
A Userspace Transport Stack
Doesn't Have to Mean Losing

Linux Processing
Marcelo Abranches (University of Colorado)

Eric Keller (University of Colorado)

IEEE NFV-SDN 2020

L4-L7 NFV and Applications

App Firewalls

Protocol Accelerators

App Load Balancers

Caches

IDS

Load Balancers

Proxies

Kernel Networking

Linux Kernel Networking

• Solid Implementation
• Support to a variety of

Protocols and Network
Devices

• Well defined APIs
• Efficient Resource

Consumption
• Efficient sharing of

resources

• Heavy Weight
• May introduce

unnecessary overheads
• Difficult to customize
• May slowdown

innovation

Kernel-Bypass Networking

Kernel-Bypass Networking (e.g., DPDK)

• High-performance
• Easy to customize and

innovate

• Inefficient resource
consumption (relies on
busy polling)

• Energy consumption
disproportion

• Poor system integration
• Difficult to share

resources
• All kernel security and

isolation features are
also bypassed

What if we leverage the good features provided by
Linux Kernel to Enhance high-performance
userspace L4-L7 Network Functions and
applications?

We propose a hybrid network stack

High-performance

Easy to customize and innovate

Efficient Resource Consumption

Efficient sharing of resources

System Integration

Building Blocks

mTCP (NSDI ‘14)

XDP -The eXpress DataPath (CoNEXT ‘18)

AF_XDP

Added Functionality

mTCP: High-Performance Userspace TCP Stack

mTCP

Built on top of kernel bypass technologies (e.g., DPDK)

Userspace TCP stack

Optimized to run on multi-core systems High-Performance
Highly Scalable

Up to 25 times faster than
Linux TCP for small messages
(see NSDI’14 paper)Lock-free, per-core cache friendly data-structures

Easy to customize/innovate Basis of L4-7 NFV Frameworks
mOS (NSDI’17)
Microboxes (SIGCOMM’18)

The eXpress DataPath

XDP

Programmable packet processing inside Linux Kernel

Part of mainline Linux Kernel

Main building blocks

XDP driver
hook

eBPF virtual
machine eBPF verifier BPF mapsPacket

Manipulation
Kernel

Helpers

High performance
High efficiency
Low overheads

Programmable packet processing
on a safe environment

Flexibility and system integrationProcess and define the
fate of a packet (e.g.,
rewrite, send to a
userspace socket)

System integration
Efficient resource consumption and sharing
Well defined stable APIs

High-Performance Socket
AF_XDP

Allows raw packets to be sent to userspace

Packets can be preprocessed at XDP layer

Flexible kernel/userspace packet processing

Main components

XDP redirect

Send the packet to
AF_XDP socket

UMEM Fill Ring Completion
Ring TX Ring Rx Ring

Packet buffer Transfer UMEM ownership between
Kernel and userspace

Allows userspace to
send and receive packets

Part of mainline Linux Kernel

Putting all together Life of a packet in mTCP/AF_XDP…
1) The packet arrives
2) eBPF code is executed
3) Packet is sent to AF_XDP socket
4) UMEM area ownership is

transferred
5) mTCP thread sends/receives

packets
6) mTCP app/NF thread

produce/consume data
7) Packets can be sent to Kernel
8) Kernel based apps/NFs can

produce/consume data/packets

Evaluation

In our evaluation we answer the following questions

• Can our approach have good performance?
• Have a better resource consumption profile (CPU) comparing with

mTCP/DPDK?
• Add new functionalities to mTCP?

Evaluation Setup

2 cloudlab Wisconsin deployments (mTCP/DPDK and mTCP/AF_XDP)

Server Clients

1 Server (c220g5)
HTTP server (mTCP’s epserver)
Kernel 5.3.0-61-generic
Up to 8 cores
10 Gbps NIC (Intel i40e driver)

5 clients (c220g1)
Kernel 5.3.0-61-generic
16 ab instances (50 parallel HTTP
connections each)
1 million downloads of a 64B file
(each instance)
Up to 4000 parallel connections

CPU Efficiency

Better Efficiency!

CPU intensive workload

64% more throughput!

DDoS Protection

2.87x more tput

4 of the 5 clients generate malicious UDP
Traffic

1 client generates benign HTTP requests
to the server

Sever runs on one core

Conclusion

We enabled the power of eBPF and Linux system integration to enhance a high-performance userspace TCP stack

Our solution enables a better CPU consumption profile while maintaining high performance on the userspace stack

mTCP/AF_XDP enables better performance for CPU intensive TCP applications running on userspace

We showed the XDP layer cooperating with userspace to protect a TCP application from DDoS attack

Now that we have full and integrated programmability on both packet processing and transport layer, what new solutions
and use cases can we build on top of it?

Our code is available at https://github.com/mcabranches/mtcp

Thank You!

