
Infinity: A Scalable Infrastructure for In-Network
Applications

Marcelo Abranches
University of Colorado - Boulder

Boulder, USA
marcelo.abranches@colorado.edu

Karl Olson
University of Colorado - Boulder

Boulder, USA
karl.olson@colorado.edu

Eric Keller
University of Colorado - Boulder

Boulder, USA
eric.keller@colorado.edu

Abstract—Network programmability is an area of research
both defined by its potential and its current limitations. While
programmable hardware enables customization of device op-
eration, tailoring processing to finely tuned objectives, limited
resources stifle much of the capability and scalability desired
for future technologies. Current solutions to overcome these
limitations simply shift the problem, temporarily offloading
memory needs or processing to other systems while incur-
ring both round-trip time and complexity costs. To overcome
these unnecessary costs, we introduce Infinity, a resource dis-
aggregation method to move processing to capable devices while
continuing to forward as the original owner. By forwarding
both the processing need and associated data simultaneously we
are able to scale operation with minimal overhead and delay,
improving both capability and performance objectives for in-
network processing.

I. INTRODUCTION

The Internet was designed over 40 years ago, and in
the decades that followed, the ubiquity of it both served
as a great testament to its architecture, but also introduced
new operational challenges. While the research community
followed with innovative solutions, the ossification served
as an impediment to adoption [13]. Today, this problem is
even more pronounced with the rise of edge computing and
applications which require high availability, security, and low
latency that the current Internet cannot provide.

Towards the goal of enabling this future, researchers have
turned to technology ranging from virtualization [2], [13] to
programmable network hardware [11], [5], [4]. What this
means for the next-generation Internet is that unique op-
portunities for in-network computing capabilities with high-
performance and low-latency are now possible. In recent
years, in-network applications have reduced latency for key-
value stores [7], supported distributed locking [17], and
performed data aggregation to accelerate machine learn-
ing [14]. These all point to the great potential for in-network
computing that comes with new programmable hardware
architectures.

Unfortunately, there’s a catch. The underlying hardware
which supports these efforts have fixed resources. At the
same time, innovations seek to do more in-network - both
in terms of the complexity of the designs, but also in the

number of concurrent applications we want to support. Inter-
estingly, general purpose computing platforms have similar
resource limitations, but have established operating system
abstractions that mask them (e.g., virtual memory for ex-
tended memory, and CPU scheduling for multiple concurrent
applications). We argue that programmable hardware needs
similar abstractions to meet the growing needs of in-network
applications and dynamic architectures.

Methods to address these resource limitations do exist [10],
but incur significant costs for latency, which is fundamentally
at odds with high speed network architectures. To address
this challenge, we propose Infinity, a programmable network
architecture which abstracts networking hardware into virtual
aggregated hardware sets, giving in-network applications the
illusion of having infinite processing capacity. Infinity en-
sures that in-network applications can locate resources within
the aggregated hardware sets necessary to meet processing
objectives by leveraging data plane dis-aggregation, scale-out
techniques (vertical and horizontal), and per-function tailored
performance requirements.

With Infinity we enable the following contributions to
improve current in-network applications:

• We provide abstractions for building scalable and flex-
ible in-network applications on top of programmable
hardware, enabling high-performance and low-latency
processing.

• We provide a method to dynamically assign and utilize
system resources across a network-wide resource pool.

In the remainder of this paper, we detail the architectural
solution afforded by Infinity before concluding with future
directions to further enable a fully flexible internet architec-
ture.

II. PROGRAMMABLE NETWORK HARDWARE RESOURCE
LIMITATIONS AND DISAGGREGATION CHALLENGES

Modern networks operate in a highly dynamic environ-
ment of competing stakeholder interests. Here, architects are
pressured to provide solutions which support dynamic per-
individual use-cases with high performance, efficient, and
agile functionality. Competitiveness of a provider is therefore
linked to how well they can provide dynamic solutions that
are naturally at odds with current static architectures. The978-3-903176-32-4 © 2021 IFIP



User Design 
+ Parameters

Virtual 
Infinity 
Switch

Compiler

Min 
Mappable 

Design

Database

A B C

2

1

3

4

5

8

7

6

Programmable Switch

Switch X Switch Y

Switch Z

Primitives

In-network Processing Resource 
Pool

Monitor

Fig. 1: Infinity - High Level Deployment (1,2) Infinity virtual
switch architecture is integrated with user defined parameters via
P4 Language. (3,4) Compiler prepares system resulting in minimal
mappable architecture and loaded onto programmable switch. (5,6)
Switch runs Infinity architecture, collecting in-network resource
metrics from participating systems. (7) When action requires re-
sources beyond capability of host, Infinity references resource pool
and (8) employs one of its scaling primitives (subsection III-B) as
needed.

versatility provided by programmable hardware therefore ap-
peals to the modern network, enabling tailored functionality
to meet performance, flexibility, energy efficiency, or cost
effective business objectives. To bridge the gap between low-
level hardware configuration and operator knowledge, do-
main specific languages (DSLs) like P4 [5] were introduced.
Such languages enable administrators to programmatically
define packet processing logic, enabling a flexible and feature
complete data plane.

While programmable hardware offers significant cus-
tomization with packet processing capabilities, resource lim-
itations impose constraints on in-network processing scal-
ability and desired functionalities. For example, modern
programmable switches are limited in both fast memory
resources and processing units (i.e., SRAM and ALUs) [12],
[10], [15]. This resource limitation constrains in-network
applications that rely on complex logic while simultaneously
trying to maintain high-performance and scalability of net-
work processing needs [16]. Methods to address some of
these limitations exist, such as extending memory through
a process based on remote direct memory access (RDMA),
but incur both a buffering and round-trip processing cost [10].
Similar solutions to disaggregate processing resources do not
yet exist, requiring a packet to return to the same entity for
further processing.

III. INTRODUCING INFINITY

To enable a new level of performance, scalability and
flexibility for in-network applications, we propose Infinity, a
system which disaggregates multiple programmable network-
ing hardware components into virtual aggregated hardware
sets. Infinity gives applications the illusion of having infinite
processing and memory capacity (limited in scale to an
administrator defined hardware resource pool), enabling de-
velopers the ability to build in-network applications without
consideration for system resource constraints.

Figure 1 shows the high level representation of Infinity’s
design. First, Infinity introduces a compiler that has a Virtual
Infinity Switch (VIS) as its target. This compiler is responsible
for generating the minimal mappable design for a given in-
network application. Further, the VIS abstraction enables an
in-network application to dynamically expand the resource
boundaries of a single switch, ensuring that the developer
need-not care about constraining the processing logic to fit
within a single bounded entity.

With a viable, minimally mapped design, the operator can,
at load time, provide that design to an Infinity controller,
which will in turn place the application onto available
resources. Infinity will then continue to monitor the de-
ployed in-network applications to identify bottlenecks, such
as SRAM or TCAM exhaustion. Once a bottleneck is iden-
tified, Infinity will employ one of its primitives (presented
later in this section) to expand available resources for the
in-network application.

A. Virtual Infinity Switch

Infinity’s main goal is to seamlessly extend resources
for running high-demand in-network applications. In this
direction, we extend the concepts of the Single Big Router [9]
and Single Big Switch [6], [1] to introduce the VIS, an
idealized abstraction of a programmable data plane with
“infinite resources” (memory, processing, etc.).

After compilation, in-network applications are mapped to a
pipeline of programmable forwarding engine stages (or other
processing elements) that implement the desired logic. In a
typical programmable switch case, these applications would
map to a single device which is resource constrained and may
limit either the capability or deployability of an application.

To enable a set of switches to appear as single entities
with virtually infinity resources, each physical switch inside
a VIS has a base functionality which supports an overlay net-
work that encapsulates the original packets and transparently
forwards them to a destination switch for further processing
as needed. The overlays are built on top of a light-weight
forwarding logic on each switch (i.e., custom header parsing,
lookup ID, and forwarding). This enables flexible composi-
tion of primitives that support scaling hardware resources to
meet application demands.

Each switch is also assumed to be partially reconfigurable.
That is, the switch does not require the entire programmable
hardware to be flashed in its entirely or to be taken offline
during data plane reconfiguration. In this manner, Infinity can
dynamically allocate processing resources on the switches
without disrupting the currently deployed packet processing
applications. While this is not entirely supported on some
hardware targets for P4, it is supported on FPGA targets
which do support partial reconfiguration, and it is inevitable
(in our opinion) for ASIC based switches that support P4 as
targets.



B. Infinity Primitives

With the VIS abstraction, the underlying network of
switches become a pool of resources for a controller to
optimize the mapping. To do so, the VIS abstraction requires
a collection of primitives to address a dynamically scaling
design. These primitives enable flexible composition of hard-
ware elements, allowing for dynamic scaling of resources.

Primitive 1 - Sequential Decomposition: The first prim-
itive enables a processing pipeline to be split at any point
and implemented across two or more switches. This enables
applications to dynamically increase processing stages, al-
lowing for logic which expands the processing capabilities
of a single switch (i.e., applications can use more physical
pipeline stages than is available on a single switch).

To realize this, we require a mechanism to connect the
segments of the pipeline spanning multiple switches. Figure
2 shows how Infinity realizes this primitive. Here, a given
switch on the pipeline processes a packet and at the point
the cut was made (to make more physical pipeline stages
available), Infinity will insert logic to encapsulate it with a
custom tag that simply has an ID of the switch where the
next segment is mapped to. This is where the pre-configured
overlay comes into play - each switch has forwarding logic
that can lookup, based on that tag, and forward the packet.
When the packet reaches the target switch, the packet is de-
encapsulated and processed at the next segment.

Primitive 2 - Horizontal Scaling: The second primitive
is horizontal scaling. Similar to computing (where there can
be replica instances of an application), this primitive enables
scaling-out resources in order to increase bandwidth or the
number of supported flows (as one example) for a given
application. Horizontal scaling is allowed at two levels: the
pipeline, where the full processing pipeline is replicated on
another switch, or pipeline segment level where a pipeline is
partially replicated on another switch.

To realize this, we include additional logic to connect to the
replicas, as shown in Figure 3. Here, a pipeline (or segment)
is first replicated to another switch. Then, a load balancing
element in the pipeline appends the preceding segment to the
horizontally scaled segment. One complicating factor is that
Infinity needs to know how the traffic was split - what traffic
should go to each replica. For this, the application should
specify a key upon which to partition memory resources,
such as a 5-tuple representing the flow.

A second complicating factor is that the controller needs to
know when resources are exhausted. For example, to detect
memory exhaustion on a processing stage, we encode each
memory entry with an extra bit to mark the resource as ’used’
or ’unused’. For example, in a dynamic NAT, as new entries
are added on stateful memory (e.g., registers), they will set
the bit to used, and when they time-out or the flow ends,
the bit will be set to unused. This allows us to monitor for
resource exhaustion.

Primitive 3 - Vertical Scaling: The final primitive is
vertical scaling. In contrast to horizontal scaling, which adds

extra replicas, vertical scaling makes individual instances
larger. As an analogy, consider a virtual machine with 1GB
of memory allocated to it. With vertical scaling we would
grow this memory to 2GB. Vertical scaling can be desirable
in cases where horizontal scaling is not possible, such as
when a full replication is not possible but resources remain
partially unused.

There are two ways this can be realized. This first is
through disaggregation [10]. A second mechanism is through
migration. For example, if an application cannot afford the
performance penalty with dissaggregation, but local resource
constraints cannot fulfill the requirement, we must move to
a different switch (with a larger allocation). This would then
require migrating both the data and associated state, which
can be done in a live manner [8].

C. Orchestrating Infinity

Infinity relies on a compiler, which maps how physical
resources are allocated for a given in-network application.
Infinity also relies on a controller with a global view and in-
fluence over the network, enabling dynamic resource scaling
by leveraging the Infinity primitives.

Infinity Compiler: As demonstrated in Figure 1, Infinity
provides a target model with an abstract description of
the virtual infinite switch (VIS). This provides information
regarding the type of hardware elements which compose the
VIS, such that the compiler can map application logic to it.
As resources are dynamically expandable, the output of the
compilation is a minimally mapped design that consists of
the unit of deployment from which the application can be
expanded at run-time.

Infinity Controller: The controller finds free resources
within the pool of network switches and generates a mapping
which can be deployed on the physical target. To do this, once
the minimally mapped design is allocated to a switch and
loaded, the Infinity Controller monitors system utilization for
the critical resource elements that may impact performance.
To detect hot spots, Infinity leverages telemetry capabilities
within switches or functionalities implemented on the data
plane. For example, SRAM usage on each hardware element
is controlled by having each application update a usage flag
once a new flow is established. If a hot spot is detected, the
controller will work to mitigate it by using one or more of the
scaling primitives described in Sec. III-B. If the application
runs out of SRAM, it can then leverage the horizontal scaling
primitive to increase capacity and process new flows. In
this case the controller will replicate the affected pipeline
to another switch with sufficient resources, update the load-
balancing rules, and ensure traffic is split among the parallel
instances based on a given partition key (e.g., 5-tuple). This
enables Infinity to act in a feedback loop, ensuring that
applications will meet defined service level objectives.

IV. EXAMPLE USE CASE

Layer 4 Load Balancer: A layer 4 load balancer’s main
purpose is to serve as an entry point for a scalable service,



Z Z

Switch X Switch Y Switch Z

1

2 4

Z1
Z2
Z3

Switch X Switch Y

Switch Z1

1 3

4

2

Z1
Z2
Z3

Switch Z2

Switch Z3

3

Fig. 2: Infinity - Sequential Decomposition Operation (1) The
controller determines to sequentially decompose the pipeline and
place the first segment on Switch X. (2) The controller informs
Switch X that packets are to be encapsulated with the target header
and forwarded according to the lookup table that was built as the
overlay. (3) Intermediate devices forward according to packet header
until reaching in-network processing host (4), which decapsulates
and processes with available resources.

Z Z

Switch X Switch Y Switch Z

1

2 4

Switch Y

Switch Z1

1

3

4

2 Z1
Z2
Z3

Switch Z2

3

Fig. 3: Infinity - Horizontal Scaling Operation The Infinity
controller determines a need to horizontally scale, placing replicas
on switch Z1, Z2, etc. (1) Extra logic is added to Switch Y (the
preceding segment), which will load balance across targets. (2)
Controller sends the switch ID for Z1, Z2, etc. to Switch Y. This
establishes encapsulation at Switch Y(3), which then forwards to
replicas(4). When the packet arrives at a replica, it decapsulates the
tag and processes the packet.
directing traffic to different servers to efficiently distribute
the load on each. One of the important characteristics in load
distribution is awareness for flow affinity, such that all traffic
in a TCP session, for example, is directed to the same server.
As such, the load balancer, which can be implemented in
modern, programmable switches, needs to store state on the
switch to remember which server was chosen for each flow.
This means that the amount of SRAM allocated is the limiting
resource - if you allocate too much, you’re wasting valuable
resources on the switch, allocate too little and you may not
be able to support enough flows. With Infinity, this concern
is alleviated with the primitive to scale out.

V. DISCUSSION AND FUTURE WORK

While Ininity is a work in progress, we have identified
potential gaps to fully realizing this vision. First, to allow
applications to fully benefit from Infinity, we need to have
clear mechanisms to guide selection of the most appropriate
scaling primitives (III-B) for a given scenario. For example,
we need to decide if the allowed scaling primitives for a
certain application should be decided and implemented by
the programmer, or should another mechanism enable Infinity
to automatically decide the ideal primitive when faced with
a resource contention scenario? Second, redirecting flows for
processing by another entity may introduce latency to the
network functions (NF). We argue that different applications
have different latency requirements, a premise that Infinity
can leverage to select prioritized flows for processing by
the local NF while only redirecting lower priority traffic to

remote NF instances. This would ideally avoid overloads on
hardware components while maintaining SLOs. Third, in-
network applications leveraging SmartNICs can also benefit
from the VIS abstraction. We plan as future work to extend
Infinity and enable SmartNICs to participate on the VIS
abstraction.

VI. CONCLUSION

In this vision paper we described Infinity, a system that
allows in-network applications to be deployed on top of
a programmable switch fabric with virtually infinite re-
sources. We see Infinity as an important step towards the
next-generation dynamic network; an architecture to support
new in-network applications while enabling increased perfor-
mance, scalability and flexibility that current static solutions
cannot provide. Further work and system details can be found
within the author’s websites [3].

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants 1652698
(CAREER) and the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code
001.

REFERENCES

[1] Production Quality, Multilayer Open Virtual Switch.
https://www.openvswitch.org/.

[2] Network Functions Virtualisation: An Introduction, Benefits, Enablers,
Challenges and Call for Action. http://portal.etsi.org/NFV/NFV
White Paper.pdf, 2012.

[3] M. Abranches et al. Infinity: A Scalable Infrastruc-
ture for In-Network Applications (extended version).
https://github.com/mcabranches/Infinity/blob/main/paper/Infinity.pdf.

[4] P. Bosshart et al. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. In Proceedings of ACM
SIGCOMM, 2013.

[5] P. Bosshart et al. P4: Programming Protocol-independent Packet
Processors. SIGCOMM Computer Communication Review, 44(3):87–
95, July 2014.

[6] M. Casado et al. Virtualizing the Network Forwarding Plane. In
Proceedings of the Workshop on Programmable Routers for Extensible
Services of Tomorrow (PRESTO), 2010.

[7] X. Jin et al. Netcache: Balancing key-value stores with fast in-network
caching. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[8] E. Keller et al. Live Migration of an Entire Network (and its Hosts).
In Proceedings of ACM Workshop on Hot Topics in Networks, 2012.

[9] E. Keller and J. Rexford. The ‘Platform as a Service’ Model for
Networking. In INM/WREN, Apr. 2010.

[10] D. Kim et al. TEA: Enabling state-intensive network functions on
programmable switches. In Proceedings of ACM SIGCOMM, 2020.

[11] N. McKeown et al. OpenFlow: Enabling Innovation In Campus Net-
works. ACM SIGCOMM Computer Communication Review, 38(2):69–
74, 2008.

[12] R. Miao et al. Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics. In Proceedings of ACM SIGCOMM,
pages 15–28, 2017.

[13] L. Peterson et al. Overcoming the Internet Impasse through Virtual-
ization. In Workshop on Hot Topics in Networks, 2004.

[14] A. Sapio et al. Scaling Distributed Machine Learning with In-Network
Aggregation. CoRR, abs/1903.06701, 2019.

[15] D. Wu et al. Accelerated service chaining on a single switch ASIC.
In Proceedings of ACM Workshop on Hot Topics in Networks, 2019.

[16] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive programmable
switches. In Proceedings of ACM SIGCOMM, pages 296–309, 2020.

[17] Z. Yu et al. NetLock: Fast, Centralized Lock Management Using
Programmable Switches. In Proc. ACM SIGCOMM, 2020.


