A Userspace Transport Stack Doesn’t Have to
Mean Losing Linux Processing

Marcelo Abranches
University of Colorado, Boulder

Abstract—While we cannot question the high performance
capabilities of the kernel bypass approach in the network
functions world, we recognize that the Linux kernel provides
a rich ecosystem with an efficient resource management and
an effective resource sharing ability that cannot be ignored.
In this work we argue that by mixing kernel-bypass and in
kernel processing can benefit applications and network function
middleboxes. We leverage a high-performance user space TCP
stack and recent additions to the Linux kernel to propose a
hybrid approach (kernel-user space) to accelerate SDN/NFV
deployments leveraging services of the reliable transport layer
(i.e., stateful middleboxes, Layer 7 network functions and
applications). Our results show that this approach enables high-
performance, high CPU efficiency, and enhanced integration
with the kernel ecosystem. We build our solution by extending
mTCP which is the basis of some state-of-the-art L4-L7 NFV
frameworks. By having more efficient CPU usage, NFV appli-
cations can have more CPU cycles available to run the network
functions and applications logic. We show that for a CPU
intense workload, mTCP/AF_XDP can have up to 64% more
throughput than the previous implementation. We also show
that by receiving cooperation from the kernel, mTCP/AF_XDP
enables the creation of protection mechanisms for mTCP. We
create a simulated DDoS attack and show that mTCP/AF_XDP
can maintain up to 287 % more throughput than the unprotected
system during the attack.

I. INTRODUCTION

Stateful middleboxes and Layer 7 (L7) network functions
(NFs) are fundamental elements of modern networks and
datacenters [13]. Stateful middleboxes are responsible for
services like proxying, TCP splicing, stateful network address
translation, firewalling, application load balancing, network
intrusion detection systems (IDS), and content caching. These
elements rely on services provided by the transport layer
(e.g., TCP) to track Layer 4 (L4) state and inspect data
content at the flow level (through data reassembly). With
the increased pressure on the network from video conferenc-
ing, group collaboration [6], and digital entertainment [3],
datacenters and cloud providers need to offer adequate in-
frastructure to support these trends. Given the dynamics and
need for scalability, this trends towards software-based NFs,
in the form of network functions virtualization (NFV).

Recent works [18], [14], [11], [12] have shown that it is
currently hard for the operating system’s kernel to provide the
necessary performance to support these modern network ser-
vices. This is mostly because today’s operating systems add
non-negligible overheads to packet I/O due to inefficiencies
in data-structures and memory allocation (e.g., sk_buff, file
descriptors, etc.), extra memory copies, unnecessary protocol

Eric Keller
University of Colorado, Boulder

processing, and an inability to react to microsecond scale
bursts due to coarse temporal granularity in scheduling CPUs
to the network applications threads.

To overcome these inefficiencies and enhance packet
processing programmability, user space network processing
toolkits, such as DPDK [4], have been introduced and are
gaining in popularity. These toolkits give complete control
of the networking hardware to the user space network
processing application, enabling the development of high
performance packet processing applications as many of the
those kernel network stack inefficiencies can be avoided.
Several projects have been built on the top of DPDK [18],
[11], and they generally show that this approach can indeed
improve the performance of NFs and network applications
substantially. Following this trend, mTCP [14] proposed a
highly scalable user space TCP stack that is optimized to
multi-core systems and able to outperform the Linux TCP
stack by up to 320%. This created opportunities to L4-L7
network functions frameworks [13], [17] to innovate in terms
of functionality while also achieving high performance.

However, this gain in flexibility to build high performance
network functions comes with costs. First, there is a need to
dedicate CPU cores and network interfaces to the network
application. Further, the application needs to busy poll the
network interface queues in order to receive packets. Each
of these causes high CPU consumption and leaves less CPU
cycles for the network function logic. Second, as the kernel is
completely bypassed, all of the configuration, monitoring, se-
curity, and network (protocol processing, bonds, etc.) features
provided by modern kernels are also bypassed - leading to
NFs needing to completely re-implement them in user space.

Observing the challenges introduced by network kernel
bypass technologies, the kernel community introduced a
new programmable packet processing framework, called the
eXpress Data Path (XDP) [12], that enables efficient and safe
custom packet processing inside the kernel. The main idea of
XDP is to provide custom programs early access to the packet
(before the packet reaches the Linux kernel network stack),
giving the XDP program the ability to modify the packet
and also to define a verdict to it (including rewriting packets
and applying drop or redirect actions). As XDP is part of
the kernel, the packet processing application runs inside the
kernel context, having access to some of the capabilities
provided by it. With XDP there is no need to dedicate
resources (e.g., CPU and network interfaces) to the packet

processing application, and the XDP program can selectively
make use of kernel services and therefore avoid the need to
re-implement functionality.

On the top of XDP, the kernel community proposed a new
high-performance network socket type called AF_XDP [16]
that enables sending raw packets received at the XDP layer to
user space. This opens up the possibility of building hybrid
packet processing and NFV solutions where packets can be
processed by user space applications, but with cooperation
and support of XDP, NFs can leverage all of the integration
and features that the kernel provides.

Leveraging the addition of XDP and AF_XDP to the Linux
kernel, in this paper we argue that accelerating the transport
layer using a hybrid (kernel-user space) approach is of benefit
to SDN/NFV deployments as this scenario can leverage the
performance of a high performance user space TCP stack
without completely bypassing the kernel. This work is the
first that we are aware of to introduce a high-performance
TCP stack to AF_XDP. In particular, we make the following
contributions:

e We propose an architecture and implementation which
provides a hybrid packet processing model in which NFs
can leverage both a high-performance user space TCP
stack, and rich kernel functionality (Section IV).

o We demonstrate that this system is able to achieve a
better CPU consumption profile that leaves more cycles
to execute application and NFs code — e.g., for a CPU
intense workload, mTCP/AF_XDP can have up to 64%
more throughput due to the extra CPU cycles available.
(Section V)

o We demonstrate the benefit of hybrid processing where
we show that an network application is able to maintain
up to 287% more throughput in the face of a DDoS
attack, through using filtering at the kernel level. (Sec-
tion VI)

The remainder of the paper is organized as follows: Sec-
tion II describes related work and depicts the main challenges
of their current architecture. Section III describes several
scenarios that the hybrid kernel-userspace transport approach
can benefit the network functions and applications world.
Section IV describes the architecture and implementation
of the solution. In Section V, we compare the hybrid
kernel-userspace transport stack (mTCP/AF_XDP), with a
full userspace transport stack that uses DPDK as the packet
IO subsystem (mTCP/DPDK). We show in Section VI the
ability to protect network applications from DDoS attacks
through the hybrid-processing. Finally, in Section VII we
conclude and discuss future work.

II. RELATED WORK AND CHALLENGES

A. Kernel Bypass Approach for NFVs

The Linux operating system was designed to be as general
as possible, and to support a wide range of applications and
configurations. This means that the kernel network stack
will perform costly processing and allocate heavy weight

data-structures even if the packet only needs a few steps to
processes lower-level protocols [12]. For example, for every
packet that arrives, a data structure called sk_buff will be
allocated to enable further protocol processing leveraging the
rich semantic provided by this data structure [10]. After that,
other costly processes (e.g., __netif receive_skb_core) will
be triggered to process the layered protocol stack, and to
filter packets. As observed in [12], [10], this process slows
down packet processing and could be avoided if it is possible
to build custom packet processing applications that shortcut
unnecessary processing.

To avoid these and other inefficiencies while providing
maximum performance, modern NFs frameworks are built
on top of kernel bypass technologies [14], [13], [15], [17].
This approach has the benefit of allowing highly customiz-
able packet processing applications to avoid, for example,
unnecessary protocol processing and provide more efficient
processing pipelines.

mTCP is a high-performance user space TCP stack that is
built on kernel bypass technologies, to improve performance,
and in turn, can leverage multicore systems to improve scal-
ability. To enable multi-core scalability mTCP is built with
a series of optimization techniques (e.g., lock-free, per-core
cache-friendly data structures). The mTCP process operates
by running as distinct threads (one for the application and one
for the mTCP logic) on each CPU. mTCP leverages RSS
to distribute incoming packets from different flows among
different CPU cores, while handling core affinity. Being a
user level implementation, mTCP decouples the TCP logic
and development from the kernel complexity, which smooths
the development of new features to the stack itself and
enables building new solutions on the top of it. For example,
mOS [13] is a framework built on top of mTCP that allows
building stateful middleboxes with full support for L4-L7
processing. mOS currently supports DPDK [4] and Netmap
[19] as packet I/O subsystems.

B. Challenges of the Current Approach

As we saw in the previous subsection, several network
function frameworks have benefited from the performance
enabled by the kernel bypass approach. However, it is im-
portant to recognize possible limitations of a complete kernel
bypass approach and look for new opportunities to evolve
the current solutions. In the next paragraphs we will list the
limitations that motivated this work.

Inefficient CPU usage: Being a kernel bypass framework,
DPDK does not rely on on the kernel networking mechanisms
to receive packets (e.g., interrupts, ksoftirqs and NAPI) [12],
[16]. Instead, DPDK needs to busy poll the NIC queues
in order to receive packets. Although this mechanism can
provide better latency profiles to applications, this causes
high CPU consumption, leaving less cycles to process the
NFs logic as we will demonstrate in Section V.

Lack of system integration: The Linux kernel has a
rich ecosystem to provide network connectivity, monitoring,

configuration, resource sharing, isolation, and security. Gen-
erally, kernel bypass technologies are blind to this ecosys-
tem [10], which may slow down progress in this context
as much of this functionality needs to be re-implemented
in user space. As we will see in the next sections, a better
alternative is to selectively use kernel functionalities, while
still leveraging the high performance and flexibility achieved
by user space technologies.

III. MOTIVATION

In this work, we ask if we can leverage the recent additions
to the Linux kernel to address the challenges listed in
Section II and benefit a high performance user space TCP
stack [14], which in turn extends to the NFs frameworks
built on the top of it that provide for processing capabilities
all the way up to the application layer [13], [17].

XDP enables flexible and efficient programmable packet
processing inside the kernel [12]. The key enabler for XDP
is the eBPF virtual machine, that allows only verifiable
eBPF code to be loaded inside the kernel. XDP enables
attaching eBPF programs to process packets at the earliest
point inside the kernel (i.e., at NIC driver level, before
the packet reaches the kernel network stack). If the NIC
supports it, the eBPF programs can be offloaded to the
NIC hardware. XDP programs allow, for example, rewriting
packet headers and accessing packet metadata (e.g., queue
number on multiqueue NICs and custom metadata). The XDP
hook execution finishes by assigning a verdict to a packet.
Possible verdicts are to drop the packet, transmit the packet
back on the same interface as it arrived, pass the packet to
be processed by the kernel stack, and redirect the packet
to another interface (physical or virtual), another CPU for
further processing, or even to a special socket that sends the
packet to user space (i.e., AF_XDP).

AF_XDP is another addition to recent Linux kernels. It en-
ables sending raw packets to user space at high-rates through
zero-copy transfers (as long as the NIC driver supports
this [16]). To send and receive packets, AF_XDP interacts
with the kernel via specialized rings (i.e., fill, completion,
Tx and Rx rings), and uses a special memory area called
UMEM. Those rings are used by the userspace network
application and kernel to switch control of UMEM areas
(which stores packet data) between each other (i.e., fill and
completion rings). They are also used by the application to
receive packets, and inform the kernel the packets that should
be sent (i.e., Rx and Tx queues).

We use XDP and AF_XDP to provide a new packet
I/O subsystem for mTCP. This new subsystem provides an
efficient CPU consumption profile for mTCP applications and
NFs, and also provides better system integration.

Providing efficient CPU consumption: Middleboxes need
to perform packet 1O, but they also need available CPU cycles
to process the network function’s logic, and as we will see
in Section V, this is a challenge for DPDK. On the other
hand, XDP enables a better CPU consumption profile as it
does not need to rely on busy polling to perform packet 1/O,

because it has the Linux interrupt infrastructure and syscalls
available.

Providing system integration: While kernel bypass
packet I/O systems like Netmap [19] may bring a better CPU
consumption profile, it lacks good Linux system integration.
For example, currently Netmap is not part of the Linux
kernel, so it may be a burden to maintain Netmap based
applications [12]. Moreover, it does not support XDP which
limits its data-path programmability.

XDP does not take over the ownership of the NIC as
DPDK, so it is possible to share the interface among multiple
applications (providing the necessary XDP/eBPF logic). It
is also possible to use the Linux network configuration and
monitoring tools like ethtool, iproute2 which may easy the
integration of XDP based network solutions with automation
tools like Puppet, Ansible and Chef. Container technology
plays an important role in NFV deployments [15], and as it
relies heavily on kernel functionalities to provide resource
isolation and configuration, XDP based deployments can
easy the integration of fast packet processing and enhanced
networking capabilities to the containers world. As DPDK
completely bypasses the kernel, enabling these functionalities
to DPDK based applications is challenging [8].

Leveraging the support of the rich kernel ecosystem:
As AF_XDP sockets can send raw packets to userspace
after they are processed on the XDP hook, they enable a
hybrid networking stack approach. XDP can be used as a
first layer that provides enhanced network functionalities to
the high performance transport layer running in user space.
This first layer can be used to protect the upper user space
stack [2] and also to provide kernel integration functionality
leveraging BPF maps and kernel helper functions [12], [10].
Kernel helper functions can be used, for example, to support
packet checksum calculation and also to access kernel routing
tables [5], [10]. BPF maps can be used by the XDP redirect
logic to react to events occurring at different kernel subsys-
tems and different resource monitoring points, including in
user space (e.g., CPU load and cgroups) [12], [7] opening
up opportunities to create new load-balancing mechanisms.
Furthermore, XDP can also provide a flexible mechanism
to implement access control lists (ACLs), packet filters, and
other functionalities to protect the user level transport layer.

This approach brings flexibility to NF and applications
that leverage high performance user space transport stacks,
as the XDP logic allows selecting only the needed kernel
network functionalities to be used. It does this via kernel
helpers and does not require the packet to traverse the whole
Linux network stack.

IV. ARCHITECTURE AND IMPLEMENTATION

A. mTCP/AF_XDP Integration

Now that it is clear the motivation behind having a hybrid
kernel-userpace TCP stack we present the architecture of the
mTCP/AF_XDP stack in Figure 1. This figure shows the
basic interactions between the different components of the

solution, as we will explain in the next paragraph. Notice
that to obtain maximum performance, we decided to have one
UMEM per AF_XDP socket, and also one AF_XDP socket
per mTCP thread, so we could completely avoid synchro-
nization overheads and obtain maximum performance.

mTCP App/NF

mce v O v v
‘ mTCP T1 I mTCP T2 | ‘ mTCP TN |
o[} (oo
&y v v
@ AF_XDP 1 | AF_XDP 2 ’ AF_XDP N ‘ A

A @ Stack
UMEM 1 I UMEM 2 [\ ‘ UMEM N ‘
Rewrite/Actions
XDP/eBPF \T‘ /(‘a

of

NIC/VIF

Kernel

Fig. 1: mTCP/AF_XDP architecture

The life of a packet inside mTCP/AF_XDP (see Fig-
ure 1): The XDP program (2), decides to which AF_XDP
socket a packet should be sent. In our implementation, we
use hardware packet steering, and the NIC queue in which
the packet arrived (D) is used as the index in the BPF map to
select the target AF_XDP socket for the packet (3. We avoid
extra cache overheads by pinning a mTCP thread on the same
core that handles the ksoftirg on behalf of a packet received
by the multi-queue NIC. The kernel places the packet on the
UMEM area using one of the addresses available on the fill
ring associated to that socket (if the NIC driver supports zero-
copy, the NIC will place the packet at UMEM via DMA).
After that, the kernel places a file descriptor on the socket
RX ring. The mTCP/AF_XDP packet I/O subsystem uses
the (poll) system call to monitor this ring (5), and our imple-
mentation enables sending and receiving packets in batches
for best performance. The batch of packets is received by
the mTCP’s stack main loop which performs the TCP stack
logic, and makes data available to the application threads
through the mTCP events system and userspace function calls
(e.g., mtcp_read) (6). After successfully receiving the packets
mTCP/AF_XDP returns ownership of these UMEM areas to
the kernel by posting their descriptors in the fill ring.

The sending path is similar. The mTCP/AF_XDP packet
I/O subsystem uses the TX ring to place file descriptors
pointing to the packet buffers it wants to send (5). The
kernel then assumes control of this UMEM region and sends
the packet to the NIC which sends the packet out. After
successful transmission the kernel makes this UMEM area
available for sending new packets by posting a memory
descriptor on the completion ring 4). mTCP/AF_XDP con-
sumes these descriptors and uses them on the next iteration
of the packet sending routine. Finally, the XDP program may
also be customized to provide extra functionality (e.g., stack

protection features), or even to redirect the packet to an NF
or application using the Linux kernel network stack, allowing
coexistence (1), ®).

To implement this solution we added about 500 lines of C
code to the mTCP code base. We have specific eBPF/XDP
code (afxdp_kern.c), which is responsible for sending the de-
sired packets to the AF_XDP sockets, making them available
at the mTCP layer. We leverage the modular mTCP packet
I/0O design, to add a new packet I/O module (afxdp_module.c)
and make targeted modifications to other mTCP components
to support it. The code is available in our mTCP fork [1], and
we expect to merge it to the main mTCP repository soon.

B. NFV Deployments

We envision that L4-L7 network functions built on top
of mTCP based frameworks (e.g., [13], [17]) can benefit
from our proposal by leveraging cooperation scenarios with
XDP/eBPF (see section VI as an example), the high per-
formance provided by mTCP [13], [17] and the better CPU
consumption profile enabled by our solution - see section V
- (which will ultimately produce more resource and power
efficient solutions). In this scenario, NFs like L7 caches,
protocol accelerators, and IDS can leverage services provided
by XDP/eBPF to control how packets flow, determining, for
example, which packets should be sent to a specific NF,
which of them should be sent to the Linux stack (e.g.,
to handle corner cases), which packets should be dropped
and which of them should be routed to the next hop or
forwarded to an application in the case the flow does not
need NF processing. Interactions between the userspace NFs
and XDP/eBPF should occur via eBPF maps, and enhanced
integration with the kernel should be achieved through the
kernel helpers available to the XDP layer.

V. EVALUATION

To demonstrate the value and feasibility of the proposed
approach, in terms of performance and added functionality, in
our evaluation we answer the following questions regarding
using an AF_XDP based packet IO subsystem on a high
performance user space TCP stack:

o Can the proposed system provide high performance?

o Can we have a better CPU consumption profile that
enables more CPU cycles to be consumed running
application code?

Experimental Setup: To answer these questions, we setup
two testing environments on Cloudlab Wisconsin [9], one
for mTCP/DPDK and another for mTCP/AF_XDP. Each
environment is composed by 1 physical server machine that
runs mTCP code (type c220g5 [9], Ubuntu 18.04.1 LTS
Kernel 5.3.0-61-generic) and 5 physical client machines (type
c220g1 [9], Ubuntu 18.04.1 LTS Kernel 5.3.0-61-generic).
The server machines run the HTTP server that ships with
mTCP (epserver). The client machines run ab (Apache
Benchmark). As each client host has 16 cores available, we
run 16 instances of ab on each host. We have observed that in

our setup, each client ab instance has maximum performance
when sending 50 parallel HTTP connections, so we use this
configuration on all tests. The server machines have 2 sockets
with 10 cores each and each socket is attached to one NUMA
node. These machines have only one dual-port 10 GbE NIC
attached to NUMA node 0, so we only report results for
threads running on the processor on the first socket. We used
the 140e Intel NIC driver, and all of the AF_XDP experiments
use zero-copy mode. Also, we observed that DPDK performs
poorly when the number of cores dedicated to mTCP is
not a power of two (we do not observe this limitation on
the AF_XDP implementation). So, to have a fair evaluation
we run our experiments using up to 8 cores on the server
machines. In this work, we did not implement hardware
TCP checksum offload for mTCP/AF_XDP, so we also report
results for DPDK with it disabled (refered to as DPDK on
the labels). For maximum performance, we disable hyper-
threading and CPU power saving for each core. To isolate
these cores, and avoid the kernel scheduling other user level
threads on them, we use the isolcpus statement at boot time.

The Spectre and Meltdown mitigations affected the perfor-
mance of eBPF programs, so AF_XDP is also impacted [16].
Users in controlled environments, where only trusted code
can be executed, may opt to disable these mitigations. As
we saw maximum performance for mTCP/AF_XDP when
we disabled the mitigations, we include this scenario in the
results on Figure 2. In our experiments, DPDK performance
does not seem to be affected by those mitigations, so we
only include these results for AF_XDP. As we cannot expect
that all environments to be controlled and only run trusted
code, for all other experiments we leave the mitigations
enabled. In [16] the authors proposed a socket option called
XSK_ATTACH, that automatically loads a minimal XDP code
that only redirects packets that arrive on a queue_id to an
AF_XDP socket avoiding the user to have to provide a
custom XDP code. This code is optimized and minimizes
the impacts of the mitigations. In our tests, we do not use
this socket option, as we want to maintain the flexibility of
having custom XDP code in our hybrid stack.

For each test we setup each client instance to send 1
million requests (50 in parallel for each instance). Unless
specified differently, in each test we use all five client hosts
with 16 ab instances and each client instance sends HTTP
requests to download a 64B file from the server. Each test
is repeated 5 times, and we report our results using the
average of each metric and standard error (although the bars
are too small to be noticed on the graphs). In [14], the
authors show that mTCP can outperform the Linux TCP
stack by several orders of magnitude (up to 25 times for
small messages), so we do not include Linux TCP in our
evaluation. Finally, we use Linux Perf tool to analyze the
overheads of each implementation and other metrics that may
affect their performance (e.g., number of CPU cache misses,
context switches and so on).

Raw performance evaluation: To demonstrate that

le6
—%- AF_XDP

AF_XDP_NO_MTG /s
- DPDK 228 |
—4— DPDK_TCP_CSUM_OFF z

1.2 1

1.0 1

0.8 1

0.6 1

Messages/sec (x 107°6)

0.24

Number of Cores

Fig. 2: Different number of Cores

mTCP/ AF_XDP can support high performance and scale, in
the first experiment we compare mTCP’s core scalability for
mTCP/ DPDK and mTCP/AF_XDP. We can see in Figure 2
that mTCP’s throughput scales almost linearly with the num-
ber of cores for all implementations. mTCP/DPDK with HW
TCP checksum offload enabled (DPDK_TCP_CSUM_OFF)
has the best performance for 2 and 8 cores, with AF_XDP
with mitigations disabled (AF_XDP_NO_MTG) having per-
formance almost as good as it for 1, 2 and 8 cores. We
observe that for 4 cores, mTCP/DPDK has some drop in
performance. Because of that, mTCP/AF_XDP outperforms
mTCP/DPDK for 4 cores. It is important to notice that
as we do not implement hardware TCP checksum offload
to AF_XDP, the application has to spend CPU cycles to
calculate it. In fact, we observe that when we disable the
hardware TCP checksum offload on mTCP, it can spend up to
8% of its processing time performing those calculations. Ob-
serving these results, we expect mTCP/AF_XDP to improve
its performance as we integrate hardware TCP checksum
offload for mTCP/AF_XDP, which we leave as future work.

Efficient CPU consumption profile: In this experiment
we evaluate if mTCP/AF_XDP can provide an efficient CPU
consumption profile (figure 3) and the effects of having more
CPU cycles available to execute application code (figure
4). We can see in Figure 3 that mTCP/AF_XDP gradually
increases CPU consumption as the number of client hosts
increases. In contrast mTCP/DPDK relies on busy polling to
receive packets, so it always consumes 100% of CPU. mTCP/
AF_XDP does not rely on busy polling to perform packet
IO, which saves precious CPU cycles that can be spent to
run the mTCP stack and application code. We analyze where
each implementation spends more time, and we observe that
mTCP/DPDK spends non-negligible time on the receiving
path busy polling loop. In contrast, mTCP/AF_XDP spends
more time executing application code and also handling
important events on the mTCP stack. We can also observe
in this figure that mTCP/AF_XDP does not hit 100% CPU

le6

—%- AF_XDP
1.2 1 DPDK AT == S —— -*
—— DPDK_TCP_CSUM_OFF
o 114
<
o
= 1.0
X
o 0.9 1
Q
2
% 0.8
[)
()]
S 0.7
wn
o
s 0.6
0.5
0.4 1— : :
1 2 3 4 5
Number of Client Hosts
. 100
o
S "
c AT
o -
-2 80 —
I x
,
g
2 60 o
o e
o Y
z
G 107 s
° -
O Vi
N s
© 201 7
€ /’
- /
[9) 7 —-%- AF_XDP
zZ DPDK
0 1 4 5

2 3
Number of Client Hosts

Fig. 3: CPU Consumption vs Load

consumption for 5 client hosts, even though the server is
saturated. This is because our CPU measurements start when
there is no load on the server, and goes until all clients finish
sending the HTTP requests, so at the end of the experiment
there is also a drop in load and this reflects on the average
CPU consumption in this test.

AF_XDP
DPDK
DPDK_TCP_CSUM_OFF

Normalized Tput
& 3 8

N
o

o

100 200 400 800
Find primes < X

Fig. 4: CPU Intensive Workload

To observe the mTCP/AF_XDP benefits of having more
available cycles to process application logic, we add a
simulated CPU intensive HTTP application by executing a
function to find all the prime numbers smaller than a given
X in each HTTP request. The results can be seen in Figure 4,
which shows the normalized throughput using mTCP/DPDK
with HW TCP checksum enabled as the baseline. We start the
the server with 8 cores. To find primes lower than 100, the
application does not get CPU bound enough for the mTCP/
AF_XDP benefits to be perceived. But, as we increase X
above 200, we observe that more CPU power is needed to
find the prime numbers, and in this scenario mTCP/ AF_XDP
can have up to 64% more throughput than mTCP/ DPDK (for
X = 800).

Having more CPU cycles available may benefit mTCP to
run CPU intensive applications (e.g., node.js) and network
functions logic, and also enables mTCP to better support
SSL/TLS.

—%- AF_XDP
200000 1 AF_XDP_DDoS_PROT
) - DPDK
180000 - S —4— DPDK_TCP_CSUM_OFF
U 160000 -
o
wn
B 140000 -
14
g
? 120000 -
wn
0
= 100000 4
80000 -
60000 -
! ! !) I
0 1 2 3 4

Number of DDoS UDP Attacking Hosts

Fig. 5: XDP Protection to DDoS Attack

VI. PROTECTING THE USERSPACE TCP STACK

As we showed on section III, one of the benefits of mTCP/
AF_XDP is the possibility to leverage XDP/eBPF to enhance
and protect the mTCP stack. To show this, we implement a
simulated DDoS attack and an XDP DDoS protection similar
to the ones described in [12] and [2]. In this experiment we
use 4 of the 5 client hosts to generate UDP packets targeting
the mTCP server. Each attacking host uses 16 nping instances
(one for each core) to generate UDP packets at a rate of 10
thousand packets/second. We gradually increase the intensity
of the attack by joining new client hosts to the attack. The
other client host runs ab to generate HTTP requests to the
server. We start the mTCP servers on a single core to make
the attack more pronounced.

As mTCP is a user space TCP stack, all of the security
and isolation mechanisms provided by the Linux kernel are
bypassed, so mTCP is responsible for dropping the UDP
packets. This is not the case with mTCP/AF_XDP. To protect
the mTCP stack from this attack, we change the XDP/eBPF

code that sends the packets to the AF_XDP sockets (see
Section IV) to parse each received packet and if it is a UDP
packet, apply the XDP_DROP verdict, and otherwise send the
packet to the AF_XDP socket so it can be normally processed
by the mTCP stack.

Figure 5 shows the impacts of the attack. In this ex-
periment we measure the total HTTP requests completed
for each attack intensity. For mTCP/DPDK with hardware
TCP checksum offload enabled, mTCP’s throughput can drop
3.9 times when the attack is on its maximum intensity. At
the same time, mTCP with XDP DDoS protection is able
to maintain 2.87 times more throughput than mTCP/DPDK
versions when the attack is at its maximum load. It is
interesting to notice that mTCP/AF_XDP with no DDoS
protection (AF_XDP label) can handle the attack better than
mTCP/DPDK versions. This is because mTCP/AF_XDP has
more CPU cycles available to drop the malicious packets.

By applying this XDP protection mechanism we free
mTCP threads from the burden to process the malicious UDP
packets, so the impact of the attack is minimized.

VII. CONCLUSION AND FUTURE WORK

In this work we have enabled the power of eBPF and Linux
system integration to cooperate with a high-performance user
space transport layer. We have shown that this approach can
have performance compatible with a high-performance kernel
bypass approach, but providing enhanced capabilities that
come from the OS kernel. This opens up the opportunity to
innovate L2-L.7 network functions in terms of functionality,
deployment, performance and security.

As future work, the first step is to enable TCP hardware
checksum offloading for mTCP/AF_XDP. We expect that this
will greatly improve mTCP/AF_XDP’s performance, as we
described in Section V. Another opportunity is to work on
NF stacks built on top of mTCP ([13], [17]) to investigate
cooperation scenarios between XDP/eBPF and network func-
tions such as L7 caches, protocol accelerators, and IDS (e.g.,
advanced forwarding mechanisms, eBPF hardware offloads,
etc.). In this context we also want to investigate new NF de-
ployment scenarios, for example, how can the NF containers
world leverage the enhanced networking capabilities provided
by XDP while providing state of the art high performance
L4-L7 services.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants 1652698
(CAREER) and the Coordenacdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code
001.

REFERENCES
[1] Author’s mTCP fork - AF_XDP support to mTCP.
https://github.com/mcabranches/mtcp.
[2] Cloudflare, How to drop 10 million packets per second.

https://blog.cloudflare.com/how-to-drop-10-million-packets/.

[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Deloitte, Media and entertainment industry outlook trends.
https://www2.deloitte.com/us/en/pages/technology-media-and-
telecommunications/articles/media-and-entertainment-industry-
outlook-trends.html.

DPDK, Data Plane Development Kit. https://www.dpdk.org/.
Linux, bpf-helpers(7) — Linux manual
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html.
Micrsoft, Remote work trend report. https://www.microsoft.com/en-
us/microsoft-365/blog/2020/04/09/remote-work-trend-report-
meetings/.

Prototype Kernel, eBPF - extended Berkeley Packet
https://prototype-kernel.readthedocs.io/en/latest/bpf/.

Red Hat, Mobile Networks - Performance and Optimization.
https://access.redhat.com/documentation/en-us/reference_
architectures/2017/html/deploying_mobile_networks_using_network_
functions_virtualization/performance_and_optimization.

The Cloudlab Manual,
https://docs.cloudlab.us/hardware.html.

D. Ahern. Leveraging kernel tables with xdp.
Conference, 2018.

T. Barbette, C. Soldani, and L. Mathy. Fast userspace packet process-
ing. In 2015 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pages 5-16. IEEE, 2015.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller. The express data path: Fast
programmable packet processing in the operating system kernel. In
Proceedings of the 14th International Conference on Emerging Net-
working EXperiments and Technologies, pages 54—66, 2018.

M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park. mos: A
reusable networking stack for flow monitoring middleboxes. In 74th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 17), pages 113-129, 2017.

E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Thm, D. Han, and K. Park.
mtcp: a highly scalable user-level {TCP} stack for multicore systems.
In 7/1th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), pages 489-502, 2014.

M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless network
functions: Breaking the tight coupling of state and processing. In /4th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 17), pages 97-112, 2017.

M. Karlsson and B. Topel. The path to dpdk speeds for af xdp. In
Linux Plumbers Conference, 2018.

G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and T. Wood.
Microboxes: high performance nfv with customizable, asynchronous
tep stacks and dynamic subscriptions. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communica-
tion, pages 504-517. ACM, 2018.

A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.
Shenango: Achieving high {CPU} efficiency for latency-sensitive
datacenter workloads. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), pages 361-378,
2019.

L. Rizzo. netmap: A novel framework for fast packet i/o. In 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 101—
112, Boston, MA, 2012. USENIX Association.

page.

Filter.

Hardware.

In Linux Plumbers

