
Resource Management in Cloud Computing Using
Machine Learning: A Survey

Sepideh Goodarzy
University of Colorado Boulder

Sepideh.Goodarzy@colorado.edu

Maziyar Nazari
University of Colorado Boulder
Maziyar.Nazari@colorado.edu

Richard Han
University of Colorado Boulder

Richard.Han@colorado.edu

Eric Keller
University of Colorado Boulder

Eric.Keller@colorado.edu

Eric Rozner
University of Colorado Boulder

Eric.Rozner@colorado.edu

Abstract—Efficient resource management in cloud computing
research is a crucial problem because resource over-provisioning
increases costs for cloud providers and cloud customers; re-
source under-provisioning increases the application latency, and
it may violate service level agreements, which eventually makes
cloud providers lose their customers and income. As a result,
researchers have been striving to develop optimal resource
management in cloud computing environments in different ways,
such as container placement, job scheduling and multi-resource
scheduling. Machine learning techniques are extensively used in
this area. In this paper, we present a comprehensive survey on the
projects that leveraged machine learning techniques for resource
management solutions in the cloud computing environment.
At the end, we provide a comparison between these projects.
Furthermore, we propose some future directions that will guide
researchers to advance this field.

Index Terms—resource management, cloud computing, ma-
chine learning

I. INTRODUCTION

Nowadays, industry and academia are moving their appli-
cations to the cloud. Cloud computing provides a platform to
application developers so that they can run their applications
in the cloud without worrying about server setups and con-
figurations. On the other hand, cloud providers are constantly
looking for ways to offer better services to the developers
while they consider efficiency.

Resource management is the allocation of resources such
as CPU, Memory, Storage and Network Bandwidth to the
virtualization unit, such as virtual machines or containers,
in the cloud. There is no finite outline for proper resource
management. Good resource management can vary between
cloud providers based on their primary aspirations. The main
objectives usually are minimizing job completion time, make-
span time, increasing resource efficiency, cost reduction, and
energy optimization.

The objectives mentioned above are very significant. For ex-
ample, Amazon report shows that it loses 1% of its revenue for
a 100ms increase in a response delay. Google discovered that
an extra 0.5 seconds delay in search generation in Google will
drop its traffic by 20% [1]. This report shows the importance
of Service Level Objective (SLO) preservation. According to

[2], approximately 70% of total data center operating costs
are due to power, which shows the importance of minimizing
energy consumption.

Researchers have been trying to propose solutions in this
area by using different methods such as heuristics and algo-
rithms. The problem with these methods is that they are not
workload-specific, they are not capable of handling workload
changes because they do not provide dynamicity, and they
need prior knowledge of the workload to tune parameters.
However, some of the researchers tried machine learning
to solve this. Because it is workload-specific, it can handle
dynamicity in workload behavior, and it does not need any
workload specialization.

In this paper, we review some of the works in the literature
that they proposed to manage and provision resources using
machine learning, and we compare these solutions based on
the methods they used, their objectives, their novelties, and
their final results. We also investigate some of the possible
future directions that researchers can study to improve state-
of-the-art techniques.

There are a few surveys done in this area. For instance, in
this recent survey [3] they provided a comprehensive study of
resource management, but they are more focused on research
papers in the context of performance management in the
cloud and do not give a clear picture to the readers about
the correlation between ML techniques and cloud computing-
specific objectives. In another survey [4], they studied re-
source management with the focus on energy consumption
optimization, which is not our main focus in this paper.
However, unlike those, this paper’s focus is more on providing
a literature review categorized based on the ML techniques that
are used, and comparing them. As a result, after reading this
survey, the reader will have a general idea of why researchers
chose different ML techniques for specific goals, what the
drawbacks of their approaches are and how they addressed
previous works’ gaps. Hopefully, this will give a clear picture
of the state-of-the-art research in using ML techniques in cloud
computing resource management.

The paper is organized as follows. In section II, we study
some reputable papers in the area. These papers are divided

based on their applied ML method to three categories: su-
pervised, unsupervised and reinforcement learning, which are
investigated in detail in sections II-A, II-B and II-C, respec-
tively. In section III, we present a comparative overview of all
the research reviewed in section II, and we recommend some
possible future directions in this area. Section IV summarizes
this paper.

II. SURVEY

Three popular types of machine learning models used in
resource management research are supervised, unsupervised,
and reinforcement learning (RL). In supervised learning, the
training dataset contains features and labels, and the model
learns to predict the label considering the features. There is
no label in the dataset in an unsupervised learning model,
so the model discovers the relation between the training data
and then find the correct labels based on the relation. In RL,
an agent gathers information about the environment called
state. Then, it does an action that changes the environment to
the next state and returns a reward to the agent. This reward
shows how much the agent’s action optimizes the RL objective
function. RL exploits state, action, and reward space to learn
the best action sequence, which gains the most cumulative
reward. We study the works that used supervised, unsupervised
and reinforcement learning in Section II-A, II-B and II-C
respectively.

A. Supervised Learning

In [5], there is a performance model predictor in their
system, which predicts a 5 min workload (req/sec) using the
recent 15 minutes of workload. Smoothing splines [6] are
used for the performance model predictor. Using the predicted
workload, they estimate the number of required servers and the
fraction of requests that violate the Service Level Agreement
(SLA). In order to prevent oscillation in the number of required
servers, a hysteresis parameter is employed. Whenever the
system detects a change in performance model predictor per-
formance, the system will switch to exploration mode in which
it does online training and tries to adjust the model. In the
exploration mode, at first, the system sets the required servers
to the maximum available servers, then it gradually removes
servers to reach the optimum number of required servers. Their
solution does not cover maximizing SLAs besides minimizing
the number of required servers objective; instead, they only try
to minimize the number of required servers and not violate
the SLA thresholds. As for benchmarking, they used the
Cloudstone Web 2.0 benchmark [7], which has a workload
generator called Faban [8], and they used real workload data
from Ebates.com.

Unlike the previous work, [9]’s goal is to maximize SLA
while optimizing energy consumption. They try to consolidate
tasks to turn off unused machines. In order to handle turning
on machines when the load increases, booting delay is con-
sidered. First, they predict the CPU Usage percentage of a
task using linear regression to predict its power consumption.
M5P is used to predict power consumption from CPU usage

percentage prediction. Linear regression is also employed to
predict the SLA using features like CPU usage, the time a job
has spent so far, and available CPU. The paper assumes that
all machines are identical. The authors used their predicted
results in the Dynamic Backfilling to schedule jobs. Moving a
job is based on interference with the required resource of other
tasks running on the machine and trade-off between power
consumption savings and performance degradation. In the
evaluation section, a simulation is perfomed using OMNet++
[10]. To choose thresholds for turning off/on a machine,
different min and max usage thresholds are tested. Because
SLA guarantees are taken into account with a higher priority
in scheduling jobs rather than minimizing energy consumption.
their method is much less likely to violate SLAs. As for future
work, they proposed to use reinforcement learning instead
of the costly dynamic backfilling. It would be interesting to
consider different machine types or other resources such as
memory and network in their prototype. It would be more
realistic if more metrics are considered in their simulation as
well.

Instead of naively turning machines on and off, [11] has
considered different on/off states in this work, and they chose
the best on/off to offer lesser transition delay and power con-
sumption. The feed-forward Neural Network (NN) is utilized
to predict future workload based on workload history to decide
on when it is suitable to turn off machines to save energy.
For the evaluation, their system is simulated by using the
CloudSim and GridSim toolkits [12], [13]. They generated
workloads based on traces containing requests to NASA and
ClarkNet [14]. The power consumption and requests’ drop
rate is measured in different configurations. Their best result
is when they keep 20% extra servers on in addition to the
predicted number of required servers. They did not compare
their solution with any other power management scheme. It
could be beneficial to propose a more general solution that will
work with different workloads and data center architectures.
It will be more realistic to test their method in a real-world
environment and not keep 20% extra servers on.

The work [15] predicts the CPU utilization based on the
recent CPU utilization using both Error Correction Neural
Network and Linear Regression with/without sliding window
technique [16]. They used the predicted results to turn on/off
the unused VM to minimize the number of VMs. In order to
find the best window size, different values were experimented
with. The TPC-W benchmark [17] was employed to generate
the workload. The authors have shown that their system can
predict the future resource requirement surge sooner than the
VM instance setup. This approach was not implemented and
evaluated on the public cloud.

In [18] the primary focus is on cloud-based media process-
ing. The main objective is to prevent QoS degradation and
efficient resource management by minimizing the number of
VMs. To minimize the number of VMs, they predict the CPU
resource usage of a task based on similar previous tasks using
Support Vector Regression (SVR). These tasks are placed on
VMs based on the predicted results. The prediction confidence

metric using k-nearest neighbors (KNN) is employed to see if
their prediction is reliable. If it is not reliable, they will run
the task in a lightweight VM. To prevent QoS degradation, a
survival function (Q function [19]) is used to determine if
combinations of tasks still obey QoS limits with a specified
confidence level. It is good to add more dimensions (Memory,
Network) to this problem as future work. Also, rearranging
the existing tasks instead of only placing them can make a
significant improvement. Their work also lacks consideration
of the variety of VMs and jobs like CPU bound or I/O bound
tasks.

B. Unsupervised Learning

In DejaVu [20], each service has a proxy responsible for
forwarding the users’ requests to the profiler. The profiler
computes each workload’s signatures, consisting of low-level
metrics to provide non-intrusive and low overhead monitoring.
These signatures are used for clustering the workloads using
K-means. The required resources for each cluster are computed
via linear search. After the required resource is computed for
a workload, the tuner maps that workload to a virtualized
resource. When DejaVu detects changes in the workload,
it will classify the workload using the C4.5 decision tree
based on its VM Id and its signature. When the classification
certainty level is low, DejaVu sets the workload to its full
capacity configuration and clusters and tunes again. They
compute performance interference by comparing the workload
performance in the profiler with the production, and they cover
this issue by providing more resources to the corresponding
service. For the evaluation, different services were tested such
as SPECWeb2009 [21], Cassandra [22] and RUBiS [23] by
replaying MSN messenger and HotMail traces [24].

C. Reinforcement Learning

In paper [25], reinforcement learning (SRASA(0)) is used
for offline training combined with different queuing models
[26]–[29] for online training to prevent the poor performance
of RL in the beginning [25]. Their RL model employs a Neural
Network (NN) inside the RL in place of a lookup table to
avoid the need to explore all the state, action space. The main
objective is to maximize net expected revenue. Their method
is tested through the TRADE3 application. They tested both
open-loop traffic and closed-loop traffic models. In order to
simulate a stochastic bursty time-varying demand, time series
traffic is modified [30]. Also, a batch CPU intensive workload
is tested as a sample of a non-web-based workload. Their
model handles dynamicity such as transient and switching
delays by including the previous decision in the input features.
Future work could include expanding their action space from
only server allocation to resource management (CPU, Mem-
ory, Network bandwidth). They can also expand their state
space from the mean page request arrival rate only, by adding
other measurements.

In [31], the authors proposed a multi-resource cluster sched-
uler that schedules jobs online. The standard policy gradient
reinforcement learning [32] is used combined with DeepNN

[33] (rmsprop [34]). The assumption is made that jobs are
nonpreemptable. As stated in their paper, two resource types
are considered (though more types are supported) and the state
space contains the current resource allocation in the cluster and
the resource profiles of the first M jobs waiting to be scheduled
as well as the number of other jobs stored in the backlog.
DeepRM can schedule jobs based on an objective such as
minimizing average job completion time or job slowdown,
which can be chosen dynamically by defining the correct
reinforcement rewards. As for the evaluation, they compared
their solution with standard heuristics such as the shortest
job first or a packing scheme inspired by Tetris [35]. Future
work could add multiple machines [36] into their problem
space instead of one large machine, which brings out the
fragmentation problem. Data locality [37], [38] and inter-task
dependencies [35] could also be considered. They assumed
that a job’s resource requirement is known beforehand, but
that may not be the case for non-recurring jobs [39]. RL can
solve this partial visibility by casting the decision problem as
a POMDP [40]. Their learning phase is based on a finite time
horizon, which can be solved using a value network [41], that
estimates the average return value.

Decima [42] is an automatic, highly efficient, workload-
specific, and general-purpose scheduler for data processing
jobs to minimize job completion time. They used RL and
graph neural networks [44]–[47] in their model besides di-
rected acyclic graphs (DAG) [48]–[51] to represent job depen-
dency graphs. Their method converts DAGs of different sizes
and shapes to input vectors to the policy network. Each job
stage is scheduled with an efficient parallelism level. To deal
with continuous streaming of job arrivals, they terminate the
training episodes early in the beginning and gradually grow
their length, making policy to learn how to handle short and
straightforward job sequences and then learn more lengthy
challenging sequences [52]. For handling stochastic job ar-
rivals, the variance reduction technique [53], [54] is employed.
In the evaluation, Decima is integrated with Spark [55], and
workload traces are used from Alibaba and tested out in Spark
clusters [56], [57]. Other techniques include handling multi-
resource scheduling, batch mode, and resource fragmentation.
In terms of future work, they can use robust adversarial RL
[58] for drastic workload changes and meta-learning [59]–[61]
for online learning when a workload change happens. Multi-
agent RL [60]–[62] could be utilized to handle preemptable
jobs such that one agent is responsible for scheduling the next
stage, and the other one decides on executors to be preempted.

In [43], the paper used a decentralized deep-Q-network in
a multi-agent RL setting to schedule multi-workflow in IaaS
clouds with heterogeneous VMs with different configurations
and pricing models. Their main goals are minimizing make-
span time and user’s cost optimization. Their work’s novelty
is that their solution can reach correlated equilibrium policy in
a dynamic real-time environment to optimize more than one
objective using multi-agent reinforcement learning. They also
considered workflow DAGs, and they learned the correct par-
allelism level for each task. Well-known scientific workflows

TABLE I
AN OVERVIEW OF ML PROPOSALS TO MANAGE RESOURCES IN CLOUD COMPUTING

Year Ref. ML Tech Dataset Features Output Goal
2009 Bodik [5] Supervised: Smooth

Splines and LOESS
Cloudstone web 2.0
bencmark, Faban
workload generator,
Ebates.com traces

Recent workload, #esti-
mated required server

Mean performance and
performance variance

Minimiz #servers

2010 Berral [9] Supervised: Linear regres-
sion, M5P

Simulation: OMNet++ Recent CPU usage per-
cent, available CPU, the
time the job has spent so
far

CPU usage percent, power
consumption, SLA

Maximize SLA while op-
timizing energy consump-
tion

2010 Duy [11] Supervised: Feedforward
NN

Simulation: CloudSim,
GridSimNASA and
ClarkWeb traces

Recent workload #Required Servers Minimiz #servers

2012 Islam [15] Supervised: Error
corection NN and LR
with/without window size
technique

TPC-W benchmark Cpu utilaztion history Cpu utilaztion Minimiz #VMs

2013 Sembiring
[18]

Supervised: SVR, KNN, An script of media tasks Media Task features Cpu utilaztion Minimiz #VMs

2012 Vasic [20] Unsupervised: Clustering SPECWeb2009,
Cassandra and RUBiS
servisedMSN messenge,
HotMail traces

Workoad low level Signa-
ture

Workload cluster Meeting SLO when a
workload change happens

2006 Tesauro
[25]

RL:SARSA(0) combined
with NN

TRADE3 State: Workload and per-
formance

Action: server allocation Maximize net expected
revenue (which is based
on performance-based
SLA)

2016 Mao [31] RL with DeepNN (rm-
sprop)

Their Simulation State: The current re-
source allocation, the re-
source profiles of the first
M jobs waiting to be
scheduled, #jobs stored in
the backlog

Action: scheduling jobs Minimizing average job
completion time

2019 Mao [42] RL with Graph Neural
Network

Alibaba’s traces on Spark
cluster

State: Jobs’ DAGs Action: Scheduling jobs
with the efficient level of
parallelism

Minimizing job comple-
tion time

2019 Wang [43] Multi-agent RL: Decen-
tralized deep-Q-network

Well-known scientific
workflows

State: Jobs’ DAGs Action: Scheduling jobs
with the efficient level of
parallelism

Minimizing make-span
and user’s cost

are employed with different tasks on Amazon EC2 instances
for evaluation. Future work can consider more than two QoS
metrics, such as reliability, and load balancing. On-the-fly
scheduling could also be explored.

III. DISCUSSION

Table I presents an overview of all the works that are
mainly discussed in detail in this paper. The majority of papers
used supervised learning. Most of the works that leveraged
supervised learning have employed recent workloads in order
to predict the current/future workload. Their main objectives
are minimizing the number of servers or VMs to save energy
and decrease costs. The VM/server in which a job is going
to be scheduled should have enough resources. Adding the
new job to it should not interfere with other jobs residing
on that VM/server. The ultimate VM/server among all the
VMs/servers that satisfy the above conditions is selected in
a greedy manner, which does not always guarantee a return to
the most optimum choice.

After supervised learning, reinforcement learning is the next
most prevalent method explored [63]. The state-space in most
RL works consists of jobs’ DAGs, and the action space is
scheduling jobs and specifying the level of job parallelism.
Their main objective is mostly to minimize job completion
time. The problem with these solutions is that their RL

methods are not online, so whenever a change happens in the
workload, there will be a delay in re-training the model and
responding to that change. So, they should use another method
besides RL for those situations.

Unsupervised learning is least suitable for resource man-
agement because it divides workloads into clusters, and many
workloads end up in the same cluster. As a result, the system
assigns the same resources for all the members of a cluster.
The only exception where unsupervised learning happens to
be beneficial is when the workload changes.

A promising direction for future work is for researchers to
study online learning with RL. They can use meta-learning. It
is going to be interesting to consider more than two conflicting
objectives by having more than two agents, and researchers
should also explore preemptible jobs by using a specified agent
for handling job preemption decisions. It would be better if RL
models did not rely on the job resource usage profile because
they are not always accurate; instead, they should estimate
each job resource profile using supervised learning.

IV. CONCLUSION

In summary, in this paper, we provided a comprehensive
survey on background works that have taken advantage of
the machine learning techniques to solve real-world problems
in the cloud computing area, and they have applied ML
algorithms to optimize different objectives related to the cloud

computing environment. We also discussed the potential future
directions of this research area, and we are hoping that using
this literature review helps researchers make more progress in
this field.

V. ACKNOWLEDGMENT

This research was supported in part by VMware and the
NSF as part of SDI-CSCS award number 1700527, and by
the NSF as part of CAREER award number 1652698.

REFERENCES

[1] Y. Einav, Amazon Found Every 100ms of Latency Cost
them 1% in Sales, 2019 (accessed September 25th, 2020).
[Online]. Available: https://www.gigaspaces.com/blog/amazon-found-
every-100ms-of-latency-cost-them-1-in-sales/

[2] M. Rareshide, Power in the Data Center and its Cost
Across the U.S., 2017 (accessed September 25th, 2020).
[Online]. Available: https://info.siteselectiongroup.com/blog/power-in-
the-data-center-and-its-costs-across-the-united-states

[3] S. K. Moghaddam, R. Buyya, and K. Ramamohanarao, “Performance-
aware management of cloud resources: A taxonomy and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–37, 2019.

[4] K. Braiki and H. Youssef, “Resource management in cloud data centers:
a survey,” in 2019 15th International Wireless Communications &
Mobile Computing Conference (IWCMC). IEEE, 2019, pp. 1007–1012.

[5] P. Bodı́k, R. Griffith, C. A. Sutton, A. Fox, M. I. Jordan, and D. A. Pat-
terson, “Statistical machine learning makes automatic control practical
for internet datacenters.” HotCloud, vol. 9, pp. 12–12, 2009.

[6] J. L. Hellerstein, V. Morrison, and E. Eilebrecht, “Optimizing concur-
rency levels in the. net threadpool: A case study of controller design
and implementation,” Feedback Control Implementation and Design in
Computing Systems and Networks, 2008.

[7] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Proc. of CCA, vol. 8, 2008, p. 228.

[8] “Next generation benchmark develop- ment/runtime infrastructure,”
2008. [Online]. Available: http://faban.sunsource.net

[9] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and
J. Torres, “Towards energy-aware scheduling in data centers using
machine learning,” in Proceedings of the 1st International Conference
on energy-Efficient Computing and Networking, 2010, pp. 215–224.

[10] “Omnet++,” 2009. [Online]. Available: http://www.omnet.org
[11] T. V. T. Duy, Y. Sato, and Y. Inoguchi, “Performance evaluation of a

green scheduling algorithm for energy savings in cloud computing,” in
2010 IEEE international symposium on parallel & distributed process-
ing, workshops and Phd forum (IPDPSW). IEEE, 2010, pp. 1–8.

[12] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation
of scalable cloud computing environments and the cloudsim toolkit:
Challenges and opportunities,” in 2009 international conference on high
performance computing & simulation. IEEE, 2009, pp. 1–11.

[13] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and computation: practice and experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[14] “Tracesintheinternettrafficarchive.” [Online]. Available:
http://ita.ee.lbl.gov/html/traces.html

[15] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 155–162, 2012.

[16] T. G. Dietterich, “Machine learning for sequential data: A review,” in
Joint IAPR international workshops on statistical techniques in pattern
recognition (SPR) and structural and syntactic pattern recognition
(SSPR). Springer, 2002, pp. 15–30.

[17] “Tpc, tpc-w benchmark, transaction processing performance council
(tpc),” San Francisco, CA 94129-0920, USA, 2003.

[18] K. Sembiring and A. Beyer, “Dynamic resource allocation for cloud-
based media processing,” in Proceeding of the 23rd ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video,
2013, pp. 49–54.

[19] M. K. Simon, Probability distributions involving Gaussian random
variables: A handbook for engineers and scientists. Springer Science
& Business Media, 2007.

[20] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “De-
javu: accelerating resource allocation in virtualized environments,” in
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, 2012, pp.
423–436.

[21] “Specweb2009.” [Online]. Available: http://www.spec.org/web2009/
[22] “Apache foundation. the apache cassandra project.” [Online]. Available:

http:// cassandra.apache.org/
[23] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and

scalability of ejb applications,” ACM Sigplan Notices, vol. 37, no. 11,
pp. 246–261, 2002.

[24] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: practical power-
proportionality for data center storage,” in Proceedings of the sixth
conference on Computer systems, 2011, pp. 169–182.

[25] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid
reinforcement learning approach to autonomic resource allocation,” in
2006 IEEE International Conference on Autonomic Computing. IEEE,
2006, pp. 65–73.

[26] P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy, “An
observation-based approach towards self-managing web servers,” in
IEEE 2002 Tenth IEEE International Workshop on Quality of Service
(Cat. No. 02EX564). IEEE, 2002, pp. 13–22.

[27] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation
for shared data centers using online measurements,” in International
Workshop on Quality of Service. Springer, 2003, pp. 381–398.

[28] M. N. Bennani and D. A. Menasce, “Assessing the robustness of
self-managing computer systems under highly variable workloads,” in
International Conference on Autonomic Computing, 2004. Proceedings.
IEEE, 2004, pp. 62–69.

[29] ——, “Resource allocation for autonomic data centers using analytic
performance models,” in Second international conference on autonomic
computing (ICAC’05). IEEE, 2005, pp. 229–240.

[30] M. S. Squillante, D. D. Yao, and L. Zhang, “Internet traffic: periodicity,
tail behavior, and performance implications,” in System performance
evaluation: methodologies and applications, 2000, pp. 23–37.

[31] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[32] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[33] H. D. Beale, H. B. Demuth, and M. Hagan, “Neural network design,”
Pws, Boston, 1996.

[34] G. Hinton, N. Srivastava, and K. Swersky, “Overview of mini-batch
gradient descent,” Neural Networks for Machine Learning, vol. 575,
2012.

[35] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2014.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache hadoop
yarn: Yet another resource negotiator,” in Proceedings of the 4th annual
Symposium on Cloud Computing, 2013, pp. 1–16.

[37] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, 2009, pp. 261–276.

[38] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, 2010, pp. 265–278.

[39] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Reoptimizing data parallel computing,” in Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 12), 2012, pp. 281–294.

[40] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Machine Learning
Proceedings 1995. Elsevier, 1995, pp. 362–370.

[41] R. S. Sutton, A. G. Barto et al., “Introduction to reinforcement learning.
vol. 135,” 1998.

[42] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, 2019, pp. 270–288.

[43] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie,
“Multi-objective workflow scheduling with deep-q-network-based multi-
agent reinforcement learning,” IEEE Access, vol. 7, pp. 39 974–39 982,
2019.

[44] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

[45] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, 2017, pp. 6348–6358.

[46] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in neural information processing systems, 2016, pp. 3844–3852.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[48] “Apachetez2013.apachetezproject,” 2019. [Online]. Available:
https://tez.apache.org/

[49] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum, “Flumejava: easy, efficient data-parallel
pipelines,” ACM Sigplan Notices, vol. 45, no. 6, pp. 363–375, 2010.

[50] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, 2007, pp. 59–72.

[51] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), 2012, pp. 15–28.

[52] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[53] H. Mao, S. Chen, D. Dimmery, S. Singh, D. Blaisdell, Y. Tian, M. Al-
izadeh, and E. Bakshy, “Real-world video adaptation with reinforcement
learning,” 2019.

[54] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven environ-
ments,” arXiv preprint arXiv:1807.02264, 2018.

[55] “Apache spark: Dynamic resource allocation,” 2018, spark v2.2.1 Doc-
umentation. [Online]. Available: http://spark.apache.org/docs/2.2.1/job-
scheduling.html#dynamic- resource- allocation

[56] “Cluster data collected from production clusters in alibaba
for cluster management research,” 2017. [Online]. Available:
https://github.com/alibaba/clusterdata

[57] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An
analysis on alibaba cluster trace,” in 2017 IEEE International Conference
on Big Data (Big Data). IEEE, 2017, pp. 2884–2892.

[58] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adver-
sarial reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2817–2826.

[59] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel,
“Model-based reinforcement learning via meta-policy optimization,”
arXiv preprint arXiv:1809.05214, 2018.

[60] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and
P. Abbeel, “Rl2: Fast reinforcement learning via slow reinforcement
learning,” arXiv preprint arXiv:1611.02779, 2016.

[61] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[62] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems. Springer, 2017, pp.
66–83.

[63] Y. Zhang, J. Yao, and H. Guan, “Intelligent cloud resource management
with deep reinforcement learning,” IEEE Cloud Computing, vol. 4, no. 6,
pp. 60–69, 2017.

