Federating Trust: Network Orchestration for
Cross-Boundary Zero Trust

Karl Olson
University of Colorado - Boulder
Boulder, CO
karl.olson@colorado.edu

1 INTRODUCTION

Zero Trust is an emerging security paradigm that does away
with implicit zones of trust commonly employed within
static, defense-in-depth, enterprise architectures. One of the
core tenets of Zero Trust is that resource access is determined
by dynamic policy - an intersection of trust in a user, the
supporting application or service, the underlying network,
and the devices which hold or process data. Establishing this
overall assessment of trust serves well for centralized ar-
chitectures where an administrator can establish and assess
each of these trust enablers, such as in an enterprise net-
work. However, shifting workloads to remote access, bring
your own device (BYOD), and cloud hosting of collabora-
tive services, to name a few, all challenge the ability of an
administrator to effectively establish a complete Zero Trust
architecture due to the inability to fully trust each compo-
nent.

This shift away from centrally managed architectures re-
veal a significant challenge in achieving complete Zero Trust:
security is a function of many interactions, many of which an
administer has no control over. Recently the term "Zero Trust
2.0" was coined as an evolution to Zero Trust which estab-
lishes identity as the new perimeter via an orchestration layer
and machine learning capabilities [1]. However, this function-
ality still remains tied to centrally controlled architectures
where an administrator can link together products and so-
lutions to achieve a desired level of security. We argue that
this orchestration needs to expand beyond these common
enterprise boundaries in a way that trust can be guaranteed
across disparate systems, networks, and servicers. Similar to
identity federation, where a user can use credentials from
one provider to access another competitors platform, federa-
tion of trust should serve as a guarantee for security across
networks. In the remaining sections we propose what this
trust federation mechanism could potentially look like.

2 DESIGN

NIST 800-207 outlines a number of tenets for a Zero Trust
deployment such as per-session assessment, use of dynamic
policy, and strict policy enforcement prior to access [2]. In
designing our distributed trust mechanism, we align with

Eric Keller
University of Colorado - Boulder
Boulder, CO
eric.keller@colorado.edu

these core tenets of Zero Trust to establish four high-level
design objectives which serve as fundamental primitives to
guide our design:

(1) Trust across a boundary should be established prior to
any follow-on communication or resource access.

(2) A user should be able to specify their security require-
ments, and the target should be able to respond with-
out revealing any potential negative information about
their network (eg. "we do not have the latest security
patch installed.")

(3) Similarly, a recipient should also be able to request a
set of security requirements from the user in order to
maintain a level of trust in their own network.

(4) The trust system should be able to dynamically re-
spond to changes in conditions in order to maintain
security of the network (eg. a vulnerability in an agreed
upon condition is identified.)

In order to meet these objectives, we therefore require a
design that integrates a number of requirements:

(1) A mechanism for both the sender and receiver to spec-
ify conditions necessary to establish a level of trust.

(2) A verification process for sender and receiver to re-
spond to trust requirements, and if necessary propose
alternatives.

(3) A handshake or agreement process to finalize security
requirements before processing further communica-
tion

(4) Integration with analytic or security components of
a network to dynamically assess conditions of trust
within a network

(5) An inform process to inform either sender or receiver
of changes in conditions.

(6) A perimeter or DMZ-based negotation mediator to
handle trust setup (trust is established external to tar-
get host to prevent system exposure prior to establish-
ing trust)

Based on the above core design objectives and require-
ments, we envision an architecture as presented in Figure 1.
Here, a client would first establish a session with the target
network’s trust proxy, represented by numeral 1. The use of a
trust proxy is to serve as a mediator of trust prior to allowing

SIGCOMM’18, August 21-23, 2018, Budapest, Hungary

Data Analvtics/Trust

Figure 1: Trust Proxy Architecture. The colored lines repre-
sent the degree of trust in each step.

access to a resource. We envision this as an external/ DMZ
component where trust negotiation would occur, and in the
case of failure, does not expose or allow access to a network
resource, eg. fail-safe. This proxy would work with an or-
ganization’s analytic/policy infrastructure to dynamically
understand the current security conditions, requirements,
and state of trust (numeral 2).

With an updated assessment of security conditions, the
trust proxy would enter into trust establishment process with
the requesting system. We envision this negotiation process
as a four-way handshake to agree on security conditions,
shown in Figure 2 and discussed in detail with our poster.

If both the sender and proxy agree to a set of security
requirements (such as patch compliance, chosen encryption
methods, hardware or software versioning, etc.) , a security
token is generated by the proxy for the session and pro-
vided to both the requester and the organizations internal
trust/analytics platform. Security mechanisms, such as a fire-
wall, are also updated to recognize the generated token and
any traffic tied to the session. The purpose of the security
token is to: 1) identify a requester as having completed a
negotiation process based on a set of agreed upon conditions,
2) identify all traffic associated with the session and its op-
erating conditions, such that a change in network policy or
status could quickly block or prevent further communication
easily, 3) serve as a secondary verification for a target re-
source to verify access is authorized. We describe this token
process in more detail within our poster. With this security
token, a requester would then be given access to a resource
(numeral 3). In turn, the resource would verify the token
(numeral 4) before fulfilling any requirement.

3 DISCUSSION/FUTURE WORK

One assumption we make in this design is that the response
provided by both the requester or the trust proxy are true
and not malicious in intent. To ensure this, we envision a
few potential options:

F. Lastname et al.

Trust Orchastration/ Target

Client Proxy Analytic Server Resource

POST SYN:

@ TrustReq (Resource:Req:Valyel)

POST ACK-SYN:
Tmsmesp(keq.Vai.sxats;Alt) +
TrustRea(Re: :Val
3

POST AGR-Ack:

Trustconﬂr
miAgre
TrustRespi e cC et Valj

9:Val:Status:a)

POST cLOSE:

TrustReq(Reg: Close:Re. n) Inform, Hostysta R.
H :
ason) [(Host:Status: eason)

POST AGR-AGR:
Trulennflrm(AgreEmen\'Va\)+Trus(
Est(Targel.VaI.Token

POST INFORM:

Inform Target:Value:Tokeg

pOST CLOSE: @ POST INFORM:
-Close) Inform(T:

TRUST CONNECT: -
CONN @ -
e ResoureTokery conmpLsTCOMNECT
Resource:Token)
" RUST VALIDATE: @

(Token:Status)

@ TRUST Configpy,

(Token:statys)

TRUST RESPONSE: @

Firewall or

Security
Appliance

Figure 2: Trust Federation Negotiation Process. Complete
walkthrough will be presented in poster.

(1) for a host, metrics could be tied to remote attestation
via the trusted platform module (TPM). This could
be useful for enterprise systems where configuration
could be verified against local policy requirements.

a standardized hierarchical trust architecture, similar
to that afforded public certificates. Here a network
could tie trust to a certificate system which embeds
security metrics within the certificate.

3rd party negotiation - here networks could attest to
their clients status based on compliance with local
security policy. This would work best in environments
where both parties have a mature architecture that can
assure status of systems, whether local or remote.

—~
\S)
~

—
w
=

Other potential considerations for federating trust are the
potential processing overheads and efficiency of negotiation.
While the proposal in current form introduces overhead
and additional processing latency, the costs should be offset
by the need for assured trust in data and systems first and
foremost. This assumption would need to be revisited for
high-throughput environments.

REFERENCES

[1] Amir Nooriala. 2020. Zero Trust 2.0: The Perfect Balance Between
Convenience and Security. (2020).

[2] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. 2019. Zero
trust architecture. Technical Report. National Institute of Standards and
Technology.

	1 Introduction
	2 Design
	3 Discussion/Future Work
	References

