
Optimizing and Extending Serverless Platforms
A Survey

Maziyar Nazari*, Sepideh Goodarzy*, Eric Keller*, Eric Rozner§, Shivakant Mishra*
*University of Colorado Boulder, CS Department

§Facebook
SDS 2021

Introduction

• Pros
– Pay-for-Use
– No worries about servers,

developers!
– Auto-scaling
– Thousand-way parallelism
– ...

• Challenges
– provider! Do worry about

servers
– Unlimited resource illusion
– Optimized resource

management
– ...

2

Introduction (Contd.)

Serverless Platform

1

2

3

3

3

3

Events: Ex. 3 web
requests

Ex. 3 web responses

Execution

Define

3

In this paper ...

● Applications
● Serverless platform Optimizations
● Extensions

4

5

Applications

Categories of Applications
- Big Data Analytics

- ex. PyWren, IBM-PyWren

- Cloud Offload
- ex. gg, ExCamera, SNF

6

Big Data Analytics
• PyWren*

– Distributed Computing is hard for non-expert users
– 3 main challenges in Distributed Computing world

• Complex, Hard-to-Configure
• Resource Management
• Reliable execution with efficient pricing

7

*Jonas, Eric, et al. "Occupy the cloud: Distributed computing for the 99%." Proceedings of the 2017 Symposium on Cloud Computing. 2017.

Big Data Analytics
• PyWren

– Data processing atop stateless functions
– System Components

• Stateless functions
• Scheduler
• Remote Storage

– Propose
• Fault tolerance
• Simplicity

8

Applications: Big Data Analytics
• IBM-PyWren*

– Industry-scale PyWren implementation & extension

9

*Sampé, Josep, et al. "Serverless data analytics in the ibm cloud." Proceedings of the 19th International Middleware Conference Industry. 2018.

Cloud Offload
• gg*

– Parallel Compilation atop AWS lambda
– Context:

• Offloading everyday jobs to the cloud leveraging the ability of
running burst-parallel apps

– Challenges:
• In outsourcing applications, software dependencies must be

managed
• Local-Cloud communication must be minimized
• Serverless functions must be easy to use

10

*Fouladi, Sadjad, et al. "From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional containers." 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19). 2019.

Cloud Offload
• gg

– Dependency management using “thunk”s
– Containers can reference each other’s output

• gg IR (Intermediate Representation)

11

Cloud Offload
• gg

– Compiles Chromium in 18 mins on AWS Lambda
• 2.2x faster than icecc* on 384-core cluster

– Compiles Inkscape^ in 87 secs
• 4.8X faster than icecc on 384-core cluster

– Running LibVPX# unit tests
• gg outperforms 4-way and 48-way parallelism local runs

12

*https://github.com/icecc/icecream
^https://inkscape.org/
#https://www.webmproject.org/code/

https://github.com/icecc/icecream
https://inkscape.org/
https://www.webmproject.org/code/

Cloud Offload
• SNF*

– Network Function as a Service
– NFaaS platform should meet the following requirements:

• Intuitive Programming Model
• Low Latency Packet Processing
• Auto scaling to meet the demands

– Serverless has the necessary building blocks
– Challenges:

• Serverless functions are stateless
• Coupling between work allocation and billing granularity

13

*Singhvi, Arjun, et al. "Snf: Serverless network functions." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.

Cloud Offload
• SNF

– Decoupling Work Allocation & Billing Granularity
• Middleground for Compute & State Decoupling
• Flows > Flowlets > Packets

– State Sharing Abstraction
• Proactive State Replication

14

15

Optimizations

Optimization Goals
• Serverless Platform Optimizations

– Start up latency
– Resource Utilization
– Inter-function Communication

16

Hardware

OS

Daemon

...

sc
ip

y
|

A
1

nu
m

py
 |

 A
2

sc
ip

y
|

A
n Docker Container: 400ms

Python Interpreter: 30ms
scipy:

- download 2700ms
- installl: 8200ms
- import: 88ms

Startup Latency & Cold Start

• Trade-off: Cold Start vs
Resource Efficiency

• Startup Latency Optimization
Methodologies:
– Smart Algorithms
– Relaxing Function Isolations

17

Smart Algorithms

- Microsoft Azure Functions*
- Reducing the number of Cold Starts
• Challenges

– Serverless Workload Types Are So Variant
– Serverless Platforms incorporate fixed keep-alive policy

18

*Shahrad, Mohammad, et al. "Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider." 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20). 2020.

Smart Algorithms

• Put it in a nutshell:

update app’s
idle time

distribution

new invocation too
many
OOBs

Significant
Pattern?

Time Series
Forecast

Standard
Conservative
Keep-Alive

Use Histogram
Policy

Yes

No

No

Yes

19

Smart Algorithms

• Evaluation
– Implemented on OpenWhisk

• Memory Reduction: 15.6%
• 99th-percentile execution time reduction: 82.4%
• Overhead: < 1ms To The Critical Path Latency

20

Relaxing Function Isolation

• Photons*
– 70-90% of the memory footprint for the concurrent functions (in the

same app) is shareable

21

*Dukic, Vojislav, et al. "Photons: Lambdas on a diet." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.

Relaxing Function Isolation

• Strong isolation is not necessary for the concurrent functions of the same
application

• Run concurrent functions in the same JVM
– Using language level isolation

• Shared Object Store with a GET/SET API
– Inter-function communication
– Synchronization Mechanism

local data local data

Runtime

Container

Shared Object Store

22

Relaxing Function Isolation

• Running 100 concurrent functions
– memory consumption: 5X

• more concurrency => better performance
– Using Azure workload

• 30% less memory
• Keep more containers warm

– 52% less cold starts

23

Relaxing Function Isolation

Particle*
• Network Startup Time
• Using Storage-based communication is not ideal
• Overlay network for container communication

– Flannel, Weave, Docker Swarm

User Code Container Startup Network Startup

Linux Overlay 6% 26% 68%

Docker Swarm Overlay 4% 16% 80%

Weave Overlay 6% 25% 69%

Interconnecting 100 Tasks with Overlay Network

24

*Thomas, Shelby, et al. "Particle: ephemeral endpoints for serverless networking." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.

Relaxing Function Isolation

Host Host Host

HostHostHost

1 2 3

6 5 4

host ns VTEP ns cntr ns host ns host ns

host ns host ns host ns

VTEP ns VTEP ns

VTEP nsVTEP nsVTEP ns

cntr ns cntr ns

cntr ns cntr ns cntr ns

vxl42
br42

veth-g
veth-l

veth-g

veth-lvxl42
br42

vxl42
br42

vxl42
br42

veth-l veth-g
veth-l

veth-g

vxl42
br42

vxl42
br42
veth-l

veth-g

ip, Mac

25

Relaxing Function Isolation

• Profiling with eBPF
• Steps 3,4

– dev_change_net_namespace
• Startup/cleanup
• Hold locks
• twice (steps 3, 4) for each container

Step Time Percent

1 0.1 0.92%

2 0.1 0.92%

3 5.18 47.71%

4 4.77 43.95%

5 0.49 4.45%

6 0.22 2.03%

26

Relaxing Function Isolation

• Consolidate Network Interfaces
– Share Network Namespace between the functions of a single tenant

• Share VETH devices => only perform 2 locks per app

• Batch commands if possible

27

Relaxing Function Isolation

• Reduced total runtime of burst-parallel workload
– 2.5x better than Linux Overlay
– 2.8x better than Weave Overlay
– 5x better than Docker Swarm

• Running Sprocket*
– 3-stage video processing pipeline
– Using Particle, results are skewed towards processing

28

*Ao, Lixiang, et al. "Sprocket: A serverless video processing framework." Proceedings of the ACM Symposium on Cloud Computing. 2018.

Relaxing Function Isolation

• SAND*

Extract Metadata

Process Metadata

Recognize Objects

Resize Image

Image

Resized Image & Metadata &
Found Objects

29

*Akkus, Istemi Ekin, et al. "{SAND}: Towards High-Performance Serverless Computing." 2018 {Usenix} Annual Technical Conference ({USENIX}{ATC} 18). 2018.

Relaxing Function Isolation

• Different levels of isolation
– Application >> Container
– Function >> Process

• Second Contribution?
– Next Section!

app1

app2

Host1
fork()

fork()

Advantages:
- Low Execution Footprint
- Automatic Resource

Deallocation
- Copy-on-Write

30

Inter-function Communication

SAND
- First Contribution ✅

• Application-level Sandboxing >> Different levels of isolation
– Second Contribution

• Hierarchical Message Bus

Global Bus

Local Bus Local Bus

Application

31

Inter-function Communication

• Image processing pipeline:
– 43% reduction in total runtime compared against OpenWhisk

• local message bus is 3-5x faster than the global one
• Function interaction is faster

– 6.3x better than AWS Greengrass
– 8.3x better than OpenWhisk

32

Inter-function Communication

• Summary of inter-function communication methods
– Photons

• Shared Object Store
– Particle

• Overlay Network
– PyWren, ... (Most Common)

• External Storage Service
– SAND

• Hierarchical Message Bus

33

34

Extensions

Extensions
Kappa*

- Challenges:
- Lambda functions are not suitable for long running jobs
- Existing FaaS platforms lacks concurrency primitives

- Solution
- Checkpointing mechanism
- Provide an API

User
Code

Kappa
Compiler

Kappa Libs

Transformed
Code

Kappa
Coordinator

lunch

lunch

lunch

spawn

spawn

checkpoint

35

*Zhang, Wen, et al. "Kappa: A programming framework for serverless computing." Proceedings of the 11th ACM Symposium on Cloud Computing. 2020.

Extensions
- Other Kappa Features:

- Fault tolerance
- No change needed to the serverless platform!

Using Redis, upto 100KB chekpointing every 1s, Kappa adds < 1% overhead

Chekpointing (size: 0.5KB) every 100ms: 1000 parallel lambdas ~ 1 lambda

36

Discussion & Future Directions

- Resource Disaggregation + Serverless

37

- Serverless + Non-volatile memory
- Faster than Disk & Remote Storage
- Cheaper than in-memory cache
- According to literature*

- No support for specialized HW

