit the types of analy-
sis and the number of tasks that can run concurrently. In this
article, we demonstrate that generality need not be sacrificed
for high performance. Rather than offloading entire analytics
applications to hardware, the core idea of our work is to offload
only critical preprocessing tasks that are shared among appli-
cations (e.g., load balancing) to a line-rate hardware frontend
while optimizing the core analytics software to exploit properties
of network analytics workloads. Based on this design, we present
Jetstream, a hybrid platform for network analytics that can run
custom software-based analytics pipelines at throughputs of up
to 250 million packets per second on a 16-core commodity server.
Jetstream makes sophisticated, network-wide packet analytics
feasible without compromising on generality or performance.

Index Terms—Network monitoring and measurements, data
center networks, performance management, security manage-
ment, prototype implementation and testbed experimentation.

I. INTRODUCTION

EFFECTIVE network management requires traffic ana-
lytics: the capability to mine critical information from

packet streams, which can be used to trigger actions in the
network or guide subsequent decisions. Traffic analytics is a
core component in today’s reliable networked systems that is
used to help meet stringent security [1], correctness [2], [3],

Manuscript received May 31, 2020; revised September 12, 2020 and
November 16, 2020; accepted November 17, 2020. Date of publication
February 11, 2021; date of current version March 11, 2021. This work has
been funded by the National Science Foundation (NSF) under award 1652698
(CAREER) and NSF/VMWare award 1700527 (SDI-CSCS). The associate
editor coordinating the review of this article and approving it for publication
was T. Zinner. (Corresponding author: Oliver Michel.)

Oliver Michel was with the Department of Computer Science, University
of Colorado Boulder, Boulder, CO 80309 USA. He is now with the Faculty
of Computer Science, University of Vienna, 1010 Vienna, Austria (e-mail:
oliver.michel@univie.ac.at).

John Sonchack is with Department of Computer Science, Princeton
University, Princeton, NJ 08544 USA.

Greg Cusack, Maziyar Nazari, and Eric Keller are with the University of
Colorado Boulder, Boulder, CO 80309 USA.

Jonathan M. Smith is with the Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA 19104 USA.

Digital Object Identifier 10.1109/TNSM.2021.3058653

and performance guarantees [4], [5]. Historically, we largely
relied on humans in a network operation center to watch
some transformed version of the data (e.g., graphs) and man-
ually interpret the data to then take action. This approach
does not scale to today’s data center or wide area networks
which continue to grow in complexity, size, and traffic.
Instead, today, the ability to continuously perform automated
and sophisticated analytics across the entire infrastructure is
imperative [6], [7].

Given the importance of the problem, in recent years,
many novel and compelling architectures and systems for fine-
grained network monitoring in cloud-scale environments have
been presented [2], [8]–[11]. At the core of each proposed
system is an underlying processing engine that analyzes raw
data. The design of such a processing system is the focus of
our work.

In an ideal world, the system would enable arbitrary, sophis-
ticated analytics that consider every single packet traversing a
network. A network operator should be able to write multiple
custom analytics applications to run in parallel. These appli-
cations can be interactive queries or long-running, continuous
analyses over a network packet data stream.

In a nutshell, the analytics system must be general to enable
arbitrary and runtime-configurable applications through a pro-
grammable interface. Equally important is high performance
to allow for economically feasible network-wide coverage and
parallel analytics applications. This ideal of general, software-
based analytics on every packet in a cloud-scale network is
expensive to realize. Consequently, there has been a long his-
tory of work compromising on various dimensions with the
goal of making this vision practical.

Historically, flow aggregation and sampling (e.g., with
IPFIX [12]) have been the main tools of network operators to
reduce the amount of information to analyze. Both approaches
are appealing because they can be practically implemented in
resource-constrained hardware switches. Aggregated network
records, however, hinder fine-grained analytics that are required
for a wide range of performance- and security monitoring use
cases [8], [11], while sampling compromises on data fidelity
and accuracy [13]–[15]. These limitations motivated researchers
to propose custom algorithms and probabilistic data structures
(e.g., sketches) that provide provable accuracy and can be imple-
mented in hardware [16]–[18]. Still, sketching only supports
basic statistical analysis, limiting generality. For example, more
intricate analytics logic such as detecting a network loop, where
a packet traverses the same switch twice, cannot be realized
using sketches.

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4256-2365

598 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 1. Previous Network Analytics System Architectures.

These compromises on generality and data granularity are
increasingly problematic today, as there is a growing num-
ber of applications that need to perform analytics on data
from every single packet in a network, for example for
machine learning in intrusion detection or traffic classification
systems [19]–[26]. For these tasks, analysis is sophisticated
and application-specific, and hence impractical to implement
as a sketch or in hardware. To accommodate such applica-
tions, the community presented ways to analyze entire traces of
packets in software. Performance limitations, however, meant
that these proposals suffered from poor visibility, e.g., lim-
ited to a single switch [6] or a specific class of flows, which
again makes them unsuitable for the many modern analytics
applications mentioned above.

Today, we are left with two directions that research has
taken toward the goal of being able to analyze every packet in
a network for a wide range of applications. The first direction
is to compile analytics tasks to run on modern programmable
switches [8], [9] (see left side of Figure 1). This is chal-
lenging as hardware resources on these switches are heavily
constrained. To illustrate this, we compiled the Sonata [9]
queries available [27] to the Intel Tofino programmable for-
warding engine (PFE) using two levels of refinement. Only
two of the seven queries fit within the resource limits of the
chip (see Section VIII-B). This leaves the other queries as
not currently being practical and raises questions about the
feasibility of enabling multiple queries to run simultaneously.

The second direction is to adapt a pure software architec-
ture for network analytics, using a map-reduce-style, scale-out
system such as dShark [10] (see right side of Figure 1).
While this allows for horizontal scalability and supporting
multiple queries simultaneously, performance is still a sig-
nificant challenge. In an end-to-end performance evaluation,
dShark’s throughput is 10.6 million packets per second on
a 16-core server. This would result in needing to dedicate 96
servers to monitor a single cluster in a modern data center [28]
for a single application (see more in Section VIII-C).

In this article, we introduce a third direction that balances
the two previously presented extremes. Our proposed system,
Jetstream, uses a hardware-software co-design and can effi-
ciently analyze hundreds of millions of packets per second
for multiple simultaneous applications allowing for network-
wide, packet-level analytics without compromises. Our design
is based on two key strategies.

First, we leverage programmable switches for system-level
offload: Rather than pushing down entire analytics applica-
tions to programmable data plane hardware (i.e., compiling a

Fig. 2. Jetstream Architecture Overview.

query to P4 [29]), Jetstream offloads system-level tasks that
are necessary for all analytics applications to a programmable
data plane frontend. For example, tasks such as extracting
packet features, compressing and organizing packet records
for efficient processing, and steering data streams can effi-
ciently be implemented in hardware but are expensive to run
in software. By offloading them to programmable switches,
we eliminate much of a software analytics platform’s work
without overloading the programmable switch.

Our second strategy is to carefully optimize Jetstream’s soft-
ware component to exploit both the properties of network
analytics workloads and our partitioning between hardware
and software. For example, the structure of packet flows
is inherently suitable for distribution across servers (see
Section V-A). Since load balancing is offloaded to the pro-
grammable switch frontend, Jetstream’s analytics pipelines
(which run application-specific logic) can be designed to oper-
ate independently of each other. This eliminates resource con-
tention to improve both performance and scalability. Finally,
guided by workload characteristics, we apply a series of
domain-specific system optimizations. These optimizations
allow for significant performance gains over general-purpose
systems without impacting application logic or accuracy. The
resulting high-level architecture is depicted in Figure 2.

We implemented a complete prototype of Jetstream. The
data plane frontend runs on a Barefoot Tofino PFE at line
rate of 3.2 Tb per second and allows for dynamic adding,
removing, and scaling of analytics tasks without reloading the
programmable switch. The core software analytics engine is
implemented in C++. It consists of a framework and a library
for writing custom analytics pipelines that compute relevant
metrics from network packet record input streams. It integrates
optimizations that include kernel-bypass input/output, zero-
copy message passing, high-throughput concurrent queues,
batching, and accelerated hash tables. Lastly, a configurable
backend for aggregating and querying metrics provides an
interface to network operators or control platforms. We evalu-
ate Jetstream with real-world traffic traces using seven example
analytics applications: a heavy-hitter detector, a software load
balancing profiler, a Slowloris DoS attack detector, a SSH
brute force detector, a SYN flood detector, a TCP sequence
analyzer, and a traffic statistics/accounting application.

We published partial results on an early design of the soft-
ware analytics component of Jetstream in [30]. We now fun-
damentally extend the earlier processing engine by integrating

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 599

it with hardware-based telemetry systems and introducing an
independent, parallel processing pipeline architecture as a core
design strategy. Together with the data plane frontend and a
database backend, this article provides an end-to-end system
which we evaluate in a realistic multi-server deployment.

Our evaluation shows that individual application through-
puts range from 5.4 to 15.9 million packets per second
for a single core. Jetstream scales linearly with core count
across machines (or between 86.4 and 254.4 million pack-
ets per second on a 16-core server). For comparison, using
a 16-core server, Spark (Sonata’s backend) can handle 1.4
million packets per second and dShark can handle 10.6 mil-
lion packets per second. A task that would take 24 servers in
dShark only requires a single Jetstream server, demonstrating
how Jetstream’s design and optimizations make the ideal of
sophisticated and network-wide analytics practical.

In the remainder of this article, we first motivate the need for
Jetstream by discussing the progression of analytics systems
towards increasing generality (the ability to support a wider
collection of applications) and performance (the ability to han-
dle more traffic) in Section II. We then introduce Jetstream
and its architecture in Section III. This architecture consists
of three main components which are then detailed: the pro-
grammable data plane frontend (Section IV), the core software
network analytics engine (Sections V and VI), and the on-
demand aggregation and query backend (Section VII). We
evaluate Jetstream in Section VIII and conclude in Section IX.

II. MOTIVATION

With recent advances in networking technology, such as
software-defined networking [31] and programmable data
planes [29], [32], and the rapidly increasing scale of networks,
there has been a flurry of research toward improving network
monitoring and analytics. Each proposed system has moved
us closer to the idealized goal of being able to perform gen-
eral analytics on every packet in a network. The challenge, of
course, is doing so in a cost- and resource-efficient manner.
This is where each current analytics platform makes tradeoffs.
In this section, we motivate the need for and the design of
Jetstream by discussing the most relevant prior systems.

A. Sketching in the Data Plane

Sketching is among the most resource efficient approaches
to custom analytics. Sketches leverage probabilistic data struc-
tures to compute summary statistics over large input datasets
using a sub-linear amount of memory [33]. OpenSketch [17]
provides a library of such sketches to be deployed in pro-
grammable hardware platforms, while UnivMon [18] intro-
duces a universal streaming scheme, where a generic sketch
in hardware preprocesses packet records at high rates and
software applications compute application-specific metrics.

While extremely efficient in space requirements, sketches
can only support certain classes of statistical functions and
aggregate analysis as they lack visibility into individual pack-
ets. For example, an analysis task that cannot be represented
with a sketch is the detection of packets that traverse the same
switch twice, i.e., a network loop. By design, sketches also

over- and under-count events and randomly lose information
because of hash collisions in the underlying data structure.

In contrast, an analytics application running on top of
Jetstream has visibility into every packet and can therefore
calculate any statistic with full accuracy.

B. Packet-Level Software Analytics

There is a growing set of analytics tasks (particularly
machine-learning intrusion detection and traffic classification
systems) that cannot rely on sketching because they need to
either analyze fields in each packet or perform sophisticated,
application-specific analysis. Examples of the required packet-
level data include packet inter-arrival times [19], TCP receive
window [21], [24], and TCP flags [21], [24]. Analytics appli-
cations use these and other fields to compute: packet lengths
statistics [20], [26], packet arrival order [23], and many other
advanced and derived metrics (e.g., Fourier transforms of inter-
arrival times, flow idle times, mean packet sizes, flow duration,
number of TCP data packets) [19]–[26].

To support such applications, there have been proposals to
process entire traces of packets in software. Planck [6] demon-
strated the ability to mirror packets of interest to a management
port of a switch which then sends traffic to an attached server
for processing in software. Planck has limited scalability and
incurs packet loss due to substantial oversubscription of the
management port. To reduce the workload, NetSight [2] filters
out traffic that is not of interest, using Berkeley packet-filter
(BPF) style filters, before application-level processing, while
Everflow [11] pushes both filtering and shuffling into data
plane hardware. While these systems improve scalability, the
heavy reliance on filtering limits their applicability to debug-
ging tasks and increases operator burden, as operators must
know what they are looking for a priori.

Finally, distributed measurement frameworks, such as
SwitchPointer [34] or Confluo [35] collect features from reg-
ular network packets at the network’s end hosts and perform
lightweight analysis there. This approach lacks visibility into
the core of the network and also requires analytics function-
ality and applications to be deployed on every single host at
the network edge. Finally, Confluo applications must follow
a rigid programming model limiting its applicability for the
above mentioned applications.

In contrast, Jetstream’s high throughput enables scaling
without filtering, giving visibility into all packets collected
from throughout the network. Applications can flexibly extract
features and compute metrics of interest using a general-
purpose language and an unrestricted programming model.

C. Compiled Queries in the Data Plane

With the emergence of programmable forwarding engine
technologies (PFE) [29], [32], researchers have sought to
use these platforms to solve scalability issues introduced by
previous packet-level monitoring systems by compiling some
or all of the processing into line rate hardware.

Marple [8] identified a set of fixed operators that can be
compiled to a programmable forwarding engine and used to
implement parts of a network monitoring query. This approach

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

600 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 3. Telemetry-based network analytics system architectures.

offers great performance, but not all queries can fit within the
resource constraints of a PFE. For those queries, performance
is typically bottlenecked by the backend stream processor.
Compiled queries are also problematic for other reasons. First,
due to limited resources on these devices, only a small number
of tasks can run in parallel [36], [37]. Second, reconfiguring
data plane programs (i.e., changing the running monitoring
query) is disruptive as it incurs device downtimes on the order
of tens of seconds [37]. Third, applications are constrained to
use the fixed set of operators available in the PFE program-
ming model. While general, some applications [38] require
metrics that are too complex for switch hardware to imple-
ment [39]. Fourth, deployment is challenging because overall
system throughput is highly sensitive to the application, how
it is split between hardware and software, and the workload
characteristics (e.g., number of flows).

Sonata [9] reduced PFE memory requirements by introduc-
ing a method of iterative refinement for the PFE component of
a query. This comes with two additional drawbacks, however.
First, iterative refinement requires additional costly hardware
resources. In our evaluation (see Section VIII-B), we find that
refinement causes only two out of seven applications to be
able to fit on the PFE. Second, refinement relaxes the tempo-
ral and logical constraints of a query. Events must last longer
than a refinement window to be detected, which is on the
order of seconds [9]. Further, even long-lived events can be
missed because they may fail to match relaxed thresholds in
the coarse-grained early stages of a refined query.

In contrast to these systems, Jetstream leverages hardware
(switch) offload for preprocessing logic that is expensive in
software and common to all applications. All example appli-
cations that we later discuss in Section VIII-A require feature
extraction, record load balancing, and distribution. By offload-
ing this system-level functionality (rather than application-
specific tasks), Jetstream can accelerate all analytics tasks and
scale predictably and efficiently with the number of running
applications while eliminating the need to re-load switch logic
to run new or additional applications.

D. General-Purpose Software Processing

An alternative approach to programmable data plane accel-
eration and offload is to optimize software-based analytics.
Software platforms can support virtually any application

and can be reconfigured without downtime; however, per-
core processing rates are generally low, making opera-
tion in environments with high packet rates prohibitively
expensive.

There are two orthogonal lines of work in this area.
First, language-based tools, such as NetQRE [40] compile
queries into efficient C++ programs. Second, and more related
to Jetstream, are stream processing frameworks designed
to run many applications concurrently and at scale, e.g.,
dShark [10]. While dShark performs much better than general-
purpose stream processors (e.g., Spark, used as the backend of
Marple [8] and Sonata [9]), its throughput is still low relative
to network packet rates. Reported throughput for dShark, for
example, is on the order of 10.6 million packets per second
for a 16-core server running one application. This is several
orders of magnitude lower than typical data center packet rates,
effectively requiring racks full of servers just for analytics.

To understand the limitations of existing stream processing
systems and build intuition for Jetstream’s design, consider
Figure 3(a), which shows the general architecture of a soft-
ware stream processor used to analyze packets traces from
across a network. The figure illustrates three main steps in the
analytics process, each of which has a significant bottleneck
that Jetstream eliminates.

First, the frontend of the stream processor must handle load
balancing and distribution: forwarding a copy of each packet to
an instance of each application that needs to analyze it. Given
the high event rates in network analytics, this task of deciding
where each packet should go and load balancing across servers
and processor cores is expensive in software, and can easily
bottleneck the whole system.

Second, in the application-specific analytics pipelines,
sequences of operators transform input packet streams into
streams of meaningful information (e.g., metrics or alerts).
In these pipelines there are many sources of overhead that
cumulatively reduce throughput by an order of magnitude. For
example, copy and locking operations in inter-operator queues,
pointer-chasing in container-based key-value data structures,
and serialization overheads in message-passing subsystems. As
Section V-A explains in more depth, for many network analyt-
ics tasks frequent message passing and lookup operations are
required, making general-purpose stream processor overheads
impact network analytics tasks significantly.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 601

Finally, a typical stream processing network analytics appli-
cation would aggregate results across the instances to output
the metric(s) of interest. This requires each worker to send
data to a single aggregation node — a third bottleneck.

Takeaway: All of these systems have benefits over tradi-
tional solutions (e.g., traffic mirroring or flow monitoring),
but introduce compromises. Further, while some use pro-
grammable network hardware, all still rely, to varying degrees,
on software for final metric computation and are therefore sub-
ject to the above mentioned bottlenecks. As a result, even
for state-of-the-art telemetry systems, Jetstream’s capability
to support high-throughput and general analytics in soft-
ware is essential for meeting novel, packet-level monitoring
requirements in cloud-scale networks.

Further, software processing as it is possible in Jetstream
enables applications written in a general-purpose language
and does not limit the complexity of analysis or require sac-
rificing accuracy to gain performance. Instead, applications
can fully leverage the flexibility of general-purpose hardware
with ample memory and processing resources to implement
complex analytics using, e.g., neural networks, sophisticated
stateful logic, or third-party libraries.

As we describe next, Jetstream achieves these goals through
a combination of system-level hardware offload and software
optimization, which eliminate the bottlenecks outlined above
to enable high-performance network analytics in software.

III. INTRODUCING JETSTREAM

Jetstream is a high-performance network analytics system
that makes no compromises on generality or performance of
analytics tasks. It lets applications perform packet-level ana-
lytics, including the calculation of arbitrary metrics, entirely
in software and scales linearly with server resources. To over-
come the issues observed in Section II, we follow two main
design strategies.

First, as Figure 3(b) illustrates, we move distribution and
load balancing functionality into network switches. We call
this analytics-aware network telemetry. We also push aggrega-
tion of computed, metric streams to external backend systems.
At the core of our system then remain independent stream
processing pipelines that are primarily bottlenecked by compu-
tational, input/output and data structure overheads. The second
design strategy is to optimize these overheads away using a
collection of techniques drawn from prior work but adapted
for packet analytics workloads.

A. Using Jetstream

Jetstream is designed to run user-defined applications on
records for every packet in a network. These applications are
written in a general-purpose language (here C++) and can use
a highly optimized set of common network-oriented stream
processing operators that are part of the Jetstream library. In
addition to using this standard library, a user can implement
operators with entirely customized logic that still benefit from
Jetstream’s system-level optimizations.

Typical applications implement, for example, header-
based intrusion detection [41] or performance monitoring

applications, such as a queue depth monitor based on telemetry
data from data plane hardware [37]. Common across all appli-
cations is the broader goal of network analytics, that is making
the vast amount of records exported from network devices
comprehensible and useful for the operator. This means that
Jetstream applications must perform significant event rate
reduction through (application-specific) data aggregation. As
a result, the output data of a typical Jetstream application is
again a (much lower frequency) event stream of applications-
specific data tuples (metrics) for further, sometimes interactive,
analysis [40], [42], visualization, network control [5], [43], or
archiving [42] in a backend system. As a proof of concept we
demonstrate the integration with a time series database system
(Prometheus [44]) as one possible backend.

B. Analytics-Aware Network Telemetry

Switches are the source of network traffic data (i.e.,
packet headers or records), as prior network measurement
systems [2], [3], [8], [9], [34], [45], [46] have observed.
Offloading network analytics tasks directly to line-rate PFEs
on network switches is therefore appealing but comes with
previously explained drawbacks (Section II-C). Unlike prior
systems, Jetstream does not push any application specific logic
down to the switch level. Instead, we leverage programmable
data plane technology for offloading functionality common
across all applications, such as compressing, distributing, and
load balancing telemetry data streams.

Jetstream’s data plane frontend builds on *Flow [37], an
existing high-performance network telemetry platform that
exports digests containing per-packet measurements. We elab-
orate on how we extend and make *Flow analytics-aware by
implementing application-specific, runtime-configurable distri-
bution and load balancing of telemetry streams in Section IV.

C. Highly-Parallel Streaming Analytics

The streaming analytics engine performs the vast majority
of analytical computations touching on every single exported
packet in software. This is the core component of Jetstream,
supporting custom applications implemented as stream pro-
cessing programs.

In the stream processing paradigm, an application is a graph
(or pipeline) that is organized in several stages. Each stage per-
forms one computational task and is implemented using one or
many parallel kernels (or operators) that transform (e.g., map,
filter, or reduce) an unbounded stream of tuples [47]–[50]. In
traditional stream processing, applications scale at the stage-
level. Each operator typically runs in a separate thread and
maps to a physical processor core. This model is a clean
and simple abstraction for data processing applications, but
presents two main challenges.

First, it requires load balancing between kernels in soft-
ware, which introduces bottlenecks described in Section II-D.
We overcome this challenge by scaling at the granularity of
full pipelines. An application consists of multiple indepen-
dent pipelines that each handle a distinct subset of flows.
Jetstream’s data plane component partitions packet records
between these pipelines and encapsulates each record in a

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

602 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

UDP packet. The UDP destination port encodes the applica-
tion instance selected to process the packet. At the analytics
server, the NIC uses the port number to select the appropriate
hardware queue for each packet; each Jetstream pipeline then
only ever reads from its assigned queue.

Second, stream processing platforms add communication
and data structure overheads. We address this challenge by
carefully applying a set of software optimizations that are
adapted and tuned for packet-level network analytics work-
loads. These optimizations have the goal to minimize the
amount of costly copy operations, improve data locality within
processing pipelines and amortize remaining, inevitable cost
by using batching. We elaborate on the unique characteristics
of packet analytics workloads and their impact on our design
and optimization choices in Section V.

D. On-Demand Metric Aggregation and Analysis in Backend
Systems

Finally, the results of stream processing pipelines, which
will generally consist of high-level information at significantly
lower rates, can be fed into different backend systems, such
as security platforms as alerts [51], time series databases for
visualization, auditing, offline analysis [52], or network con-
trollers for automated network reconfiguration [7]. In order
to mine meaningful and network-wide metrics and analytics
results, event streams must eventually be merged and aggre-
gated across analytics pipelines and servers. As explained
before, this is costly when done within the stream processor
and at rates of millions of records per second but becomes fea-
sible when performed on event streams of hundreds or even
thousands of records per second and outside of the critical
analytics pipelines.

Consequently, to maintain pipeline independent process-
ing, we push cross-pipeline data aggregation into the backend
itself. As a proof of concept, we use a time series database
system which is already optimized to aggregate data from
many sources. Each metric calculation pipeline streams data
directly into a database proxy, which exposes per-instance flow
metrics through an interface that the database scrapes. We
show that our model fits existing time series database systems
well and dive into each phase of the on-demand aggregation
and analysis part of our system in Section VII.

IV. ANALYTICS-AWARE NETWORK TELEMETRY

The Jetstream data plane interface connects line-rate teleme-
try systems with the Jetstream analytics processing servers.
As we view compression as an important system-level func-
tionality to support, we build our prototype with concepts
taken from *Flow [37], which emits grouped packet vectors
(GPVs). A GPV is simply a variable-length list of packet
features grouped by flow for more efficient processing with
software. One can think of GPVs as a deduplication-based
compression format for packet records. In an evaluation of
a wide-area Internet packet trace collected by CAIDA [53],
using GPVs results in a 7.7x reduction in bandwidth over
packet records (which already provide significant compression
over full packet traces).

Fig. 4. Jetstream’s data plane frontend for filtering, replication, and load
balancing of telemetry digests written in P4.

Jetstream’s data plane component, illustrated in Figure 4,
extends *Flow to distribute and load balance GPV streams to
application pipeline instances, solving the problem of getting
the right telemetry streams to the right analytics servers effi-
ciently. This, in turn, eliminates the first bottleneck of general
software stream processing for network analytics and allows
application pipelines to operate entirely in parallel.

We leverage programmable switches (e.g., in our case the
Barefoot Tofino [36]) to support three important functions at
line rate: replicating streams of telemetry digests to multiple
concurrent applications; filtering each application’s stream to
only contain relevant packet flows; and load balancing each
application’s stream across an arbitrary number of stream
processing pipeline instances. We implemented these three
functions on top of the feature extraction and compression
functionality of *Flow.

Usage: The abstraction for the Jetstream data plane interface
is simple and application-centric. Each application configures
match+action tables used by the Jetstream P4 [29] program to
set the IP addresses of its Jetstream processing servers. The
switch will load balance telemetry digests destined for the
application across these servers, based on a key. The key can
be configured per application and is generally the IP 5-tuple
or a subset of it. For example, for an application that only
computes statistics per destination IP address, using only the
destination IP address as the key means that packets with a
particular destination IP address would always end up at the
same Jetstream pipeline eliminating the need for later data
aggregation. Each application also configures a dedicated fil-
tering table that specifies which flows it needs to monitor.
Only telemetry digests matching the filtering table are cloned
to the application’s servers. The filtering tables can either use
exact or ternary matching over the flow key. A new applica-
tion is added and configured at runtime by populating entries in
the respective match+action tables using the RPC mechanisms
exposed by the data plane target [54]. This means that adding,
scaling or removing a Jetstream application does not require
reloading the data plane as it is required in existing systems [8]
incurring switch downtimes of tens of seconds [37].

Design: As illustrated by Figure 4, the Jetstream data
plane interface is implemented as a sequence of match+action
tables in the ingress, multicast engine, and egress stages of

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 603

a programmable switch. The input is a stream of telemetry
digests from *Flow or any other data plane telemetry system.
During the ingress stage, Jetstream applies a set of parallel
match+action tables to determine which set of applications
need to process each digest, based on its flow key. Each table
holds the filtering policy of one application and sets a sin-
gle bit in a flow selection bitvector packet metadata field, i.e.,
bitvec[2] == 1 means that the third application needs a
copy of the current digest.

After ingress, the digest and flow selection bitvector proceed
to the switch traffic manager. The traffic manager (TM) uses the
bitvector as a reference into its multicast configuration table.
For modern switches, e.g., the Barefoot Tofino, each entry in
this table maps a multicast ID to a set of multicast groups. As
Figure 4 shows, Jetstream configures this tree structure so that
each group represents the servers where a specific Jetstream
application runs. The TM selects one member of each group
using a hash of the load balancing key, clones the digest to the
associated port, and annotates the packet with the ID of the
selected member. Each ID is a 16-bit value, which we configure
to encode the ID of a specific analytics server. Finally, in the
egress pipeline, the switch encapsulates each replica of the
digest. To determine the destination IP address, it uses a table
that maps the Jetstream server ID to an IP address.

While we use *Flow as the underlying telemetry system,
it is important to note, that Jetstream’s data plane frontend is
flexible and can be used with any data plane based teleme-
try source. For example, previous systems, such as Marple [8]
and Sonata [9] can be integrated as telemetry sources and sub-
sequently highly benefit from Jetstream’s software processing
performance and capabilities.

V. HIGH-PERFORMANCE STREAM PROCESSING OF

NETWORK RECORDS

The Jetstream data plane frontend sends telemetry records
directly to the individual stream processing pipelines of one
or more applications. This allows the pipelines to avoid
interaction for distributing network records in software (i.e.,
the first bottleneck in Section II-D) and enables us to focus
entirely on optimizations for the workload. In this section, we
explore some of the distinct characteristics of packet analytics
workloads and describe how we can leverage them to reduce
communication and data structure overheads.

A. Packet Analytics Workloads

We identify six key differences between network packet
analytics workloads and those of general stream processing.

High Record Rates: One of the most striking differences
between packet analytics workloads and typical stream pro-
cessing workloads are higher record rates. For example,
Twitter reports that their stream processing cluster handles up
to 46 million events per second [55], [56]. For comparison, the
aggregate rate of packets leaving their cache network is over
320 million per second; and this only represents approximately
3% of their total network.

Small Records: Although record rates are higher for packet
analytics, the sizes of individual records are smaller, which

makes the overall bit-rate of the processing manageable.
Network analytics applications are predominately interested in
statistics (metrics) derived from packet headers and processing
metadata, which are only a small portion of each packet. A
40 Byte packet record, for example, can contain the headers
required for most packet analytics tasks. In contrast, records
in typical stream processing workloads are much larger.

Event Rate Reduction: Packet analytics applications often
aggregate data significantly (e.g., by connection) before apply-
ing heavyweight data mining or visualization algorithms. This
is not true and applicable for general stream processing work-
loads, where the backend algorithm may operate on features
derived from each record.

Simple, Well-formed Records: Packet analytics records are
also simple and well-formed. Each packet record has the same
size and contains the same fields that can be accessed in constant
time when in memory. Within the fields, the values are also of
fixed size and have simple types, e.g., counters or flags. Records
are much more complex for general stream processing systems
because they represent complex objects, e.g., Web pages, free-
form text, and are encoded in serialization formats such as
JSON and protocol buffers that require more complex parsing.

Network Attached Input: Data for packet analytics comes
from one source: the network. Be it a router, switch, or middle-
box that exports records, they will ultimately arrive in software
via a network interface. In general stream processing work-
loads, the input source can be anything: a database, a sensor,
or another stream processor.

Partionability: There are common ways to partition packet
records that are relevant to many different applications, for
example, using the flow key (e.g., IP 5-tuple) for load balanc-
ing. Further, since the fields of a packet are well defined, the
partitioning is straightforward to implement. In general stream
processing workloads, partitioning is application specific and
can require parsing fields from complex objects.

B. Jetstream Optimizations for Packet Analytics Workloads

Based on the observations about packet analytic workloads,
we identified five important components of stream process-
ing systems where we apply optimizations in Jetstream. We
measure the benefit of these optimizations in Section VIII-A.

Data Input: In general-purpose stream processing systems,
data can be read from many sources, such as a HTTP API, a
message queue system (e.g., RabbitMQ or Kafka), or a spe-
cialized file system like HDFS. These frameworks can add
overhead at many levels, including due to context switches and
copy operations. Since packet analytics tasks all have the same
source, the network, a stream processing system designed for
packet analytics can use kernel bypass and related technolo-
gies, such as DPDK [57], PF_RING [58], or netmap [59],
to reduce overhead by mapping the packet records directly
to buffers in the stream processing system. Jetstream uses
netmap [59] to read packet records from individual NIC
queues directly into the stream processor without introducing
overheads from the operating system networking stack.

Zero-Copy Message Passing: Through our initial exper-
iments, we have identified that for most applications the

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

604 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

performance of a single processor within the stream pro-
cessing graph is I/O-bound. Specifically, frequent read, write,
and copy operations into the queues connecting kernels
introduce significant performance penalties. Since packet
records are small and well-formed, Jetstream can eliminate
this overhead by pre-allocating buffers and passing point-
ers between kernels, to significantly improve performance.
In Jetstream, for the output of kernels that do not alter the
record data structure (e.g., filter operations), we amortize
data copy overheads by using pointers together with C++
move semantics [60] that allow the compiler to avoid deep
copies.

Concurrent Queues: Elements in a stream processing
pipeline communicate using queues, which can themselves
have significant impact on overall application performance.
We identified thread-safety and memory layout as primary
bottlenecks in queue implementations. For example, basic con-
current queue implementations use expensive locks to ensure
thread safety and use linked lists as their underlying data struc-
ture. Linked lists allow automatic resizing of the buffer but
are expensive due to poor cache locality and frequent pointer
dereferencing. Jetstream’s design, in which stream distribu-
tion and load balancing is offloaded to the data plane, means
that most queues connect a single producer and consumer.
Based on this insight and leveraging several techniques used
in concurrent data structures [61], we implemented an effi-
cient, lock-free ring buffer. As records are small, we use a flat
memory layout to avoid overheads of frequent pointer derefer-
encing. This means that the entire ring buffer is allocated as a
single fixed size array and the array cells hold the actual data
tuples as opposed to pointers to the data. The size of the ring
buffer is also locked to powers of two allowing for cheaper
bit shift operations instead of modulo operations to calculate
offsets [62]. Finally, we use atomic types for head and tail
indices to enable thread-safety [60].

Hash Tables: Often, network analytics applications need to
map packet records to prior state. This requires a key-value
store, which can easily be a bottleneck when processing high-
rate packet streams. As a solution, Jetstream’s library provides
an optimized data structure that exploits the fact that packet
records are small, well-formed, and have fixed width fields.
The reduce operator and a flow table component that are com-
monly used by network analytics applications and are part of
the Jetstream library use a hash table with a flat memory layout
and open addressing with linear probing to reduce the over-
head of pointer dereferencing and increase cache hit rates.
Additionally, to minimize the cost of key comparisons dur-
ing lookups, Jetstream’s hash table encodes keys using 128-bit
integers so that they can be compared using a single Streaming
SIMD (SSE) vector instruction [63], [64].

Batching: Finally, the small size of individual network
records makes batching appealing and improves performance
in multiple ways. Batching access to queues amortizes the cost
of individual queue and dequeue operations. Batching packet
records by flow, as done by Jetstream’s *Flow-based telemetry
data plane, amortizes the cost of hash table operations neces-
sary for a wide range of aggregation tasks that use the flow
key or a subset of it as the aggregation key.

VI. PROGRAMMABILITY AND APPLICATIONS

Jetstream analytics applications are written in C++, a
popular, general-purpose language enabling easy prototyping,
testing, and deployment. Applications leverage the Jetstream
library of optimized stream processing primitives. This library
not only includes the stream processing core and runtime,
but also a variety of pre-built processors that can be used
to rapidly build network monitoring and analytics applica-
tions. Additionally, application developers can define custom
processors.

A. Input/Output and Record Format

As Jetstream’s telemetry frontend extends a prior telemetry
system, *Flow, we leverage *Flow’s record model, grouped
packet vectors. Unlike traditional flow records, GPVs still con-
tain individual packet data (such as individual timestamps, byte
counts, or TCP flags) through feature vectors. We leverage
GPVs that include individual microsecond timestamps, byte
counts, hardware queuing delays, queue ids, queue depths,
IP ids, and TCP sequence numbers. Further information on
the GPV format and GPV generation in both software and
hardware can be found in [37].

The primary packet input mechanism in our system lever-
ages netmap [59], a kernel-bypass mechanism allowing the
mapping of NIC buffers directly into the stream processor’s
(user space) memory. Using this, we are able to inject packet
records at high rates into the Jetstream analytics system with-
out allowing costly and frequent system calls to become a
bottleneck in the processing pipeline. While kernel-bypass
NIC access is the primary packet interface in our system, we
also implemented the ability to read GPVs from memory, from
files, from standard sockets, or to receive raw packet records
using PCAP or the TaZmen sniffer protocol.

B. Programming Model

Jetstream applications are written as stream processing
pipelines. The simplest way for a developer to write an
application is by composing Jetstream’s builtin stream pro-
cessors, for example those listed in Table I. Table II shows
Jetstream’s API for interconnecting these processors and
launching pipelines. A simple application counting the number
of packets per source IP address can be defined like this:

js::app a;
auto rx = a.add_stage<js::gpv_receiver>("enp2s0f0");
auto map

= a.add_stage<js::map<gpv,pair<js::ipv4_addr,unsigned>>
([](gpv x){return std::make_pair(x.ipsrc,x.pktcount);});

auto reduce
= a.add_stage<js::reduce<js::ipv4_addr,unsigned>>(plus());

a.connect<gpv>(rx,map);
a.connect<pair<js::ipv4_addr,unsigned>>(map,reduce);
a();

Here, js::app a; declares and instantiates a pipeline (or
application). Calls to a.add_stage() and a.connect()
define the pipeline, and its execution begins on the last line
when we call the function operator (a()). Using this API,
each application defines the processing steps it requires.

Jetstream includes a standard library (short js) of com-
mon processors that can be chained to build full network

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 605

TABLE I
PROCESSORS IN THE JETSTREAM STANDARD LIBRARY (NAMESPACE PREFIXES js AND std ARE OMITTED)

TABLE II
API FOR COMPOSING AND RUNNING APPLICATIONS

analytics applications. The library includes common data
flow operations listed in Table I. Additionally, specialized
domain-specific operators exist to, for example, reduce by
flow key (i.e., a flow table). All processors in the Jetstream
library leverage different software optimizations outlined in
Section V-B.

C. Custom Processors

If an analytics task requires processing logic, data types, or
interfaces that are not covered by Jetstream’s library, develop-
ers can implement custom processors that automatically take
advantage of Jetstream’s scaling and load balancing.

To write a custom processor, a developer first creates a sub-
class of js::proc. Next, the developer specifies input and
output ports and types in the subclass’s constructor. These
ports are used to send or receive records to or from other
processors, respectively. Finally, the developer implements
processing logic in the operator() method. For example,
a basic version of the print processor from Table I can be
implemented like this:

class print : public js::proc {
public:

print() { add_in_port<gpv>(0); }
bool operator()() {
gpv gpv; js::signal sig;
in_port<gpv>(0)->dequeue_wait(gpv, sig);
_os << gpv << std::endl;
return sig == sig::proceed; }

private: std::ostream& _os; };

Custom processors allow developers to implement arbitrary
applications that operate on packet records or GPV inputs.
They are written as standard C++ code and can use custom
algorithms and data structures, leverage third party libraries,
or call external services.

VII. ON-DEMAND AGGREGATION IN BACKEND SYSTEMS

Processing pipelines in Jetstream are optimized to efficiently
extract higher-level information from the input data packet
stream. We refer to this higher-level information as metrics.

In our prototype implementation such metric tuples consist of
a numeric value, a timestamp, and a set of key-value meta-
data pairs. For example, to detect elephant flows, a heavy
hitter detector implemented on top of Jetstream would periodi-
cally export the number of packets or bytes together with flow
information (i.e., the IP 5-tuple) for the most active flows [65].

A. Integrating With Backend Systems

In Jetstream, the final aggregation of computed metrics is
offloaded to configurable backend systems. This is possible as
long as the analytics application already significantly (i.e., by
several orders of magnitude) reduces the event rate. Intuitively,
this is the common case for analytics applications because
useful metrics aggregate data (e.g., in small time intervals), or
report on anomalies that are by definition infrequent.

The backend can then be used to automatically or interac-
tively query, analyze, or visualize metric data computed by
Jetstream. Jetstream integrates with backend systems through
an API that can be used by applications to export metrics
from pipelines. A local metric collection proxy consumes app
metrics and exposes an interface that can subsequently be
polled by the backend system. The export API used within
Jetstream applications is universal while the API exposed
by the collection proxy is specific to the respective back-
end system. We imagine possible backend systems to be time
series databases (e.g., Prometheus [44]), visualization systems
(e.g., Grafana [66]), monitoring platforms (e.g., Nagios [67]),
another stream processor, or a network control platform (e.g.,
ONOS [68]) to enable a network control loop.

Exporting Metrics: The metrics export API currently sup-
ports two types of metrics inspired by the Prometheus time
series database: a counter and a gauge. A counter metric rep-
resents a cumulative and monotonically increasing value while
a gauge can be set to a specific value, increased, or decreased
in value. Each metric is associated with a name, a timestamp,
and a set of meta data. Other metric types, such as snapshots of
full metric distributions or vectors are imaginable. For exam-
ple, upon detection, reporting a heavy hitter using a counter
from within a Jetstream pipeline looks like this:

js::metrics.update_counter("heavy_hitters", hh.pkt_count,
{{"ip_src", hh.ip_src}, ... });

Collection Proxy: Internally, the metrics export API adds
a timestamp, serializes the metric object using Protocol
Buffers [69], and sends a RPC message using gRPC [70]
to the collection proxy. The collection proxy sits between
a Jetstream application and the backend system, converting

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

606 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

data into the appropriate format. In order to prevent data
aggregation in-line resulting in cross-core communication, a
collection proxy is instantiated for each instance of a Jetstream
application and subscribes to an instance’s metric stream. We
built a collection proxy prototype for the Prometheus time
series database [44]. For this integration, the proxy exposes
a HTTP API that a Prometheus instance periodically scrapes.
Finally, Prometheus stores scraped metrics in its data store for
continuous aggregation across Jetstream instances.

B. Querying Metrics

Prometheus supplies a query language and API, which
allows a user to retrieve network traffic metrics from the
database. Additionally, Prometheus allows configuring alerts
and integrates with Grafana [66], a framework to easily visu-
alize query results to, for example, build dashboards. All our
example applications integrate with the metrics export system
and can be queried from Prometheus. We now show example
queries for three of those applications to illustrate how a user
can interact with and extract relevant metrics from Jetstream.

For the traffic accounting application, Prometheus main-
tains individual counters for each component of a packet’s IP
5-tuple. For example, a user can use the Prometheus rate()
function to calculate the average number of bytes per second
sourcing from port 443 over the last minute using this query:

rate(total_bytes{tp_src="443"})[1m]}

The heavy hitter application, which looks for flows that
cause more than a configurable percentage of the total bytes
in the network, exports heavy hitter candidates with the met-
ric name heavy_hitters. In order to identify the top 5
frequent flows from the candidates stored in the database, we
can issue a query as follows:

topk(5, heavy_hitters)

The TCP analysis application looks for out of order packets
in a TCP flow. Flows with at least one out of order packet are
exported to the database with the metric name tcp_seq and
the metric value counting the number of out-of-order pack-
ets in the flow. To find which flows originating from the
192.168.0.0/16 subnet have more than 10 out-of-order packets,
the user can issue the following query:

tcp_seq{ip_src=~"192.168.+.+"} > 10.

VIII. EVALUATION

We evaluate the performance and efficacy of our prototype
implementation through three different lenses. First, we mea-
sure Jetstream’s overall system throughput and scalability from
both an end-to-end standpoint as well as from an individ-
ual application throughput standpoint. We then look at how
Jetstream’s telemetry-aware data plane component compares
with Sonata [9] in terms of PFE resource consumption and
accuracy. Finally, we evaluate the performance of Jetstream’s
stream processor against both Spark [47] and dShark [10].

We used the Cloudlab network experimentation plat-
form [71] for all of our benchmarks. Our experiment setup
consisted of six servers with 2 × 10-core Intel Xeon E5-2660
v3 CPUs clocked at 2.6 Ghz. Each node had 160GB of ECC

TABLE III
JETSTREAM’S PER-APPLICATION THROUGHPUT [M PKTS/S]. TWO CORES

PER APPLICATION

Fig. 5. Scalability of Jetstream applications across servers.

DDR4 memory. The nodes were connected over a 10Gbps
network with two Intel X520 Ethernet adapters per server for
ingestion of telemetry data. We used packet traces from a
core Internet link collected by CAIDA in 2015 [53] for all
experiments.

A. Macro Benchmarks

First, we benchmark Jetstream’s performance and scalability
at a macro-level using the applications described in Table III.
In this experiment, we created a scenario where three switches
stream GPVs across the network to three Jetstream analyt-
ics servers running application pipelines. Our programmable
switch (Tofino) is currently not physically co-located with suf-
ficient server resources. We therefore model the switches by
running a software implementation of Jetstream’s data plane
component on three separate servers in the Cloudlab network,
driven by real-world packet traces from CAIDA. Each pipeline
uses two cores scaling to a total of eight pipelines per server, or
24 pipelines using 48 cores across three servers. Each 10GbE
network interface serves up to four Jetstream pipelines.

Figure 5 shows the performance and scalability of Jetstream.
We ran 24 rounds of this experiment where we added an addi-
tional analytics pipeline (2 cores) with each round, eventually
using all 3 × 16 cores of our servers. Our system scales lin-
early with core count across machines and can process over
200 million packet records per second leveraging only three
commodity servers. This demonstrates the effectiveness of key
design choices in Jetstream.

The bottleneck in this set of benchmarks was the 10Gbps
network interface card we used. With the assumption that
telemetry packets are roughly 200 bytes on average (since a

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 607

TABLE IV
JETSTREAM NETWORK INTERFACE RESOURCE USAGE ON THE BAREFOOT

TOFINO. STATEFUL ALU USAGE IS 0 FOR ALL APPLICATIONS

packet is a GPV record), the max rate of a 10Gbps network
interface would be about 6M GPVs/sec. We had each of the
two NICs feed 4 of the pipelines (8 of the cores), which led
to roughly 1.5M GPVs/sec per pipeline. With an average of 8
packets per GPV in the trace that we used, this translates to
roughly 12M packet records per second per pipeline that we
can theoretically feed per pipeline, or a maximum theoretical
rate of 96 M packet records per second per server with two
10Gbps NICs. In practice this rate is likely lower due to a
variety of factors. We saw roughly 75M packet records per
second in practice of just I/O performance. As we will see
next, many of our applications scale beyond this number and
would therefore benefit from higher throughput NICs.

To show the performance of the individual Jetstream appli-
cations without the NIC input bottleneck in our setup, we also
stream network traffic from memory through Jetstream. Again,
in this experiment, each application is assigned two cores
as each application has one thread dedicated to consuming
records while the other thread runs the application. Table III
shows Jetstream’s application performance numbers. We can
see that Jetstream achieves a maximum throughput in excess
of 31 million packets per second per pipeline while also attain-
ing strong performance for complex, stateful applications such
as SSH Brute Force detection. As a result, Jetstream pipelines
process data between 1.5 to 3 times faster than the 10Gbit/s
telemetry input over the network. In practice, a 40 Gbit/s NIC
would be able to fully utilize the analytics pipelines.

Jetstream’s high processing rates are a result of apply-
ing the different software optimization strategies outlined in
Section V-B. Using GPVs provided a speedup of 5.4 over
single packet records. Our optimized concurrent queue imple-
mentation was faster by a factor of 3.0 over the C++ standard
template library queue (secured with locks). Our hash table
implementation using a flat layout and linear probing pro-
vided a speedup of 1.8 over the STL standard unordered map.
Finally, using netmap instead of standard sockets provided a
throughput increase of a factor of 2.8. To obtain these numbers
each optimization was isolated from all others.

B. Comparison With Hardware Analytics

We next evaluate Jetstream’s data plane component, a line-
rate data plane program written in P4 that filters, replicates,
and load balances telemetry digests across analytics servers.
We ran this program on a Barefoot Tofino PFE configured
with ternary application filtering tables sized for 128 entries
each. Table IV lists the major resource requirements of the
Jetstream data plane interface. Overall, the component is
lightweight: It requires only 3 stages and 20 tables to filter

TABLE V
RESOURCE USAGE FOR HARDWARE ANALYTICS QUERIES ON THE

BAREFOOT TOFINO. SRAM REQUIREMENT ASSUMES < 65K
CONCURRENT KEYS (E.G., ONE 10 GB/S INTERNET LINK [53])

for 16 different applications because of its parallel design.
The most-utilized resource is TCAM. Each application’s table
uses approximately 1% of the Tofino’s TCAM. If wildcard
and priority-based filtering is not required for all applications,
some or all of the tables can be replaced with exact match
tables in SRAM rather than TCAM.

We now compare Jetstream’s PFE resource consumption
with that of Sonata [9], a state-of-the-art network telemetry
and analytics platform that leverages switch hardware to accel-
erate network analytics. Sonata’s primary goal is to reduce the
load on the software stream processor by iteratively refining
network queries and pushing them into hardware.

While Sonata is able to reduce the event rate at the
stream processor, the system makes tradeoffs to realize this
performance. First, Sonata’s iterative refinement reduces the
required state maintained by the switch to execute a query.
However, refinement comes at the cost of an increasing num-
ber of match+action tables to perform the same query. Table V
illustrates this point, as many queries that run with multiple
levels of refinement fail to compile to the switch. If we com-
pare Sonata (Table V) and Jetstream’s (Table IV) resource
usage, we can see that Jetstream only requires about as many
resources (stages, tables, etc.) as a single Sonata query in hard-
ware, even to support expensive load balancing and filtering
for many concurrent applications.

The second of Sonata’s tradeoffs also stems from query
refinement and results in a reduction in accuracy. Each
iteration of refinement that reduces load on the stream proces-
sor, requires another time window to pass by before packets
are forwarded to the stream processor. As a result, in order
to get the largest reduction in event rate at the stream pro-
cessor, applications must wait multiple time windows before
being able to process potentially time-critical data. Waiting one
or more time windows negatively impacts accuracy for many
applications as issues lasting fewer than one or more time win-
dows (e.g., frequent micro-bursts [72]) will not be detected.
Jetstream has no such accuracy limitation since processing is
done in software. Detection performance is predictable and
attacks will not slide through the cracks.

Finally note that, while Jetstream provides a telemetry
replacement for Sonata at a lower PFE resource cost, Sonata
(or other telemetry systems) and Jetstream can technically be
used in conjunction. This may be beneficial in certain cases,

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

608 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

e.g., when a simple, static query fits entirely in the PFE.
Doing so, however, sacrifices flexibility. For example, it makes
runtime reconfiguration more challenging (see Section II-C).

C. Comparison With Pure Software Analytics

In this article, we argue that software provides the pro-
grammability and flexibility needed to support a wide range
of network analytics applications. Existing software analyt-
ics platforms, however, do not provide sufficient performance
for cloud-scale network analytics workloads. To support our
argument, we now compare the performance of our system
against both Spark (used by Sonata [9]) and dShark [10]. For
each test, we used the same experimental setup as described
in Section VIII.

a) General-purpose Analytics (unmodified Spark): To illus-
trate the impact that just the architectural changes have, we
compare against Spark [47], a general-purpose stream pro-
cessing system. We ran the Traffic Accounting application,
which counts the number of packets and bytes per each com-
ponent of the IP 5-tuple. We streamed GPVs as input data
over the network to both Spark and Jetstream. With two CPU
cores, Spark sustains 1.4 million packet records per second,
whereas Jetstream runs at 9.9 million packet records per sec-
ond. Most importantly, we found that for this workload Spark
(unlike Jetstream) does not scale with core count (or num-
ber of threads). Spark’s inability to scale in this scenario is
due to the high-volume input streams in network telemetry
that Spark distributes across worker threads in software. This
imposes very high utilization in the distribution/load balancing
thread and subsequently creates a bottleneck. In Jetstream, this
critical task is offloaded to programmable line rate switches.
We gave more intuition on this in Section II-D. Other Spark
users have also found Spark to scale poorly for comparable
workloads [73], confirming our tests.

b) General-purpose Analytics (Spark with kernel bypass):
Of course, a question arises if Jetstream’s benefit just comes
from its use of kernel bypass technology. As it is non-trivial to
modify Spark to include streamlined network I/O capabilities,
we use streaming from memory within the application as a
way to remove the I/O component from the evaluation. That
is, we read an entire trace into memory and replay it directly
within the application. With 2 cores, Spark runs at 2.0 mil-
lion packet records per second, whereas Jetstream runs at 14.0
million packet records per second, further illustrating Spark’s
architectural bottleneck.

c) Network Analytics Software (dShark): To understand
Jetstream’s true software processing performance in the face
of the NIC bottlenecks we experienced, we compare against
dShark [10], a recently introduced software-based, packet-
level, network analytics platform. A key innovation of dShark
was the ability to analyze traffic in the face of network packet
header transformations. One such application which requires
this functionality is the software load-balancer (SLB) pro-
filer in dShark. We re-created the SLB profiler application
in Jetstream and validated its correctness in a live test. Our
results illustrate Jetstream’s comparable flexibility to dShark.
We acknowledge, however, that because Jetstream relies on

GPVs, which are fixed-format records, we can only support
a fixed depth of header nesting, whereas dShark can support
any depth. We believe this limitation is not impactful for this
discussion, as in practice, it would be highly irregular to see
a depth of nesting beyond some known amount. Since dShark
is not open source, we reference the performance results in
their publication. While not a perfect comparison, our results
are still illustrative with Jetstream running on similar hard-
ware. In the dShark experiments, packet records are streamed
from memory directly into the analytics application. On a
16-core server, dShark runs at 10.6 million packets per sec-
ond (Mpps) with 6 parsers and 9 groupers (or 0.625 Mpps
per core), whereas Jetstream runs at 31.6 Mpps (or 15.9 Mpps
per core), a 25.44x speedup. Here, we note that performance
scales linearly with number of servers in both cases.

d) Resource Cost Analysis: To put the performance speedups
into context, consider the resources needed to support analyt-
ics in a modern datacenter. Here, we look at reported traffic in
a cluster at Facebook [28] where an analytics system needs to
sustain at least 961 million packets per second in order to meet
the Web server cluster’s peak packet rates. Assuming 16-core
servers, we would need ~96 servers for each analytics applica-
tion to run on dShark, ~480 servers for systems using Spark,
and a mere 4 servers for systems using Jetstream. These num-
bers also assume that dShark and Spark integrate optimized
packet input through, for example, kernel-bypass technology,
as Jetstream does.

IX. CONCLUSION

This article introduced Jetstream, a high-performance plat-
form for network analytics that makes no compromises on
performance or generality — records of every packet can effi-
ciently be processed in software. The core insight of Jetstream
is to utilize programmable networking hardware to improve
the performance of software analytics platforms, rather than
offloading analytics applications themselves.

The resulting prototype of Jetstream can analyze between
86.4 and 254.4 million packets per second on a 16-core com-
modity server. Benchmarks show that Jetstream’s approach
to telemetry data distribution and load balancing in the data
plane enables linear scaling with addition of servers and
only requires moderate switch resources. Compared with a
high-performance network analytics software system (dShark),
Jetstream supports over 25.4x higher processing rates. To pro-
cess a published data center workload, this would require 96
servers in dShark, but only 4 in Jetstream — making fully
flexible software-based network analytics practical.

ACKNOWLEDGMENT

The authors would like to thank Stefan Schmid for feedback
on drafts of this article.

REFERENCES

[1] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of IP flow-based intrusion detection,” IEEE Commun.
Surveys Tuts., vol. 12, no. 3, pp. 343–356, 3rd Quart., 2010.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

MICHEL et al.: SOFTWARE PACKET-LEVEL NETWORK ANALYTICS AT CLOUD SCALE 609

[2] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to trou-
bleshoot networks,” in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2014, pp. 71–85.

[3] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow
for data centers,” in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 311–324.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in
Proc. 7th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2010,
pp. 281–296.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th ACM Conf. Emerg.
Netw. Exp. Technol., 2011, p. 8.

[6] J. Rasley et al., “Planck: Millisecond-scale monitoring and control for
commodity networks,” in Proc. Conf. ACM Special Interest Group Data
Commun. (SIGCOMM), 2014, pp. 407–418.

[7] R. Hand, M. Ton, and E. Keller, “Active Security,” in Proc. 12th ACM
Workshop Hot Topics Netw. (HotNets-XII), 2013, pp. 1–7.

[8] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2017, pp. 85–98.

[9] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven Streaming Network Telemetry,” in
Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2018, pp. 357–371.

[10] D. Yu et al., “dShark: A general, easy to program and scalable frame-
work for analyzing in-network packet traces,” in Proc. 16th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2019, pp. 207–220.

[11] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2015, pp. 479–491.

[12] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP
flow information export (IPFIX) protocol for the exchange of flow
information,” IETF, RFC 7011, 2013. Accessed: Feb. 21, 2021. [Online].
Available: https://tools.ietf.org/html/rfc7011

[13] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2003, pp. 325–336.

[14] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 270–313, 2002.

[15] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani, “Fast
monitoring of traffic subpopulations,” in Proc. 8th ACM Conf. Internet
Meas. (IMC), 2008, pp. 257–270.

[16] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: Methods, evaluation, and applications,” in Proc. 3rd ACM
Conf. Internet Meas. (IMC), 2003, pp. 234–247.

[17] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” in Proc. 10th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 29–42.

[18] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. Conf. ACM Special Interest Group Data Commun.
(SIGCOMM), 2016, pp. 101–114.

[19] A. McGregor, M. A. Hall, P. Lorier, and J. Brunskill, “Flow cluster-
ing using machine learning techniques,” in Proc. Passive Active Meas.
(PAM), 2004, pp. 205–214.

[20] A. W. Moore and D. Zuev, “Internet traffic classification using Bayesian
analysis techniques,” in Proc. ACM SIGMETRICS Conf. (SIGMETRICS),
2005, pp. 50–60.

[21] J. Park, H. R. Tyan, and C. C. J. Kuo, “Internet traffic classification
for scalable QoS provision,” in Proc. IEEE Int. Conf. Multimedia Expo,
2006, pp. 1221–1224.

[22] T. T. T. Nguyen and G. J. Armitage, “Training on multiple sub-flows
to optimise the use of machine learning classifiers in real-world IP
networks,” in Proc. 31st IEEE Conf. Local Comput. Netw. (LCN), 2006,
pp. 369–376.

[23] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 1, pp. 5–16, 2007.

[24] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for
Internet traffic classification,” IEEE Trans. Neural Netw., vol. 18, no. 1,
pp. 223–239, Jan. 2007.

[25] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 5,
pp. 5–16, 2006.

[26] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service
mapping for QoS: A statistical signature-based approach to IP traffic
classification,” in Proc. 4th ACM Internet Meas. Conf. (IMC), 2004,
pp. 135–148.

[27] Sonata Source Code. Accessed: Feb. 21, 2021. [Online]. Available:
https://github.com/Sonata-Princeton/SONATA-DEV

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. Conf. ACM Special
Interest Group Data Commun. (SIGCOMM), 2015, pp. 123–137.

[29] P. Bosshart et al., “P4: Programming Protocol-independent Packet
Processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[30] O. Michel, J. Sonchack, E. Keller, and J. M. Smith, “Packet-level analyt-
ics in software without compromises,” in Proc. 10th USENIX Workshop
Hot Topics Cloud Comput. (HotCloud), 2018, pp. 1–7.

[31] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[32] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. Conf. ACM
Special Interest Group Data Commun. (SIGCOMM), 2013, pp. 99–110.

[33] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-
mating the frequency moments,” in Proc. 28th Annu. ACM Symp. Theory
Comput. (STOC), 1996, pp. 20–29.

[34] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with SwitchPointer,” in Proc. 15th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2018, pp. 453–466.

[35] A. Khandelwal, R. Agarwal, and I. Stoica, “Confluo: Distributed mon-
itoring and diagnosis stack for high-speed networks,” in Proc. 16th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2019,
pp. 421–436.

[36] Intel Corporation. Tofino. Accessed: Feb. 21, 2021. [Online].
Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series/tofino.html

[37] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated monitoring to concurrent and dynamic queries with
*flow,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2018, pp. 823–835.

[38] T. T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using machine learning,” IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[39] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet pro-
cessing for network resource allocation,” in Proc. 14th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2017, pp. 67–82.

[40] Y. Yuan, D. Lin, A. Mishra, S. Marwaha, R. Alur, and B. T.
Loo, “Quantitative network monitoring with netqre,” in Proc. Conf.
ACM Special Interest Group Data Commun. (SIGCOMM), 2017,
pp. 99–112.

[41] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “KitSune: An
ensemble of autoencoders for online network intrusion detection,” in
Proc. Netw. Distrib. Syst. Security Symp. (NDSS), 2018, pp. 1–15.

[42] O. Michel, J. Sonchack, E. Keller, and J. M. Smith, “PIQ: Persistent
interactive queries for network security analytics,” in Proc. ACM Int.
Workshop Security Softw. Defined Netw. Netw. Function Virtualization
(SDN-NFV Security), 2019, pp. 17–22.

[43] N. Foster et al., “Frenetic: A network programming language,” ACM
SIGPLAN Notices, vol. 46, no. 9, pp. 279–291, 2011.

[44] Prometheus. Accessed: Feb. 21, 2021. [Online]. Available:
https://prometheus.io/

[45] C. Kim, A. Sivaraman, N. Katta, and L. O. Wobker, “In-band network
telemetry via programmable dataplanes,” in Proc. ACM SIGCOMM
Demos, 2015, pp. 22–28.

[46] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “TurboFlow:
Information rich flow record generation on commodity switches,” in
Proc. 13th EuroSys Conf. (EuroSys), 2018, pp. 1–16.

[47] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[48] J. C. Beard, P. Li, and R. D. Chamberlain, “RaftLib: A C++ template
library for high performance stream parallel processing,” Int. J. High
Perform. Comput. Appl., vol. 31, no. 5, pp. 391–404, 2017.

[49] H. Miao, H. Park, M. Jeon, G. Pekhimenko, K. S. McKinley,
and F. X. Lin,, “StreamBox: Modern stream processing on a
multicore machine,” in Proc. USENIX Annu. Tech. Conf. (ATC), 2017,
pp. 617–629.

[50] Apache Storm. Accessed: Feb. 21, 2021. [Online]. Available:
https://storm.apache.org

[51] M. Roesch, “Snort—Lightweight intrusion detection for networks,” in
Proc. 13th USENIX Conf. Syst. Admin. (LISA), 1999, pp. 229–238.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

610 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

[52] TimescaleDB. Accessed: Feb. 21, 2021. [Online]. Available:
https://www.timescale.com/

[53] Trace Statistics for CAIDA Passive OC48 and OC192 Traces—2015-02-
19. Accessed: Feb. 21, 2021. [Online]. Available: https://www.caida.org/
data/passive/trace_stats/

[54] P4runtime. Accessed: Feb. 21, 2021. [Online]. Available: https://p4.org/
p4-runtime/

[55] Twitter. The Infrastructure Behind Twitter-Scale. Accessed:
Feb. 21, 2021. [Online]. Available: https://blog.twitter.com/engineering/
en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale.
html

[56] Twitter. Observability at Twitter—Technical Overview. Accessed:
Feb. 21, 2021. [Online]. Available: https://blog.twitter.com/engineering/
en_us/a/2016/observability-at-twitter-technical-overview-part-i.html

[57] Data Plane Development Kit. Accessed: Feb. 21, 2021. [Online].
Available: https://dpdk.org

[58] Ntop. PF_RING. Accessed: Feb. 21, 2021. [Online]. Available:
https://www.ntop.org/products/packet-capture/pf_ring/

[59] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in Proc.
USENIX Annu. Tech. Conf. (ATC), 2012, pp. 101–112.

[60] Standard C++ Foundation. C++11 Language Extensions—General
Features. Accessed: Feb. 21, 2021. [Online]. Available: https://isocpp.
org/wiki/faq/cpp11-language

[61] A. Williams, C++ Concurrency in Action, 1st ed. Shelter Island, NY,
USA: Manning, 2012.

[62] J. Yliluoma. Bit Mathematics Cookbook. Accessed: Feb. 21, 2021.
[Online]. Available: https://bisqwit.iki.fi/story/howto/bitmath/

[63] 128bit Hash Comparison With SSE. Accessed: Feb. 21, 2021. [Online].
Available: https://stackoverflow.com/questions/4534203/128bit-hash-
comparison-with-sse

[64] Intel Corporation. Intrinsics Guide. Accessed: Feb. 21, 2021. [Online].
Available: https://software.intel.com/sites/landingpage/IntrinsicsGuide

[65] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algo-
rithm for finding frequent elements in streams and bags,” ACM Trans.
Database Syst., vol. 28, no. 1, pp. 51–55, 2003.

[66] Grafana. Accessed: Feb. 21, 2021. [Online]. Available: https://grafana.
com/

[67] Nagios Monitoring. Accessed: Feb. 21, 2021. [Online]. Available:
https://www.nagios.com/

[68] ONOS. Accessed: Feb. 21, 2021. [Online]. Available: https://www.
opennetworking.org/onos/

[69] Protocol Buffers. Accessed: Feb. 21, 2021. [Online]. Available:
https://developers.google.com/protocol-buffers/

[70] gRPC. Accessed: Feb. 21, 2021. [Online]. Available: https://grpc.io/
[71] CloudLab. Accessed: Feb. 21, 2021. [Online]. Available: https://www.

cloudlab.us
[72] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo, “Micro-burst in data

centers: Observations, analysis, and mitigations,” in Proc. 26th IEEE
Int. Conf. Netw. Protocols (ICNP), 2018, pp. 88–98.

[73] Spark: Inconsistent Performance Number in Scaling Number of Cores.
Accessed: Feb. 21, 2021. [Online]. Available: https://stackoverflow.com/
questions/41090127/spark-inconsistent-performance-number-in-scaling-
number-of-cores

Oliver Michel received the Ph.D. degree from the University of Colorado
Boulder in 2019. He is currently a Postdoctoral Researcher with the
Communication Technologies Group, University of Vienna. His research
focuses on data plane programmability and architectures for scalable network
telemetry and analytics.

John Sonchack received the Ph.D. degree from the University of Pennsylvania
in 2020. He is currently a Postdoctoral Researcher with Princeton University.
His research focuses on language and system design in hardware-accelerated
network data planes.

Greg Cusack received the bachelor’s degree from Santa Clara University
in 2016. He is currently pursuing the Ph.D. degree with the University of
Colorado Boulder advised by E. Keller.

Maziyar Nazari received the bachelor’s degree from the University of Tehran
in 2018. He is currently pursuing the Ph.D. degree with the University of
Colorado Boulder advised by E. Keller. He also serves as a Research Assistant
and is mainly doing research in the area of networked systems, virtualization,
and cloud computing.

Eric Keller received the Ph.D. degree from Princeton University in 2011.
He is currently an Associate Professor with the Electrical and Energy
Engineering Department, University of Colorado Boulder. His research has
been enabling and capitalizing on a more dynamic and programmable com-
puting and network infrastructure, via such technologies as virtualization,
software-defined networking, and the movement toward cloud-based services.

Jonathan M. Smith (Fellow, IEEE) received the Ph.D. degree from
Columbia University. He is currently a Program Manager with the Information
Innovation Office (I2O), Defense Advanced Research Projects Agency
(DARPA) on leave from the University of Pennsylvania, where he holds the
Olga and Alberico Pompa Professorship of Engineering and Applied Science
and a Professor of Computer and Information Science. He was previously
a Member of Technical Staff with Bell Telephone Laboratories and Bell
Communications Research, joining Penn in 1989. He also served as a Program
Manager with DARPA from 2004 to 2006, and was awarded the Office of the
Secretary of Defense Medal for Exceptional Public Service in 2006.

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 18,2021 at 20:08:12 UTC from IEEE Xplore. Restrictions apply.

