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Abstract—The increase of cyber attacks in both the numbers
and varieties in recent years demands to build a more sophis-
ticated network intrusion detection system (NIDS). These NIDS
perform better when they can monitor all the traffic traversing
through the network like when being deployed on a Software-
Defined Network (SDN). Because of the inability to detect zero-
day attacks, signature-based NIDS which were traditionally used
for detecting malicious traffic are beginning to get replaced
by anomaly-based NIDS built on neural networks. However,
recently it has been shown that such NIDS have their own
drawback namely being vulnerable to the adversarial example
attack. Moreover, they were mostly evaluated on the old datasets
which don’t represent the variety of attacks network systems
might face these days. In this paper, we present Reconstruction
from Partial Observation (RePO) as a new mechanism to build
an NIDS with the help of denoising autoencoders capable of
detecting different types of network attacks in a low false alert
setting with an enhanced robustness against adversarial example
attack. Our evaluation conducted on a dataset with a variety
of network attacks shows denoising autoencoders can improve
detection of malicious traffic by up to 29% in a normal setting
and by up to 45% in an adversarial setting compared to other
recently proposed anomaly detectors.

Index Terms—Intrusion Detection Systems, Neural Networks,
Anomaly Detection, Adversarial Example

I. INTRODUCTION

The continuous growth of network attacks in number, scale
and complexity [1] has caused a wide range of impacts to
many individuals and exploited businesses from high monetary
costs to more serious issues such as wide-scale power outages
[2]. Because of the severe effects that such network attacks
cause companies are expected to invest billions of dollars to
find tools that detect and eliminate network intrusions [3].

Network intrusion detection systems (NIDS) are one part
in the line of defense against network attacks. Because of
the technologies such as P4-based network telemetry, network
function virtualization (NFV), cloud-native security services
(such as what Zscaler provides) and network-wide view that
the control plane in an SDN provides, these NIDS are getting
more and more utilized to detect different types of threats [4],
[5]. But, signature-based NIDS which were traditionally being
used to detect malicious traffic can’t cope with today’s variety
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of network attacks as they are incapable of detecting zero-day
attacks which are significantly increased in recent years [6].

In response, there has been a great deal of research and
even commercial offerings which leverage machine learning
(with deep neural networks) to augment the detection ca-
pabilities [7]–[14]. These anomaly-based NIDS have been
introduced due to their ability to detect zero-day attacks
(for which there is no pre-existing signature) by looking for
deviations from typical, benign network traffic. To do so, these
NIDS are trained only on benign traffic. Then, during inference
time, the NIDS measures how similar the new traffic is to the
traffic seen during training time. Each packet or flow seen
by the NIDS is given a similarity score and compared to
a pre-defined threshold. If the packet or flow score exceeds
the threshold, then the traffic is considered malicious. This
threshold should be set in a way to make sure that the NIDS
doesn’t generate too many false alerts on benign traffic.

Recently, it has been shown that the detecting capability
of ML-based NIDS including simple classifiers trained with
supervision as well as complex anomaly-based NIDS trained
in an unsupervised manner can be significantly reduced by
the help of the adversarial example (evasion) attack [15],
[16]. This attack lets the attacker carefully and in many cases
slightly manipulate malicious traffic to fool and bypass the
NIDS while carrying out the original malicious intent without
breaking the underlying network protocols. The deterministic
behavior of the previously proposed anomaly-based NIDS
makes it easy to craft adversarial examples against them. In
addition, minimizing the reconstruction error of the benign
traffic in the training phase used by some of the NIDS [11]
based on the full observation of the inputs can lead to an
over-generalization problem. It means that the model learns
to reconstruct the malicious traffic which was not trained on,
as good as benign traffic, making it hard for the model to
distinguish between them leading to a poor detection rate.
Therefore, a new method for detecting malicious traffic is
required to be more robust against adversarial example attack.
Such a method should be able to detect a wide range of
threats while generating a low number of false alerts. Because
a high false alert rate significantly increases the required effort
of security experts to manually sort through all alerts and
differentiate true attacks from falsely identified attacks.
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In this paper, we present Reconstruction from Partial Ob-
servation (RePO) as a new method to build a more accurate
NIDS in an unsupervised manner which is also more robust
in the presence of adversarial examples by utilizing denoising
autoencoders [17] and combining the inputs with multiple
random masks before feeding them into the model. As we
show, leveraging multiple random masks makes it harder to
craft adversarial examples against the NIDS by making the
model non-deterministic. Furthermore, it prevents the over-
generalization problem we mentioned resulting in better distin-
guishment of malicious inputs from the benign traffic leading
to a higher detection rate of the network attacks.

In summary, we make the following contributions:
• We leverage denoising autoencoders to build an NIDS

that can detect malicious traffic better than previously
proposed anomaly-based NIDS in a low false alert setting
which is also more robust in an adversarial setting.

• We show how a packet-based NIDS can be built with
denoising autoencoders on top of raw values directly
extracted from packet headers without any manual feature
engineering. We also show how a flow-based NIDS can
be built with them on top of manual features, calculated
based on a whole flow.

• We evaluate our NIDS on a new network traffic dataset,
which contains a wide range of attacks to show its
effectiveness in detecting different types of attacks in both
normal and adversarial settings.

II. BACKGROUND

A. Anomaly-based NIDS

Anomaly-based NIDS can be built in many different ways.
Figure 1 illustrates a typical anomaly-based NIDS. These
NIDS have two major components: a feature extractor and an
anomaly detector. In a nutshell, the feature extractor receives
a stream of packets and extract features from them to feed
them to the anomaly detector. Then, the anomaly detector
outputs a score for each input it receives that gets compared
against a threshold. If the score is less than the threshold the
corresponding input will be predicted as benign otherwise it’ll
be predicted as malicious. The feature extractor can be built
in two different ways. It can output a feature vector for each
packet it receives. This feature vector is not based solely on
the current packet; it can also consider the history of packets
it has seen earlier. In this case, the features can be as simple as
raw values extracted from packet headers or complex features
created manually. We call the NIDS leverage such feature
extractors packet-based NIDS. On the other hand, there are
NIDS where their feature extractor builds a single feature
vector with high-level features for a whole flow. We call these
NIDS flow-based NIDS. The anomaly detector component can
also be created in several different ways. Kitsune [11] which
is a packet-based NIDS proposed to leverage an ensemble of
autoencoders which are neural-networks trained to reconstruct
a given input based on the full observation of that input.
Then during the execution time, it calculates the final score
for each input based on the reconstruction errors of the

Fig. 1. Illustration of the structure of a typical anomaly-based NIDS.

autoencoders. Zong et al. proposed DAGMM [12] which trains
two neural-network in an end-to-end fashion to calculates the
energy of each flow in the Gaussian Mixture Model (GMM)
framework and uses that energy to detect anomalies. Zenati
et al. introduced a BiGAN-based approach [13] that uses the
reconstruction error of the generator and the output of the
discriminator in the GAN (Generative Adversarial Network)
framework to detect anomalies. We refer the readers to those
papers for more details about each approach. We first show
how one can build a packet-based NIDS with the RePO
technique and compare it with Kitsune. Then we demonstrate
that an anomaly detector built with RePO can also be utilized
in the flow-based context and compare it with DAGMM and
the BiGAN-based NIDS which were evaluated in such a
setting. We chose these methods as our baselines as they were
among the most highly cited NIDS which were published
recently.

B. NIDS in Adversarial Setting

It has been shown that deep neural networks used for tasks
such as image classification [18], [19], speech-to-text systems
[20], face recognition [21], autonomous driving [22], malware
detection [23], etc. are vulnerable to adversarial example
attacks (i.e. evasion attacks). Adversarial example attacks are
carried out during the inference phase. For this attack, the
attacker doesn’t change any of the model’s parameters but
modifies its own inputs in a way to make the model predict
the inputs as the desired class.

Recently, it has been shown that it is possible to craft
adversarial examples against NIDS, as well [15], [16]. Aiken
et al. [16] showed one can craft adversarial examples against
an NIDS deployed on an SDN for a DDoS attack by increasing
packets payload size, decreasing packet rate and forging traffic
with the reverse source and destination to that of the attack
packets. Hashemi et al. [15] have designed a more general
method to craft adversarial examples for a wide range of
attacks. They’ve shown that by applying a combination of
legitimate transformations such as splitting a packet into
multiple packets, changing the delay between packets, etc. one
can fool the NIDS while not breaking the underlying network
protocols. In this paper, in order to evaluate our NIDS in an
adversarial setting, we follow their threat model and use the
algorithms and transformations introduced by them to craft
adversarial examples against our NIDS. More specifically, we
consider that the attacker has a copy of the NIDS deployed on
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the victim’s network and knows all of its parameters. Also, we
assume the NIDS deployed on the victim’s network receives
a copy of all the packets that travel through the network
entrances. Note, This can easily be achieved in an SDN with
the help of the controller to make the switches forward all the
network traffic to the NIDS node.

III. ANOMALY DETECTION WITH DENOISING
AUTOENCODERS

In this section, we introduce our method for building an
NIDS that can detect a wide range of network attacks while
maintaining a low false alert level. We first show how a
denoising autoencoder can be used as an anomaly detector.
Then, we show how we can make its predictions more accurate
and also more robust against adversarial examples. Finally, we
show how it can be used as the core of an NIDS to build both
packet-based and flow-based NIDS.

A. Reconstruction from Partial Observation
As we saw in Kitsune, the reconstruction error which is

calculated based on the difference between the output and
input of an autoencoder can be used as a score function to
detect anomalies in an unsupervised manner. The assumption
is that the model learns to reconstruct the inputs from the
distribution it is trained on (e.g. benign traffic) better than
inputs that come from another distribution (e.g. malicious
traffic). We argue that this assumption is not necessarily true.
The problem with using autoencoders and their reconstruction
error in this way is that a neural network with a large enough
capacity would have the capability to over-generalize and learn
to rebuild the anomalous inputs, as good as the benign inputs.
In other words, the score of malicious inputs will be very
similar to the benign inputs making it hard to distinguish
between them resulting in poor detection rate.

Therefore, in order to solve the issue of over-generalization
mentioned above, we use denoising autoencoders to force the
model to solve a harder problem. We train the model in a way
to reconstruct a given input based on observing some parts
of it. This way, the model has to not only reconstruct the
visible parts of the input but also to generate the hidden parts
of it. As a result, the reconstruction errors of the malicious
inputs become larger than the benign inputs as the model
can’t reconstruct the hidden parts of the malicious inputs
well enough which leads to better distinguishment between
malicious and benign traffic and a higher detection rate.
Also, note that as malicious inputs get further away from the
decision boundary of the model (i.e. the threshold) it becomes
harder to craft adversarial examples for them. Therefore, when
we train the model in a way to make the gap between the
malicious and benign scores larger it also becomes more robust
against the adversarial example attack.

We refer to this approach as Reconstruction from Partial
Observation (RePO). More specifically, given a model F , we
use the following loss function in our training phase:

LossRePO =
1

N

N∑
i=1

||F (xi � ri)− xi||22

where N is the number of inputs in the training set. xi is the
i-th input sample in the training set and ri is a tensor with the
same size as xi. The elements in ri are randomly 1 and 0 and
the average percentage of 0s is δ, which is a hyperparameter
that should be chosen with regard to the dataset the model is
trained on (we set δ to 0.75 in all of our evaluations). In other
words, we want to minimize the mean square of reconstruction
errors. During inference time, we again mask some parts of
the input randomly and then feed the result into the model.
Finally, like any other anomaly detector we discussed so far,
we need a score function. We define the score function as
follows:

score(x) =
1

M

M∑
j=1

|F (x� r)j − xj |2

where M is the number of features in x. xj and F (.)j are the
j-th features in x and its reconstructed version, respectively.
Therefore, during inference time, if score(x) is greater than
a pre-defined threshold, x is considered an anomaly.

B. RePO+

In our approach, since r is a random matrix, by having
different masks the model outputs different scores. In such a
setting even if an input sample is normal, the random mask
might block the most important parts of the input. Therefore,
the model may not be able to reconstruct the input from
what it observes. In this case, the reconstruction error would
also be high. In order to solve this issue, during inference
time, we replicate each sample 100 times and feed them in
parallel to the model such that each of them is masked with a
different mask ri. We then calculate the score of all of them
and group them equally into 5 groups, and from each group,
we keep the minimum score. Finally, we calculate a new score
by adding these 5 minimum scores together and we use this
new score for deciding whether or not an input is anomalous.
When we use 100 different masks, it becomes more likely
to have ”better” masks. By choosing the ones which have
smaller reconstruction errors, we essentially ignore the cases
that have high error because of a ”bad” mask (i.e. a mask
which blocks the essential features of a sample which are
needed to correctly classify it). Note that, here, we don’t train
an ensemble of 100 different models that can take a very long
time to be trained. We only train one single model that receives
multiple parallel copies of each input masked with different
masks during inference time. We call this approach RePO+,
and we empirically found that it has a higher detection rate.

Also, note that crafting adversarial examples against RePO+
becomes harder as for a given input the adversary should plan
to modify a larger set of features to fool the model compared
to when there is only one mask. This is because if only a
few features get changed, they can get masked by one of
the masks with a high chance which makes those changes
ineffective. Moreover, since the adversary can’t directly query
the NIDS deployed on the victim’s network (otherwise would
be detected) and has to craft the adversarial example by the
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help of their local copy of the NIDS, Even if the adversary can
fool the local copy when the sample goes through the original
NIDS because of a different random mask, it would generate a
different score which might be higher than the threshold and
therefore will be detected. This stochastic nature of RePO+
also makes it more robust against adversarial examples. In
Section IV-D, we empirically show the extent to which the
model is more robust due to this property.

C. Building an NIDS with RePO

Here, we discuss how to build a packet-based NIDS using
the RePO technique. 1 To build a packet-based NIDS with
RePO, we first group the received packets by their sender and
receiver IPs (i.e. the packets from A to B would be in the
same group as packets from B to A). Then for each packet,
we build a feature vector with the following features:

• Inter-arrival time: The time between this packet and the
previous packet in the group.

• Features extracted from Ethernet header: the length of the
frame.

• Features extracted from IP header: IP header length, IP
length, IP flags (df, mf, rb), TTL.

• Features extracted from TCP header: source port, desti-
nation port, sequence number, acknowledgment number,
TCP flags (res, ack, cwr, ecn, fin, ns, push, reset, syn,
urg), TCP window size, urgent pointer. These features
would be zero if the current packet is not a TCP packet.

• Features extracted from UDP header: UDP length, source
port, destination port. These features would be zero if the
current packet is not a UDP packet.

• Features extracted from ICMP packet: ICMP type. This
feature would be zero if the packet is not ICMP packet.

• Direction: This feature is a binary feature that shows
whether the packet is from the IP which started the
communication or from the other end.

In total, the feature vector corresponding to each packet
contains 29 features. In order to make a decision for a given
packet, in addition to the features of that packet, we also send
the features extracted from the previous 19 packets from that
group to our model. Therefore the decision is made based on
observing 20 consecutive packets, and we feed 580 features to
the model in each case. If there are not enough packets before
a given packet, we pad it with feature vectors which all of
their elements are zero. The model architecture we used to
train RePO as a packet-based NIDS is a light-weight neural-
network with only one hidden layer with 2048 neurons. During
the training phase, we first normalized each feature separately
by a min-max scaling approach. We set the batch size to be 512
and we trained the model for 30000 different batches which
were selected randomly with learning rate 0.001, 0.0001 and
0.00001 each for 10000 iterations.

Note, it is not required to utilize RePO only in the packet-
based context. RePO can also be used to build a flow-based
NIDS when combining it with a feature extractor that extracts

1Our code is available at: https://github.com/s-mohammad-hashemi/repo

features at the flow level. The model architecture we used
for detecting anomalies at the flow level is a fully-connected
network with 6 hidden layers each with size 256 and ReLU
non-linearity in addition to 2 dropout layers after the third
and fifth hidden layers of the network. During the training
phase, we first normalized each feature by a min-max scaling
approach. We used a batch size of 256 and trained the model
for 5 epochs with a learning rate of 0.001.

IV. EVALUATION

In this section, we first briefly describe the dataset and
metrics we used for our evaluation. Then, we evaluate how
RePO performs in detecting network attacks in both normal
and adversarial settings by comparing it against our baselines.
Finally, we evaluate the system performance of our NIDS to
measure the training time and its throughput in run-time.

A. Dataset

To evaluate our approach, we used a highly cited dataset
containing network traces of twelve network attacks from
the Canadian Institute of Cybersecurity (CIC) 2 [24]. These
network attacks were carried out over a 5-day work week
in a controlled environment and are as follows: FTP-Patator,
SSH-Patator, DoS slowloris, DoS slowhttptest, DoS Hulk,
DoS GoldenEye, Heartbleed, Web Attacks, Infiltration, Botnet,
PortScan and DDoS. These network attacks make 10.33% of
our test set at the packet level and 24.22% at the flow level.
They are also distributed unevenly (e.g. Dos Hulk alone makes
up 48% of malicious packets). Therefore, we demonstrate the
detection rate of NIDS for each attack separately. The whole
dataset contains more than 56 million packets (2.8 million
flows). We extracted features directly from the packets as
described in the previous section to evaluate RePO in the
packet-based context and used the flow-level features provided
in this dataset to evaluate our NIDS in the flow-based context.
Each flow was labeled as either benign or with the specific
attack name and we labeled each packet based on the flow
labels ourselves with the same procedure as Hashemi et.
al in [15]. We trained the packet and flow-based NIDS on
the Monday traffic, which solely contains over 11.6 million
benign packets (529,481 flows). The NIDS were then tested
on the network traffic generated during Tuesday-Friday, which
contains both benign and network attack traffic. We excluded
web attacks from our evaluations because in both packet-based
and flow-based cases the features were collected from packet
headers and in order to detect web attacks packet payloads
should also be inspected.

B. Evaluation Metrics

1) True Positive Rate (TPR): TPR shows the ratio of
malicious traffic that is detected as malicious to the whole
malicious traffic when the model’s threshold is fixed to a
specific number.

2The dataset can be downloaded at: https://www.unb.ca/cic/datasets/ids-
2017.html
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Fig. 2. The TPR of packet-based NIDS for each attack when FPR is 0.01.

2) False Positive Rate (FPR): FPR shows the ratio of
benign traffic that is considered as malicious to the whole
benign traffic when the model’s threshold is fixed to a specific
number. We evaluate NIDS at a low false-positive rate to avoid
the detrimental effects of base-rate fallacy [25].

C. Detection Performance of RePO in a Normal Setting

1) Packet-based NIDS:: In the packet-based context, we
compare our method with Kitsune. As Mirsky et al. [11]
showed in their paper, the ensemble of autoencoders in Kitsune
can also be replaced with GMM. Here, in addition to compar-
ing with Kitsune while it uses an ensemble of autoencoders
(Kitsune-AE), we compare our approach with it when it uses
GMM (Kitsune-GMM), as well. Figure 2 demonstrates how
our NIDS performs in detecting different attacks compared to
these baselines when the threshold of each NIDS was set in
a way to make FPR be 0.01. With RePO+, we can detect 8
attacks with a TPR more than FPR whereas, Kitsune-AE and
Kitsune-GMM could only detect 1 and 2 attacks, respectively.
The average detection rate of our NIDS using RePO and
RePO+ across all attack categories is 27.65% and 34.77%
while for Kitsune-AE and Kitsune-GMM it is 5.71% and
0.44% respectively. Thus, when using RePO+ our detection in
the low false alert setting is almost 6 times better than Kitsune-
AE (29% improvement) and 79 times better than Kitsune-
GMM.

2) Flow-based NIDS:: In the flow-based context, we com-
pared RePO with the DAGMM and BiGAN-based anomaly
detectors. Figure 3 demonstrates how our NIDS performs in
detecting different attacks compared to these baselines when
FPR is low (0.01). With RePO+, we can detect 8 attacks with
a TPR more than FPR, whereas, BiGAN and DAGMM could
detect 7 and 5 attacks respectively. The average detection
rate of our NIDS using RePO and RePO+ across all attack
categories is 21.61% and 25.49% while for BiGAN and
DAGMM it is 15.05% and 4.91% respectively. Thus, when

Fig. 3. The TPR of flow-based NIDS for each attack when FPR is 0.01.

using RePO+, our detection in the low false alert setting is 1.69
times higher than BiGAN and 5.2 times better than DAGMM.

Finally note that there is a difference between the detection
rates of packet-based NIDS and flow-based NIDS for some of
the attacks such as FTP-Patator, PortScan, SlowHttpTest and
Heartbleed. This is because the features extracted for packet-
based NIDS are different from the features extracted for flow-
based NIDS. For packet-based NIDS we only have individual
values from packet headers while features for flow-based
NIDS are aggregated over the whole flow and calculated dif-
ferently. In addition, feature vectors we created in the packet-
based scenario are extracted from packets grouped by source
IP and destination IP whereas for the flow-based scenario a
flow is defined based on the 5 tuples (source IP, destination
IP, source port, destination port and protocol). Furthermore,
some of the attacks like Botnet are hardly detected by all of
the NIDS including ourselves in this low false alert setting.
This is also because of the way we build our feature vectors as
in both flow-based and packet-based cases the feature vectors
are created based on the packets sent between a single source
IP and a single destination IP. But botnet could be detected
better by looking into the traffic coming from multiple source
IPs. Such issues are related to feature engineering which is
beyond the scope of our work and we leave designing of
better feature vectors for future work. Our goal was not to
detect every single network attack but to take a step forward
in direction of designing an accurate and robust NIDS and
showing that by using the RePO technique a better NIDS can
be built in both packet-based and flow-based scenarios.

D. Detection Performance of RePO in an Adversarial Setting

In order to evaluate our approach in an adversarial setting
we use the crafting procedures introduced by Hashemi et al.
in [15]. Also, we follow the experiment setting introduced in
[15] and set the threshold of our NIDS in a way to keep FPR
at 0.1. This is because our baselines didn’t perform well at the
low FPR (0.01) even in a normal setting and there wasn’t too
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much malicious traffic that is detected by those NIDS at the
low FPR to craft adversarial example for them. Therefore, for
evaluation in an adversarial setting, we used a higher FPR (0.1)
in which the robustness of different NIDS can be compared
better against each other.

1) Packet-based NIDS: In order to evaluate the packet-
based RePO+ in an adversarial setting, we tailored the crafting
procedure introduced for Kitsune in [15] as follows: for each
packet if the packet is malicious and its score is more than
the threshold, we first check whether the packet is sent from
the attacker or the victim. If it was sent from the attacker,
we first try to see if changing the delay between this packet
and the previous packet or splitting this packet into multiple
packets can fool the NIDS. If so, we make the appropriate
changes and send the modified packet(s). If not, we check
to see if injecting a fake TCP packet will fool the NIDS
for both the fake packet and the current packet. If so, we
send both of the packets; otherwise, we will only send the
current packet and proceed to the next packet. If the current
packet is sent from the victim, then we only check to see if
injecting a packet before that works. In the case of injection,
we let our algorithm bound the IAT between the current packet
and the previous packet between 0 and 15 seconds (same as
what considered for Kitsune). Other features can be changed
between their minimum values and their maximum values. For
example, in the fake packet, any of the TCP flags or IP flags
can be turned on. The source port and the destination port can
also be any valid value. Note that fake packets are designed in
a way such that they are not processed by the victim’s machine
but only by the NIDS. Also because the crafting procedure
is computationally expensive, we only applied it on the first
25000 packets of each attack.

Figure 4 demonstrates how well RePO+ performs in an ad-
versarial setting compared to Kitsune-GMM. we only compare
against Kitsune-GMM because GMM as Kitsune’s detector
could detect malicious traffic better than using an ensemble of
autoencoders at this FPR. As can be seen, in the adversarial
setting and even when accepting a higher FPR, Kitsune-
GMM can only detect 5 different attacks at a rate higher
than the FPR; whereas, our NIDS can detect 10 out of 11
attacks in the same setting. Also, in an adversarial setting, the
average detection rate of Kitsune-GMM is 16.62% while ours
is 62.07% (3.73x better). Kitsune’s performance on average
dropped 26.74%, while our performance only dropped 2.36%,
an improvement over Kitsune of 11.33x.

2) Flow-based NIDS: In order to evaluate the flow-based
RePO+ in an adversarial setting, we used the same procedure
introduced in [15] for flow-based NIDS. Figure 5 shows how
well RePO+ can detect different attacks in an adversarial
setting compared to the other flow-based NIDS. The other
NIDS that we mentioned had all deterministic behavior during
inference time. For this reason, when the adversary crafts
an adversarial version of a given flow for their own local
copy, the exact same features can fool the NIDS deployed
on the victim’s network. But as we mentioned earlier, RePO+
predictions are not deterministic. That is to say, the RePO+

Fig. 4. The TPR of RePO+ and Kitsune-GMM for each attack when FPR is
0.1 when sending normal traffic and the adversarial version of it.

Fig. 5. The TPR of RePO+, DAGMM and BiGAN for each attack when FPR
is 0.1 and when sending normal traffic and the adversarial version of it.

output for the same set of features might be different between
the adversary’s local copy and the actual NIDS deployed on
the victim’s site. This gives the model more robustness and the
results for this case are marked with ”RePO+ Adv. Remote”
on the figure. As can be seen, in an adversarial setting, and
when we accept a higher rate of false alerts, BiGAN and
DAGMM can detect 7 and 8 different attacks at a rate higher
than FPR. Whereas, our NIDS can detect 9 out of 11 attacks
in the same setting. Also, in an adversarial setting the average
detection rate of BiGAN and DAGMM is 35.74% and 35.19%,
respectively, while ours is 47.02% (1.3x better).
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E. System Performance of RePO

Our NIDS is also time-efficient. In our experiments, by
using an Nvidia Titan V GPU it only took 25 seconds to train
RePO+ as a flow-based NIDS. Moreover, During inference
time, RePO+ could process 17,550 flows per second. That is
to say, the whole test set including 2.3 million flows collected
over a course of 4 days could be processed in only 131
seconds. Also, as a packet-based NIDS, we could train RePO+
in 7.5 minutes and it could process 3,285 packets per second
during test time. This means that the whole test set which
contains more than 44 million packets could be processed
in 226 minutes. Note that, this processing rate is for when
we classify every single packet which is not necessary but in
section IV-C1 we did it this way to have a fair comparison
against Kitsune which outputs a score for every single packet.
That is to say in our evaluation we considered a window
with size 20, grouped 20 consecutive packets, fed them into
the model and moved the window one step forward. We can
simply move this window 20 steps forward to reduce the
redundancy while still considering all of the packets. In this
case, RePO+ can process 65,700 packets per second making
it capable of processing the whole test set in only 12 minutes.
It’s also worth saying that in this setting we don’t sacrifice
detection rate at all. The average detection rate when FPR
is 0.01 is still 34.83% which is almost the same as what
reported in IV-C1. In addition, since RePO+ can become fully
parallelized we can use more GPUs to process a higher number
of flows/packets per second if needed. In this case, the number
of flows/packets processed per second will be multiplied by
the number of GPUs used.

V. CONCLUSION

In this paper, we demonstrated how denoising autoencoders
can be utilized to build a more accurate NIDS than the
current state of the art methods which is also more robust
against adversarial example attacks. As we showed in our
experiments, on average with our approach, we can improve
the detection of different attacks by 29% in the packet-based
context and by 10% in the flow-based context in a normal
setting. Furthermore, in an adversarial setting, we can improve
the detection rate by 45% in the packet-based context and by
12% in the flow-based context.
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