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Introduction

• Pros
– Pay-for-Use
– No worries about servers, 

developers!
– Auto-scaling
– Thousand-way parallelism
– ...

• Challenges
– provider! Do worry about 

servers
– Unlimited resource illusion
– Optimized resource 

management
– ...
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Introduction (Contd.)
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In this paper ...

● Applications
● Serverless platform Optimizations
● Extensions
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Applications



Categories of Applications
- Big Data Analytics

- ex. PyWren, IBM-PyWren

- Cloud Offload
- ex. gg, ExCamera, SNF
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Big Data Analytics
• PyWren*

– Distributed Computing is hard for non-expert users
– 3 main challenges in Distributed Computing world

• Complex, Hard-to-Configure
• Resource Management
• Reliable execution with efficient pricing
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*Jonas, Eric, et al. "Occupy the cloud: Distributed computing for the 99%." Proceedings of the 2017 Symposium on Cloud Computing. 2017.



Big Data Analytics
• PyWren

– Data processing atop stateless functions
– System Components

• Stateless functions
• Scheduler
• Remote Storage

– Propose
• Fault tolerance
• Simplicity
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Applications: Big Data Analytics
• IBM-PyWren*

– Industry-scale PyWren implementation & extension
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*Sampé, Josep, et al. "Serverless data analytics in the ibm cloud." Proceedings of the 19th International Middleware Conference Industry. 2018.



Cloud Offload
• gg*

– Parallel Compilation atop AWS lambda
– Context:

• Offloading everyday jobs to the cloud leveraging the ability of 
running burst-parallel apps

– Challenges:
• In outsourcing applications, software dependencies must be 

managed
• Local-Cloud communication must be minimized
• Serverless functions must be easy to use

10

*Fouladi, Sadjad, et al. "From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional containers." 2019 {USENIX} Annual Technical Conference 
({USENIX}{ATC} 19). 2019.



Cloud Offload
• gg

– Dependency management using “thunk”s
– Containers can reference each other’s output

• gg IR (Intermediate Representation)
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Cloud Offload
• gg

– Compiles Chromium in 18 mins on AWS Lambda
• 2.2x faster than icecc* on 384-core cluster

–  Compiles Inkscape^ in 87 secs
• 4.8X faster than icecc on 384-core cluster

– Running LibVPX# unit tests
• gg outperforms 4-way and 48-way parallelism local runs
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*https://github.com/icecc/icecream
^https://inkscape.org/
#https://www.webmproject.org/code/

https://github.com/icecc/icecream
https://inkscape.org/
https://www.webmproject.org/code/


Cloud Offload
• SNF*

– Network Function as a Service
– NFaaS platform should meet the following requirements:

• Intuitive Programming Model
• Low Latency Packet Processing
• Auto scaling to meet the demands

– Serverless has the necessary building blocks
– Challenges:

• Serverless functions are stateless
• Coupling between work allocation and billing granularity
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*Singhvi, Arjun, et al. "Snf: Serverless network functions." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.



Cloud Offload
• SNF

– Decoupling Work Allocation & Billing Granularity
• Middleground for Compute & State Decoupling
• Flows > Flowlets > Packets

– State Sharing Abstraction
• Proactive State Replication
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Optimizations



Optimization Goals
• Serverless Platform Optimizations 

– Start up latency
– Resource Utilization
– Inter-function Communication
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Startup Latency & Cold Start

• Trade-off: Cold Start vs 
Resource Efficiency

• Startup Latency Optimization 
Methodologies:
– Smart Algorithms
– Relaxing Function Isolations
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Smart Algorithms

- Microsoft Azure Functions*
- Reducing the number of Cold Starts
• Challenges

– Serverless Workload Types Are So Variant
– Serverless Platforms incorporate fixed keep-alive policy
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*Shahrad, Mohammad, et al. "Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider." 2020 {USENIX} Annual Technical Conference 
({USENIX}{ATC} 20). 2020.



Smart Algorithms

• Put it in a nutshell:

update app’s 
idle time 

distribution

new invocation too 
many 
OOBs

Significant 
Pattern?

Time Series 
Forecast

Standard 
Conservative 
Keep-Alive

Use Histogram 
Policy

Yes

No

No

Yes
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Smart Algorithms

• Evaluation
– Implemented on OpenWhisk

• Memory Reduction: 15.6% 
• 99th-percentile execution time reduction: 82.4%
• Overhead: < 1ms To The Critical Path Latency
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Relaxing Function Isolation

• Photons*
– 70-90% of the memory footprint for the concurrent functions (in the 

same app) is shareable
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*Dukic, Vojislav, et al. "Photons: Lambdas on a diet." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.



Relaxing Function Isolation

• Strong isolation is not necessary for the concurrent functions of the same 
application

• Run concurrent functions in the same JVM
– Using language level isolation

• Shared Object Store with a GET/SET API
– Inter-function communication
– Synchronization Mechanism

local data local data

Runtime

Container

Shared Object Store
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Relaxing Function Isolation

• Running 100 concurrent functions
– memory consumption:    5X

• more concurrency => better performance
– Using Azure workload

• 30% less memory
• Keep more containers warm

– 52% less cold starts
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Relaxing Function Isolation

Particle*
• Network Startup Time
• Using Storage-based communication is not ideal
• Overlay network for container communication

– Flannel, Weave, Docker Swarm

User Code Container Startup Network Startup

Linux Overlay 6% 26% 68%

Docker Swarm Overlay 4% 16% 80%

Weave Overlay 6% 25% 69%

Interconnecting 100 Tasks with Overlay Network
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*Thomas, Shelby, et al. "Particle: ephemeral endpoints for serverless networking." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.



Relaxing Function Isolation
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Relaxing Function Isolation

• Profiling with eBPF
• Steps 3,4

– dev_change_net_namespace
• Startup/cleanup
• Hold locks
• twice (steps 3, 4) for each container

Step Time Percent

1 0.1 0.92%

2 0.1 0.92%

3 5.18 47.71%

4 4.77 43.95%

5 0.49 4.45%

6 0.22 2.03%
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Relaxing Function Isolation

• Consolidate Network Interfaces
– Share Network Namespace between the functions of a single tenant

• Share VETH devices => only perform 2 locks per app

• Batch commands if possible

27



Relaxing Function Isolation

• Reduced total runtime of burst-parallel workload
– 2.5x better than Linux Overlay
– 2.8x better than Weave Overlay
– 5x better than Docker Swarm

• Running Sprocket*
– 3-stage video processing pipeline
– Using Particle, results are skewed towards processing
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*Ao, Lixiang, et al. "Sprocket: A serverless video processing framework." Proceedings of the ACM Symposium on Cloud Computing. 2018.



Relaxing Function Isolation

• SAND*

Extract Metadata

Process Metadata

Recognize Objects

Resize Image

Image

Resized Image & Metadata & 
Found Objects
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*Akkus, Istemi Ekin, et al. "{SAND}: Towards High-Performance Serverless Computing." 2018 {Usenix} Annual Technical Conference ({USENIX}{ATC} 18). 2018.



Relaxing Function Isolation

• Different levels of isolation
– Application >> Container
– Function >> Process

• Second Contribution?
– Next Section!

app1

app2

Host1
fork()

fork()

Advantages:
- Low Execution Footprint
- Automatic Resource 

Deallocation
- Copy-on-Write
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Inter-function Communication

SAND
- First Contribution ✅

• Application-level Sandboxing >> Different levels of isolation
– Second Contribution

• Hierarchical Message Bus

Global Bus

Local Bus Local Bus

Application
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Inter-function Communication

• Image processing pipeline:
– 43% reduction in total runtime compared against OpenWhisk

• local message bus is 3-5x faster than the global one
• Function interaction is faster

– 6.3x better than AWS Greengrass
– 8.3x better than OpenWhisk
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Inter-function Communication

• Summary of inter-function communication methods 
– Photons

• Shared Object Store
– Particle

• Overlay Network
– PyWren, ... (Most Common)

• External Storage Service
– SAND

• Hierarchical Message Bus
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Extensions



Extensions
Kappa*

- Challenges:
- Lambda functions are not suitable for long running jobs
- Existing FaaS platforms lacks concurrency primitives

- Solution
- Checkpointing mechanism
- Provide an API

User 
Code

Kappa 
Compiler

Kappa Libs

Transformed 
Code

Kappa 
Coordinator

lunch

lunch

lunch

spawn

spawn

checkpoint
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*Zhang, Wen, et al. "Kappa: A programming framework for serverless computing." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.



Extensions
- Other Kappa Features:

- Fault tolerance
- No change needed to the serverless platform!

Using Redis, upto 100KB chekpointing every 1s, Kappa adds < 1% overhead

Chekpointing (size: 0.5KB) every 100ms: 1000 parallel lambdas ~ 1 lambda
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Discussion & Future Directions

- Resource Disaggregation + Serverless
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- Serverless + Non-volatile memory
- Faster than Disk & Remote Storage
- Cheaper than in-memory cache
- According to literature*

- No support for specialized HW




