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Abstract—This paper presents a new approach to memory
disaggregation called FluidMem that leverages the userfault
mechanism in Linux to achieve full memory disaggregation in
software. FluidMem enables dynamic and transparent resizing
of an unmodified Virtual Machine’s (VM’s) memory footprint
in the cloud. As a result, a VM’s memory footprint can
seamlessly scale over multiple machines or even be downsized
to a near-zero footprint on a given server. FluidMem’s ar-
chitecture provides flexibility to cloud operators to manage
remote memory without requiring guest intervention, while
also supporting paging out the entirety of a VM’s pages within
its address space. FluidMem integrates with a remote memory
backend in a modular way, easily supporting systems such
as RAMCloud to harness remote memory. We demonstrate
FluidMem outperforms an existing memory disaggregation
approach based on network swap. Microbenchmarks are eval-
uated to characterize the latency of different components of the
FluidMem architecture, and two memory-intensive applications
are demonstrated using FluidMem, the Graph500 benchmark,
and MongoDB. Additionally, we show FluidMem can flexibly
and efficiently grow and shrink the memory footprint of a VM
as defined by a cloud provider.
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I. INTRODUCTION

While fast random access memory repeatedly increases
in speed and capacity, the memory demands of applications
also continue to match or outpace availability. Whether
for genomic [1], [2], enterprise [3], storage [4], or data
analytic purposes [5], memory-intensive applications contin-
ually require large memory footprints to satisfy performance
requirements. Without sufficient memory, performance suf-
fers, or in the worst case, out-of-memory (OOM) errors
are encountered. Developers and administrators typically
have little recourse when encountering insufficient memory:
options range from reinitiating workloads, to manually ad-
justing configurations, to modifying code, and to eventually
giving up and paying for more memory capacity. None of
these solutions are ideal, and therefore decades of research
have long envisioned leveraging underutilized memory in a
cluster of servers [6]], [7].

Early work to share memory suffered from poor per-
formance (e.g., Distributed Shared Memory [8]], [9], [10]]),
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required significant re-writes of operating systems (e.g.,
single system images [11[], [12]), or required applications
to be modified to explicitly deal with remote memory
(e.g., with key-value stores [13]], [[14], [[LS]). Recent work
on memory disaggregation, however, takes a fresh look at
the problem. In the disaggregation model, computational
units can be composed of discrete quantities of memory
from many different servers. Hardware designs are being
investigated to provide this model natively [16], [17], [18],
[[L9], but require new datacenter infrastructure. The case for a
software approach has received renewed attention [20]], [21]]
due to advances in network technology. Some systems such
as Infiniswap [22] are transparent to applications and work
with existing operating systems by leveraging the Linux
swap interface. Swap suffers from a key limitation, however,
because it only provides partial memory disaggregation.

This paper introduces FluidMem, a system that provides
full memory disaggregation in software for VM-based
workloads that requires no changes in hardware design.
There are two key differences between full and partial mem-
ory disaggregation. First, with full memory disaggregation,
all memory pages are capable of being disaggregated (able
to be stored in any server). Remote paging with swap only
enables anonymous pages to be disaggregated, and therefore
many other pages such as file-backed pages (e.g., allocated
with mmap) or unevictable pages (e.g., pinned memory,
kernel memory) cannot be disaggregated. FluidMem can
support full memory disaggregation for any of a VM’s pages.
Second, full memory disaggregation can decouple memory
management from the entity using the memory, the VM,
with no requirements of guest assistance. As a result, a cloud
provider can manage the memory of tenant VMs running an
unmodified operating system (OS), without needing to co-
ordinate with the guest OS or processes running in the VM.
Together, full memory disaggregation enables a provider to
both increase and decrease memory allocation, enabling a
VM’s memory footprint to scale to many machines or be
downsized to nearly zero memory on a given server.

We have implemented FluidMem by leveraging a new
Linux kernel feature userfaultfd [23]. Intuitively, supporting
software-based full memory disaggregation would come at



a cost when compared to software-based partial memory
disaggregation approaches. In reality, this is not the case
when comparing FluidMem with swap-based approaches.
FluidMem’s performance compares favorably to swap-based
approaches because full memory disaggregation moves un-
used operating system pages out of DRAM and FluidMem
efficiently rearranges the ordering of operations in a page
fault, reducing the latency of the page fault handling critical
path. Our microbenchmarks show that from inside a VM,
page access latencies via FluidMem to RAMCloud [14] are
40% faster than the NVMe over Fabrics [24] remote memory
swap device and 77% faster than SSD swap. Our macro
benchmarks demonstrate that FluidMem outperforms swap-
based remote memory used by existing memory disaggre-
gation implementations in a MongoDB [4] workload and
the Graph500 [25] benchmark. Finally, we demonstrate the
scale of downsizing possible with full disaggregation. With
the memory footprint reduced to 180 pages (720 KB), a VM
can still respond and open up an SSH shell.

In summary, this paper makes the following contributions:

« We introduce the notion of software-based full memory
disaggregation, allowing any page of a VM’s memory
footprint to be stored anywhere in the datacenter.

o« We present a new design to realize full memory dis-
aggregation transparently, requiring no changes to the
VM, while allowing providers to scale or restrict a VM
memory footprint across machines.

o We implement FluidMem and compare to swap-based
schemes, showing favorable performance while en-
abling more flexible memory management. Fluidmem’s
code is available on GitHub [26].

The outline of this paper is as follows. Section [[I] first
motivates full memory disaggregation. Section [[II| provides
an overview of FluidMem, while Sections provide ar-
chitectural details. FluidMem is evaluated in Section[VI] and
related work is covered in Section before concluding.

II. MOTIVATING SOFTWARE-BASED FULL MEMORY
DISAGGREGATION

Resource disaggregation should be transparent to the soft-
ware running on the disaggregated system. This transparency
model matches the deployment model in cloud computing,
which decouples the provider running the infrastructure from
the tenant running its software. With disaggregation, a cloud
provider can assemble computing resources to an exact
tenant specification, and then provision complete control of
software using those resources to the tenant. Providers can
allocate assembled resources as a one-time build, or even
dynamically change the assembly by adding more memory,
CPU, and storage. Given the promise of such flexibility,
industry and academia alike are researching new hardware
architectures that can efficiently support this model of full
disaggregation [16], [17], [L8], [19].

Our goal is to provide full memory disaggregation in
software. That is, rather than re-architecting system hard-
ware to build systems on-demand from disparate resources,
we instead utilize a software layer to provide the same
abstraction with resources pooled across a collection of
commodity servers. Today, virtualization software runs on a
single physical server to provide the abstraction of a machine
built on-demand for a given tenant. With full memory
disaggregation, the virtualization layer extends usage beyond
a single physical server to include memory from multiple
machines. This approach enables cloud providers to allocate
memory to a tenant’s VM and then dynamically manage the
assignment of the VM’s memory in a deterministic fashion
to physical resources throughout the cloud infrastructure.

To motivate the need for a new approach to memory disag-
gregation, we step back and discuss the leading alternative to
achieve transparent memory disaggregation — remote paging
with swap [22], [27]. The swap mechanism moves pages
between main memory and disk, and its design provides a
convenient translation layer between memory and block sec-
tors. By assigning a block device to reside over a network,
swap-based memory disaggregation enables remote memory
use without modifying VMs. The key limitation, however,
is that it is difficult to support full memory disaggregation
with swap. We examine why this difficulty exists, from both
inside and outside the VM.

Within the VM some types of pages cannot be swapped
out. File-backed memory pages are written to the original
filesystem. This occurs for pages in memory-mapped re-
gions created by the mmap system call, commonly used to
store file executables in memory and by some in-memory
databases [28]]. There is no capability to store these pages
in swap space. Also pages belonging to the kernel, and
pages pinned by the mlock system call must remain resi-
dent in memory. Because of these distinctions, swap-based
approaches are unable to decouple a VM’s memory usage
from their DRAM footprint on the hypervisor. Even VM
ballooning is not able to reduce the footprint below a fixed
minimum (see Section |VII).

One could imagine an approach from the hypervisor that
seeks full memory disaggregation using existing (swap-
based) approaches. In particular, if a VM is run inside a
container and memory limits are enforced with cgroups [29],
then an approach like Infiniswap could decrease the memory
footprint of the container (and thus the VM) through swap.
While the majority of memory part of a QEMU process
on Linux corresponds to the memory of the VM, there
are other functionalities supporting the VM that would be
subject to the same cgroup limit. Treating the entire process
as swappable to remote memory is both dangerous, as
critical memory supporting virtualization can be swapped
out, and wasteful, as extra memory beyond what is used by
the application becomes disaggregated. One might consider
this suitable, but we argue that a design to realize full



memory disaggregation in software should match the model
as cleanly as possible.

Instead of requiring custom server hardware or a re-
designed hypervisor, FluidMem presents an opportunity for
cloud VMs to benefit from full memory disaggregation
in datacenters with current cloud software stacks. Existing
cloud workloads with unpredictable memory demands can
benefit as well emerging cloud use cases. With the advent
of lightweight VMs [30], VMs can be put to sleep often
(and resumed on a whim), scaled to support microservice
models, or migrated quickly. Today, providers like Amazon
provision lightweight VMs to house transient workloads like
serverless functions with Firecracker [31]. On the opposite
end of the spectrum, VMs may still represent their large,
monolithic ancestors, with a specific VM requiring a large
memory footprint, or supporting an application that aims
to process large amounts of data in memory. FluidMem
seamlessly enables full memory disaggregation for all of
these deployment scenarios, even in cases were hypervisor
swap is disabled, as in Firecracker [32] deployments.

III. FLUIDMEM ARCHITECTURE

We aim to create a software layer that enables full memory
disaggregation on existing computer systems. Rather than
co-opting the swap interface, we find a more efficient
path in Linux memory management that naturally allows
full memory disaggregation and granular management of
hypervisor memory. In this way, memory pages can natively
be stored in a key-value store on a remote server.

Three key questions need to be answered to collectively
define how FluidMem works. We highlight these below
and then describe the detailed structure and mechanics
of FluidMem in subsequent sections. An overview of the
FluidMem system architecture is illustrated in Figure [T}
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Figure 1: FluidMem Architecture

How can FluidMem manage memory without explicit
VM support? Transparency to tenant VMs is an important
goal in memory disaggregation for the cloud. While VMs
(including the operating system) are typically defined by
the user, the hypervisor emulator (e.g. QEMU) and hyper-
visor kernel (e.g. Linux/KVM) are managed by the cloud

operator. Since minimal changes to the hypervisor stack
will be tolerated by the cloud provider for reliability and
security reasons, we have chosen to define an interface of
registering memory regions with FluidMem that is analogous
to allocating local memory.

FluidMem can manage memory requested by the hyper-
visor in two basic modes: a normal VM can add extra Fluid-
Mem memory via memory hotplug (left VM in Figure [I)) or
a VM can be started with all its memory registered with the
FluidMem page fault handler (right VM in Figure [T). VMs
backed with FluidMem memory are completely unmodified.
Hotplug is natively supported in Linux, Windows, and
FreeBSD guest VMs through QEMU [33], which means
memory can be added to a VM at any time, even if the VM
did not anticipate using additional memory at boot time.

The guest kernel views FluidMem memory as if it were
standard physical memory. VM memory that is not registered
with FluidMem is serviced by the standard kernel page fault
handler and uses DRAM memory local to the hypervisor.
In FluidMem-registered regions, memory accesses will pass
through the FluidMem page fault handler and be routed to
the appropriate location in a remote key-value store. Full
memory disaggregation is enabled when all VM memory
has been registered with VM.

How can FluidMem achieve transparent page fault
handling? As with swap, FluidMem implements a page
fault mechanism that allows memory accesses to be fast
(when accesses are in local memory) but also supports the
use of remote memory in a key-value store. In contrast
to swap, FluidMem leverages the userfaultfd feature in the
Linux kernel [23]], supported since Linux 4.3 and originally
designed to support VM live migration. This allows us to
directly tap into the kernel’s page fault handling mechanism,
and because of this, we can disaggregate all memory pages,
unlike swap. Further, as we directly handle the page faults
in user space, there are a variety of optimizations that are
immediately possible. In particular, no additional context
switch is needed for user space network transport protocols
like RAMCloud. Additionally, libraries such as Boost and
the Zookeeper client can easily be linked in to build indexing
structures or synchronize cluster state.

How can FluidMem dynamically manage the allocation
of local and remote memory resources? A key motivation
of full memory disaggregation is that it allows the cloud
provider to dynamically manage the memory of a tenant VM
transparently. FluidMem uses the userfaultfd mechanism
to track all FluidMem-registered memory. Unlike swap,
userfaultfd is invoked on the first page fault of every page,
giving the user space page fault handler the ability to
identify all pages belonging to a VM. An administrator
can then manage VM memory allocations in a fine-grained
manner, dynamically mapping VM memory between local
and remote memory pages. The userfaultfd capability allows
the local memory buffer to be actively sized up or down to



balance the demands of the VM’s workload with the resource
constraints or policies of the cloud operator.

Cloud providers can further benefit from the flexibility
that comes from handling memory paging in user space to
rapidly deploy a variety of customizations needed for their
infrastructure or specific use cases. Examples are compress-
ing page contents for network transport and remote storage,
replicating pages across remote servers, and customizing
memory policies for different VMs on the same hypervisor.

IV. EXPANDING TO REMOTE MEMORY

In this section, we describe how FluidMem registers
remote-backed memory and supports storing memory pages
in a key-value store.

FluidMem’s scheme for expanding to remote memory is
implemented in QEMU by wrapping the allocation of a guest
VM’s memory with an allocation that also registers the mem-
ory region with the FluidMem user space page fault handler.
Registration is accomplished via the userfault £d system
call, which returns a file descriptor that is monitored for
page fault events. The size of the memory allocation is
the amount of physical memory that appears in the guest
VM. This wrapper function is provided in a user functions
library component of FluidMem that is dynamically linked
to QEMU. Other hypervisors besides QEMU could become
FluidMem-enabled by linking the same library.

FluidMem interfaces with key-value stores via a generic
API that supports partitions and allows multiple VMs to
share the same key-value store. For networked key-value
stores such as RAMCloud [14] and Memcached [34] that
natively support partitions, we use their user space clients for
preparing PUT and GET requests. The 4 KB page contents
serve as the value portion of the request and the key is a 64-
bit integer matching the first 52 bits of the virtual memory
address used by the faulting application (e.g. QEMU). This
is adequate to uniquely represent each 4 KB page in the 64-
bit virtual address space. To support other key-value stores
without partition support, we use the remaining 12 bits to
index a “virtual partition”. The index is created using the
process PID, a hypervisor ID, and a nonce, where global
uniqueness is ensured by a replicated and globally consistent
table stored in Zookeeper [35]].

V. FAST HANDLING OF REMOTE PAGE FAULTS

This section describes in greater detail the path followed
by a page fault through the FluidMem page fault handler
and optimizations made to reduce page fault latency.

A. User space page fault handler

The process that is responsible for handling page faults
in FluidMem runs entirely in user space and is called
the monitor process. Its primary responsibility is to watch
for page faults and resolve them before waking up the
faulting process. The monitor process waits on a list of file

descriptors (corresponding to registered userfaultfd regions)
for events indicating a userfaultfd page fault. The list of
descriptors is extended whenever a new region is registered
(VM started) and shrunk when regions become invalid (VM
shut down). The memory region initially contains no mapped
pages so any access to an address within the range will
trigger a page fault. Below in Figure [2] we show a trace of
the components involved in handling a first-time access.
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Figure 2: First page access handling critical path (red) begins
when the guest is halted (1) as a page fault occurs (2).
The monitor process is notified of the fault via a userfaultfd
event (3). With FluidMem’s pagetracker feature, the monitor
process only has to make a UFFD_ZERO ioctl for the
zero-filled page (4) before waking up the QEMU guest (5).
Asynchronous (blue) page eviction (6) is accomplished by
moving the page out of the VM via UFFD_REMAP (7) and
writing the page to a key-value store (8).

When a QEMU/KVM virtual machine accesses an address
without a corresponding page mapping (i.e. when the VM is
booting), the vCPU thread within the process must be halted
until the fault can be resolved. This appears as a page fault to
the VM at the guest virtual address, but the hypervisor will
see the page fault at a virtual address belonging to the VM’s
QEMU process and will run userfaultfd-specific handling
code before sending an event to the monitor process via a
file descriptor. On notification of a page fault, the monitor
receives the faulting address and the process PID belonging
to the VM. The monitor keeps a list of already seen pages
to avoid reads from the remote key-value store for first-time
accesses. Instead, the fault is resolved by placing the special
zero-filled pageﬂ at the faulting address and then resuming
execution of the vCPU thread.

The monitor maintains an LRU list to manage page
evictions, where the size of the list determines the number
of pages held in DRAM for one or more VMs. Evictions
come from the top of the LRU list and will be triggered

IThe zero page within the kernel is a copy-on-write page that returns
all zeroes on read, but on a subsequent write fault, it will trigger a regular
page fault to allocate a normal empty page allocation.



by the monitor process when the number of pages reaches
the configured maximum size and another page fault arrives.
Note that the LRU list is only updated when a page is seen
by the monitor process, which only happens on first access
and after an eviction. A future optimization would be to
trigger faults for pages not yet evicted to the key-value store.
At present, the internal ordering of the list does not change.

To perform evictions, we use a proposed UFFD_REMAP
operation with userfaultfd to remove a page from the VM
and place it in a user space buffer by changing page table
entrieﬂ The page is then sent to the key-value store.

When a page is accessed for the second time after having
been evicted to a key-value store, a slightly different path is
taken. This time the monitor process notes that the faulting
page address has been seen before, so it issues a read to
the key-value store. After a successful read, the page is
copied into the VM and the vCPU woken up. Our early
technical report on FluidMem contains more details on the
code organization of the monitor process [36].

An advantage of using the userfaultfd kernel feature is that
FluidMem pages can be transparently managed like other
kernel pages. For example, in an emergency, it would be
possible for VM pages to be paged out to swap space on
the hypervisor without intervention by the monitor process.
We assume that the remote key-value store determines if its
pages should remain in DRAM. RAMCloud, for example,
pins memory to ensure that it is not paged out [14]]. On the
other hand, it may be desirable to allow remote memory to
spill over to another storage medium such as NVRAM.

In contrast to swap-based memory-disaggregation sys-
tems that share swap devices on the hypervisor, multiple
instantiations of the monitor process can run simultaneously
to independently manage LRU lists and remote memory
backends for arbitrary groups of VMs. Even though the
monitor process runs on the hypervisor and will therefore
not be accessible to cloud users, the process itself can run
as a non-root user, thus minimizing security risks.

B. Optimizations to page fault handling

This section describes various performance optimizations
to FluidMem’s page fault handling.

Asynchronous writeback: Asynchronous writeback to
the key-value store is an important optimization made to
FluidMem because evicted pages do not need to be written
to the key-value store immediately as long as they are not
requested by the guest VM. Rather than waiting for the
write to complete before handling the next page fault, the
critical path in the monitor only evicts the page from the
VM and puts the page on a write list before moving on
to the next fault. A separate thread periodically flushes the
write list to the key-value store when its size has reached a

2Qur patches have been submitted to the Linux kernel mailing list for
upstream inclusion and work is ongoing to merge them into mainline Linux.

configured batch size of pages or a stale file descriptor has
been found. We leverage RAMCloud’s multi-write operation
to write batches of pages belonging to the same userfaultfd
region. This optimization is most beneficial when slower
network transports are used for the key-value store such as
with TCP with Memcached. In a related optimization, the
page fault handler can steal pages from the pending write
list to resolve a page fault and shortcut two round trips to
the remote key-value store.

Asynchronous reads: Other than when a VM first boots
up, reads are typically accompanied by an eviction to
maintain a constant memory footprint. Even though eviction
with UFFD_REMAP moves a page from inside the VM to
outside by only modifying page table entries, it needs to
synchronize processor page tables for KVM guests using
interprocessor interrupts. In our microbenchmarks, we found
this call took 4-5 us. Combined with the observation that
a page read from RAMCloud involved waiting (10 us), we
saw the opportunity to interleave the eviction operation with
the network read. Both RAMCloud and Memcached read
operations were split into top and bottom halves, making use
of their respective asynchronous API calls. This optimization
reduced overall CPU usage by running UFFD_REMAP when
the vCPU thread was already suspended, and even reduced
the UFFD_REMAP latency to 2 pus. The asynchronous op-
timizations above are similar to the optimizations already
present in the kernel swap interface where kernel threads
decouple eviction from the read critical path.

Zero-copy semantics: A benefit that stems from operat-
ing entirely in one context (user space or kernel space) is
that data copy operations can be avoided. The UFFD_REMAP
operation demonstrates this, but it is not always faster than
UFFD_COPY because of the synchronization required. We
took care throughout the page fault handling code to avoid
copies by reusing buffers. With the swap interface, such
copying is necessary because a page must be put into a
block device request as it traverses several layers of kernel
code before being shuttled to remote memory.

This benefit has not fully been realized in our implemen-
tation because RAMCloud does not use RDMA network
transport and incurs a copy into the Infiniband network
buffer. Substituting RAMCloud for an RDMA key-value
store such as FaRM [13]] or HERD [37]] would further reduce
FluidMem’s page fault latency.

VI. EVALUATION

This section examines the performance of FluidMem.
We first describe the experimental platforms, followed by
a comparison to current swap-based memory disaggregation
systems. Next, we present our findings from code profiling
that informed the potential of asynchronous optimizations
and the performance improvements achieved by those opti-
mizations. Lastly, we demonstrate FluidMem’s performance
with the Graph500 benchmark [25] and MongoDB [4].



A. Test platforms

We performed evaluations on two different test platforms,
CloudLab [38] and a local cluster. On CloudLab we used
the 6220 hardware class in the APT cluster with dual Intel
Xeon E5-2650 v2 processors and 64 GB DRAM. Our local
cluster servers have dual Intel Xeon E5-2620 v4 processors
with 64 GB DRAM. All tests were run between two servers
connected by FDR Infiniband (56 Gb/s). For tests involving
RAMCloud [14], Infiniswap [22], and NVMeoF, we used the
native Infiniband transport, while tests with Memcached [34]
relied on the IP over IB transport at 40 Gb/s. Tests with
DRAM as the backend used a local in-memory key-value
store (FluidMem) or /dev/pmem0 [39] (Infiniswap). Tests
on CloudLab were run with kernel 4.10, while tests on the
local cluster used kernel 4.20. We configured RAMCloud to
pin 25 GB of DRAM for its key-value storage and we also
turned off RAMCloud’s replication feature. For NVMeoF,
the remote target was 32 GB of DRAM via /dev/pmem0
and for Infiniswap, the remote target was 32 GB of DRAM
pinned by the Infiniswap daemon. FluidMem’s pagetracker
feature was turned off since first-time page faults represented
a small fraction of total page faults in every case.

B. Comparison to swap-based disaggregation

We compared FluidMem with RAMCloud, Infiniswap,
and NVMeoF using the same hardware and OS on Cloud-
Lab. Our goal was to examine their respective latency
profiles of paging to remote memory under steady-state con-
ditions. We chose the workload to avoid caching (other than
the defined application footprint in DRAM) and initialization
delays to avoid atypical latencies and achieve low inter-trial
variation. Since allocating new swap space or expanding
key-value storage involves extra operations, access latency
during initialization can be significantly higher. We observed
this slowdown with Infiniswap, where allocations are done at
a coarse granularity. Before mapping parts of swap to remote
memory, Infiniswap sends synchronous I/O requests to the
local hard disk [22]. However, once the entire swap device
had been mapped to remote memory, all access latencies
stabilized at values consistent with remote memory.

We used pmbench [40] to measure page fault latencies
by making memory accesses from the hypervisor. Three
minor modifications [41] were made to pmbench: 1) stop
after completing as many page accesses as there are pages
in the allocated region 2) draw a random page address for
every page access 3) optionally use FluidMem’s libuserfault
library to register memory allocations with the monitor
process. We configured pmbench to first initialize a 4 GB
memory allocation with random values and then clear the
kernel’s page cache before beginning the timed portion of
the benchmark. After initialization, pmbench measured the
individual latency of accessing a memory offset within a
random 4 KB page. The first test was with 100% reads, and
then 100% writes, with the 2nd of 3 trials shown in Figure@
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Figure 3: CDFs of hypervisor page access latencies for
FluidMem with RAMCloud and swap-based systems.

We limited pmbench to 10 MB of local DRAM using
cgroups with swap-based systems. The analogous FluidMem
configuration consisted of a 10 MB LRU list size.

Figure [3|shows the CDFs of each system’s page access la-
tencies from the hypervisor. The 99th percentiles are shown
in the figure legend. While Infiniswap has the lowest median
read and write latencies, it has the highest 99th percentile
for writes. Similarly, NVMeoF’s 99th percentile for writes
is over twice as high as that for reads. FluidMem has lower
read and write tail latencies, where the main difference is
user space page fault handling and the optimizations enabled
by the flexibility it provides (Section [VI-D).

We have shown how FluidMem’s low-level performance is
comparable to existing swap-based alternatives for transpar-
ent memory disaggregation. Now we will examine page fault
latency from within the VM. In the following experiments,
we use NVMeoF as a representative configuration for swap-
based remote memory disaggregation.

C. Latency micro-benchmarks

To better understand the raw page fault latency seen by
different FluidMem backends and how they influenced appli-
cation performance in Section we used an unmodified
pmbench [40] to measure latency from inside the VM. The
tests begin with an untimed warm-up period where all pages
in a 4 GB region are accessed, followed by 100 s of an equal
number of reads and writes within the entire region.

For the swap cases, the VM was given 1 GB of DRAM
and a swap device backed by either local DRAM via
/dev/pmem0, remote DRAM via NVMeoF, or local SSD.
When FluidMem was used, we registered the VM’s memory
with the FluidMem page fault handler on boot, meaning all
memory accesses were served by FluidMem. The monitor
process enforced a 1 GB LRU list size, so up to 1 GB of
pages could reside in DRAM before any pages were evicted.
An additional 4 GB of hotplug memory was added, raising
the capacity to 5 GB while maintaining a maximum footprint
of 1 GB in local DRAM.
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Figure 4: CDF of access latencies measured with pmbench. The plots are arranged row-wise by mechanism (FluidMem vs.
Swap). Average latencies for each backend are shown in parenthesis.

Figure [] shows each backend’s CDF of page access
latencies from inside a VM. The average latency is lower
with DRAM-backed FluidMem than DRAM-backed swap.
Latency is reduced by 40% in remote memory configura-
tions between FluidMem with RAMCLoud and swap with
NVMeoF. The similarity between DRAM and RAMCloud
performance with FluidMem indicates that asynchronous
optimizations effectively hide network latency.

The CDFs highlight differences in page fault handling
between FluidMem and swap. Any page access that took
less than 10 ps must have been cached in DRAM (slightly
over 25% from the local to remote memory ratio). The early
part of the CDF reflects latencies from page faults that do
not require a network round trip to resolve. For FluidMem,
these accesses are represented in the flat section of the CDF
that ends before 10.5 us. In the swap case, there are multiple
flat parts corresponding to a more complex page fault path.

D. FluidMem optimizations

FluidMem has the built-in ability to profile individual
code sections of the page fault handler. We used this to
measure the contributions to page fault latency during syn-
chronous page fault handling with the RAMCloud backend.
A takeaway from the results shown in Table[[]is that reducing
the time spent waiting for network operations holds the most
potential for decreasing overall latency. FluidMem’s cache
management functions make relatively small contributions
to total latency as compared to network operations. Note
that the 99th percentile for UFFD_REMAP latency is high
because the operation requires sending an interrupt to all
CPUs to flush the page’s entry in the TLB.

Table I: Latencies of key parts of FluidMem code involved
when the page is accessed (units: us).

Latenc

Code path Ave Sidev T 09
UPDATE_PAGE_CACHE 2.56 0.25 3.32
INSERT_PAGE_HASH_NODE 2.58 1.26 8.36
INSERT_LRU_CACHE_NODE 2.87 0.47 3.65
UFFD_ZEROPAGE 261 0.44 351
UFFD_REMAP 1.65 257 18.03
UFFD_COPY 3.89 0.77 5.43
READ_PAGE 1562 | 3101 | 20.90
WRITE_PAGE 1470 | 152 | 1745

Table II: Average page access latencies measured from the
application with various FluidMem optimizations (units: us).

FluidMem with DRAM FluidMem with RAMCloud
Optimization Sequential Random Sequential Random
Default 27.25 28.15 66.71 58.70
Async Read 25.26 25.00 51.08 49.33
Async Write 23.67 30.26 42.88 43.40
Async Read/Write 21.30 24.37 29.47 29.20

To examine application performance implications, we
measured the time between entry and exit points in the
kernel’s page fault handler when faults are generated by
a simple test program that reads from and writes to a
memory region. Memory can be accessed sequentially or
randomly. The program was linked with FluidMem’s libuser-
fault library, so there was no involvement of a virtualization
layer, and the LRU list size was set to 1, meaning every
page access results in a page fault. We used the Linux
perf command to measure the time the kernel took to
resolve each page fault with various optimizations enabled.
Average latencies with RAMCloud are shown in Table
The improvements come from enabling the monitor process



to hide the network latency by interleaving asynchronous
operations in the page fault handling path. An improvement
from baseline to fully-optimized with DRAM indicates that
interleaving the userfaultfd system calls was helpful even
without a network latency component. Comparing latencies
between DRAM and RAMCloud show that a network key-
value store incurs a 20-40% overhead.

E. Application Use Cases

This subsection describes use cases of standard appli-
cations running on FluidMem and demonstrates the per-
formance improvement from expanding a VM’s physical
memory in contrast to only increasing swap space.

Applications that load large datasets or indexes into
memory will benefit greatly from FluidMem when the
application’s WSS is free to grow beyond local DRAM and
expand to remote memory. While some applications can
easily partition their working set into discrete chunks and
spread them across the aggregate DRAM of multiple nodes,
the heterogeneity of cloud applications means that this
assumption cannot always be made. If the capability to par-
tition data does not exist without explicit refactoring of the
application’s code, or if a partitioning method is not known
beforehand, FluidMem can still improve performance by
allowing more of the dataset to reside in DRAM. FluidMem
provides an alternative solution to loading these datasets into
memory that doesn’t require engineer development effort.

1) Graph500: We chose the Graph500 benchmark to
evaluate how page fault latency on various key-value stores
affected overall application performance in a VM capable
of full memory disaggregation. Completing a breadth-first
search (BFS) traversal is generally a memory-bound task due
to irregular memory accesses [42]. For this reason, we used
the sequential reference implementation of Graph500 [25].
We note that there are many prior works on parallel BFS on
distributed clusters [42], but the focus of this paper is on full
memory disaggregation in the cloud, limited to individual
VMs, not a distributed shared address space.

All experiments were run on a QEMU/KVM virtual
machine with 2 vCPUs and 1 GB of local memory on
the hypervisor. For swap, this meant a memory capacity
of 1 GB for the VM. Block devices backed by different
mediums were configured as swap space within the VM.
The libvirt configuration to present the block device to the
VM used the virtio driver with caching mode set to
“none”, meaning O_DIRECT semantics were used and the
host’s page cache was not involved. This setting was critical
for an accurate comparison between swap and FluidMem.
With the disk caching mode set to “writeback”, writes
to the swap device would be buffered in the hypervisor’s
cache. Using “writeback” actually made swapping to DRAM
slower because of the extra caching layer. For FluidMem,
1 GB of DRAM was used by fixing the LRU list size before

adding 4 GB of remote memory via hotplug. Swap was
turned off for FluidMem tests.

Figure [5] shows the results of the Graph500 benchmark
run on VMs configured to use FluidMem or swap, each
with three different backends. The benchmark creates a
graph in memory of configurable size and then performs
64 consecutive BFS traversals. The scale factor controls the
size of the graph which in our evaluation ranges from 1 GB
(scale factor 20) to 5 GB (scale factor 20). Performance is
measured using the metric (millions of) traversed edges per
second (TEPS). For each configuration, the harmonic mean
of TEPS for the 64 trials is reported in Figure [3

The purpose of varying the scale factor was to evaluate
performance when the application WSS fits entirely within
DRAM (600 MB for scale factor 20) to when the WSS
necessitates storing a majority of frequently used pages
remotely (scale factor 23 uses 4.8 GB). The results in
Figure [5] can generalize to a larger VM with a higher
scale factor by comparing the percentage of WSS that can
remain in DRAM. Note that the memory footprint of the
OS is approximately 300 MB of DRAM at boot (shown
in Table [[I), which would become a smaller percentage
memory overhead with a larger VM.

Figure [5a] shows the harmonic mean TEPS at scale fac-
tor 20. Since this test involved purely local accesses, it was
used to assess the overhead of FluidMem’s full memory
disaggregation. Since FluidMem traps to user space and
performs a hash lookup for each page it hasn’t seen before,
the cost of the kernel triggering a “minor page fault” with
FluidMem is slightly higher than with swap. At scale factor
20, the number of minor page faults was about 150,000, but
this only resulted in a 2.6% slowdown with FluidMem.

The FluidMem configurations do significantly better than
swap-based ns at scale factor 21 where the WSS occupies
120% of local memory (Figure [5b). The large performance
difference is primarily because FluidMem allows more un-
used kernel pages to be removed from DRAM and replaced
with useful application pages. Another aspect of Figure [5b|
that has promise for cloud datacenters with standard Ethernet
networks is that the Memcached backend for FluidMem
performs better than swap backed by NVMeoF and SSD.
This is due to the increased amount of application pages in
local memory due to full memory disaggregation.

At scale factor 22 FluidMem with RAMCloud out-
performs swap with NVMeoF, consistent with lower re-
mote memory latencies measured previously. However, the
DRAM backed storage via swap is slightly faster than
DRAM through FluidMem. Since we have shown above
that page fault latencies for FluidMem backed by DRAM
are lower than swap backed by DRAM, we believe the
difference is a result of the kswapd process within the
guest being better able to pick candidates for eviction using
the kernel’s active/inactive list mechanism. This is a current
limitation of our LRU list design mentioned in section
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Figure 5: Graph500 performance with working set sizes (WSS) from 600 MB (scale factor 20) to 4.8 GB (scale factor 23).
The overhead of FluidMem page faults is 2.6% in (a). The benefit of storing OS pages in remote memory with FluidMem
is most pronounced in (b) when WSS is 120% of DRAM. At higher scale factors (c) and (d), the performance of FluidMem
RAMCloud exceeds swap to NVMeoF, but choices in page eviction penalize FluidlMem DRAM compared to swap.

The same relative comparisons hold at scale factor 23
(WSS 480% of local memory) [5d] While the ability to
choose pages to evict may give swap an edge when network
latency is low (e.g. DRAM), the FluidMem page fault
handler effectively hides network latency with RAMCloud
compared to swap with NVMeoF.

Beyond scale factor 23, where the WSS takes up more
than 480% of DRAM, Graph500 will still run to comple-
tion. However, other applications could impose timeouts on
certain operations that will be exceeded when using remote
memory. Infiniswap only explored applications with 50%
of their working set in memory and cited problems with
thrashing and failing to complete beyond that split of remote
memory. Applications such as Spark likely have timeouts
that cause such failures and changing the application code to
account for the remote memory delay could resolve them. In
addition to the 480% WSS case, we explored an analogous
situation, but at the opposite extreme, where a VM is booted
with a DRAM footprint of fewer than 200 pages (1 MB).
This is discussed further in Section

2) MongoDB: Not all applications can take advantage of
extra memory through the swap interface which is necessary
to benefit from remote memory through systems such as
Infiniswap. Full memory disaggregation through FluidMem

allows applications such as MongoDB to efficiently use
remote memory even if applications have their own cache
management system that is incompatible with swap.

MongoDB is a document store commonly used for cloud
applications that facilitates fast retrieval of data stored on
disk by caching its working set of documents in memory.
MongoDB has two storage engine options, mmapvl that
uses the memory-mapping system call mmap to let the
kernel manage which pages are cached in memory, and
WiredTiger that uses an application-specific cache and the
kernel’s filesystem cache. We only evaluate WiredTiger here.

One of the limitations of swap is that it cannot be used
to store memory-mapped pages. When an application uses
mmap with remote memory via swap, the performance is
the same as without remote memory because the operating
system will write out pages from the memory mapping to
disk, not to remote memory via swap. While MongoDB has
deprecated the mmapvl storage engine, emerging data stores
continue to use mmap [28]]. We point out that FluidMem can
benefit such applications that continue to use mmap.

We chose the read-only workload from the Yahoo Cloud
Serving Benchmark (YCSB) suite [43] with 1 KB reads for
our evaluation of MongoDB. With this workload, data will
be cached in memory until evicted to make room for newly
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Figure 6: Latency of YCSB 1 KB read-only workload for MongoDB with WiredTiger storage engine. When cache size
exceeds DRAM capacity, the storage engine is not capable of achieving a stable working set when only given swap space
via NVMeoF. When remote memory performance is comparable (Figure ), FluidMem achieves significantly lower average
latencies because it transparently provides the storage engine with native memory capacity.

. . Revived by
(\glzl/éefs)otprlnt X\]/}/}I?’)footprmt Response to SSH | Response to ICMP increaising
footprint
After startup 81042 316.570 Yes Yes N/A
Max VM balloon size 20480 64.750 Yes Yes N/A
FluidMem (KVM) 180 0.703 Yes Yes Yes
FluidMem (KVM) 80 0.300 No Yes Yes
FluidMem (full virtualization) 1 0.004 No No Yes

Table III: Summary of the effects of reducing VM footprint to 1 page

read records. For swap, the MongoDB server is run on a
VM with 1 GB of local DRAM. The swap device is backed
by either DRAM on a remote server via /dev/pmemO,
an NVMeoF target device, or a local SSD partition. For
FluidMem, the VM was created with 4 GB of memory, but
it was limited to a DRAM footprint of 1 GB by the LRU list.
Swap space was turned off for tests with FluidMem. For all
test configurations, transparent huge pages and NUMA were
disabled. Since, for swap configurations, we used remote
memory rather than a local hard drive, vim. swappiness
and disk readahead were set to 100 and 0, respectively.
YCSB workload C (read-only) was run from the same
VM to reduce the impact of network latency on the results.
Since full memory disaggregation most directly applies to
a single server, the evaluated MongoDB configuration was
not sharded across several servers. A VM with 3 vCPUs was
used, where the kernel was free to schedule the MongoDB
and YCSB processes on any vCPU. Before initiating the
measured experiment, dataset records were inserted into the
MongoDB store by YCSB. Once loading was complete, the
storage engine used approximately 5 GB on a local SSD. To
ensure that the WiredTiger memory cache and kernel page
cache had been flushed, the VM was rebooted between tests.
The time courses of read latency for the WiredTiger
storage engine on swap backed by NVMeoF and FluidMem
backed by RAMCloud are shown in Figures [6a] and [6b]
respectively. The latency measurements represent the time it
takes to read a 1 KB record from MongoDB. Some of the

records will require disk I/O, while others can be read from
the in-memory cache. While average latency decreases for
both remote memory configurations with increasing cache
size, the WiredTiger storage engine is unable to smoothly
take advantage of swap space as extra capacity for the
workload. Regardless of the cache size configured, the
storage engine has difficulty establishing a stable working
set in memory. The poor interaction between the WiredTiger
storage engine’s memory cache and kswapd leads to 36-
95% higher average latencies than with FluidMem.

FE. Full memory disaggregation

Table demonstrates FluidMem’s ability to perform
full memory disaggregation by minimizing a VM’s memory
footprint. Virtual machines may remain on, but unused,
and cloud providers could benefit from a mechanism to
repurpose idle memory capacity for increasing density. Users
may opt for a billing model that allows them to keep VMs
reachable, with the capacity to scale up on demand.

Without FluidMem enforcing the LRU list size, a VM
will consume 317 MB of memory just from booting to a
command prompt. This memory will be resident in DRAM
and the usage will grow over time up to the allotted memory
size of the VM. An alternative for reducing the memory
footprint is KVM’s balloon driver for reclaiming guest
pages, but the driver reaches its maximum size when the
VM footprint is still 64 MB. In contrast, FluidMem’s LRU
list can be resized to enforce a near-zero footprint. When



the footprint is reduced to 180 pages (0.7 MB), the VM is
still able to accept SSH logins before a timeout. Even part
of the ssh binary will have to be stored in FluidMem, along
with all libraries and kernel code needed to complete a user
authentication. Afterward, if the LRU size is increased, the
VM will instantly return to normal responsiveness.

At only 80 pages, the VM can still respond to an ICMP
echo request every 1 s. Within the 1 s interval, the VM is
able to retrieve the network packet and send out a response.
Below 80 pages, ICMP requests will queue up, but will still
trigger a response if the footprint is increased again.

To reduce the footprint down to 1 page, full virtualization
using QEMU [33] was used to keep the VM functional,
though it appeared non-responsive. Increasing the footprint
would make the VM usable again. We suspect there was
a deadlock in the page fault handling with KVM hardware-
assisted virtualization since handling a page fault can trigger
more page faults. With full virtualization, the recursive
triggering of page faults would still succeed.

VII. RELATED WORK

Distributed Shared Memory (DSM) Some of the earliest
implementations of shared memory were found in DSM
hardware-based systems. Due to the high cost of such sys-
tems, many software-based DSM systems were proposed []],
[9], [[LO]. They provide a single address space, like hardware
DSM systems, but added protocols for sharing and inval-
idation into the OS. Network and coordination overheads
posed a problem for the design and performance of these
protocols. An optimization to DSM that avoids the high
overhead from global coherency traffic is to split a global
coherency domain into partitions. These systems, known as
PGAS systems, allow for the existence of multiple, separate
key domains [44], [45]. PGAS approaches, however, require
modifying application code, and hence have limited appli-
cability to cloud settings.

Single System Images (SSI) SSI implementations provide
the abstraction of a machine comprised of resources from
many nodes [[L1]. They require heavyweight OS modifica-
tions and implement DSM to provide a single address space
with coherency guarantees. Linux SSI implementations [46]
run individual processes, so they don’t provide the trans-
parency benefits of VMs as used in cloud computing today.
They are also incompatible with current Linux kernels.

Remote-backed swap space The transparent use of remote
memory by unmodified applications can be realized using a
custom kernel module for a block device backed by memory.
The device is then configured as the swap device [22], [27].
The design space is broad, with works supporting VMs [27]],
containers [22]], and utilizing a variety of technologies like
Ethernet [27] and RDMA networks [22]. As described
earlier, swap-based approaches to memory disaggregation
cannot provide full memory disaggregation like FluidMem.

System resource disaggregation Rack-scale memory dis-
aggregation approaches include hardware prototypes [L7],
a Xen hypervisor-based implementation of remote pag-
ing [47], and a new kernel [48] that implements a memory
transfer service for system resource disaggregation. All of
these require major changes to existing cloud hardware
or software stacks. Like FluidMem, dReDBox [17] uses
memory hotplug to add additional memory, but does not
expose a mechanism to provide decreasing memory capac-
ity for full memory disaggregation. Remote swap devices
that implement memory disaggregation [21], [22] provide a
transparent way to add memory, but are not able to provide
native memory to benefit applications like MongoDB, nor
do they provide full memory disaggregation.

VM Ballooning A technique to dynamically balance
memory usage among virtual machines is using a balloon
driver [49]]. This kernel module installed in the guest VM
coordinates with the hypervisor to either inflate or deflate
its memory allocations within the guest. Ballooning takes
a relatively long time to reclaim pages used within the
guest because they must be flushed to disk before they
can be reused. Other work has improved performance with
intelligent prefetching, cache replacement, and fair share
algorithms [50]]. Ballooning approaches, however, require
explicit VM cooperation or modifying applications in the
VM, whereas FluidMem works with unmodified VMs.

Hypervisor paging Hypervisor paging allows the hypervi-
sor to directly swap out guest physical memory, guaranteeing
a set amount of memory to be reclaimed on short timescales.
As opposed to ballooning, hypervisor paging is done without
full information of pages used by the guest so the wrong
choices for reclaiming can be expensive. VSwapper [51]]
modifies the hypervisor by adding the visibility necessary
to avoid common swap inefficiencies. Other work shows
swapping pages back in is expensive and moves pages
into a shared memory swap device on the host to reduce
overheads [52]. None of these techniques examine full
memory disaggregation like FluidMem. Other research [53]
modified the hypervisor to provide disaggregated memory.
The downsides with their method are the requirement of a
custom hypervisor and that their solution is in kernel space.

Live migration (LM) LM [54] can relocate an entire VM,
including its memory footprint, to another hypervisor. LM
and memory disaggregation are complementary since LM is
capable of moving execution and memory disaggregation
can offload memory from the hypervisor. The emulator
QEMU provides a LM technique called post-copy migration
that uses userfaultfd [23]. In this way, a VM can be mi-
grated before all its memory pages have been copied. When
accessing a page page left behind, userfaultfd allows the
missing page to be copied over the network. Unlike QEMU,
FluidMem was designed for full memory disaggregation.



VIII. CONCLUSION

This paper has motivated, presented, and evaluated a new
approach to software-based full memory disaggregation in
virtualized cloud computing environments. Our technique,
called FluidMem, achieves full memory disaggregation by
enabling any page of a VM to be moved to remote
memory using a variety of datacenter network transports
and distributed key-value stores. Importantly, full memory
disaggregation is easily integrated with cloud software stacks
and does not require guest VM support. Our scheme allows
the memory footprint of a VM to seamlessly expand across
multiple machines and even enables a cloud provider to
shrink the memory footprint of a given VM to near zero
on a server. As opposed to swap-based partial memory
disaggregation techniques, FluidMem makes novel use of
the userfaultfd page fault handler to efficiently and flex-
ibly enable full memory disaggregation. The FluidMem
implementation and its optimizations were presented with
a detailed investigation of page fault latency. Evaluations
on applications Graph500 and MongoDB demonstrate that
FluidMem outperforms the swap-based alternatives used by
existing memory disaggregation research.
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