Shimmy: Shared Memory Channels for
High Performance Inter-Container
Communication

Marcelo Abranches™, Sepideh Goodarzy*, Maziyar Nazari*, Shivakant Mishra, Eric

Keller
University of Colorado, Boulder

*All three authors contributed equally to this paper

Crowd Monitoring

' IJOHN SMITH, 51
G I_ o s
e

A
4

.

P4

|CAﬂCULN“NG--- W CALCULATING. .
Tl) 4l

=

https://sequre.world/tag/computer-science/

Crowd Monitoring App in Edge Clouds

Image

Extract metadata

\ with TCP/IP for
ij containers

communication

Using Berkeley socket J

hY
5]
o
o
@
1
3
@
e
©
a
o
o
)

Not utilizing
the network
resources!

Object detection Face blurring

Object detection

Q
3
Q
«Q
[
=
o
@,
N
0]
3
Q
Q
[¢]
=
o]
@
o
[]
n
5
[

esized,
Objects detecte:

R d,
Objects detected,
Faces blurred

The Problem

If each link has an
average of X ms
delay:

Making Resized,
Objects detected,
faces blurred
images is going to
have 5 time X ms as
average delay

A

Object detection

H
H

Image resize

e

Extract metadata

N

Process metadata

~— @@

Objects detected

%
!

-

Face blurring

Object detection

Image resize

ﬁ

esized,
Objects detected,
Faces blurred

What if ?

we use shared memory channels for container communications ?

-

r

Faster
o Not going
through network
stack delays
Accessible

\

r

\

What about remote
communications?
Do we have a central
control over all the
containers host ?
Modifying the
Applications

What’s the solution?

e What about remote connections?

o Remote communication is efficiently supported through synchronizing
shared memory regions via RDMA

e Do we have a central control over all the containers host ¢

o modern infrastructures we can assume these applications are running
within a container orchestration framework, which provides control over:

m communication interface
m communication medium

So We proposed ...

e Rethinkthe communication model

e Create shared memory channels between containers

e supporting both a pub/sub model and bi-directional streaming model

e IL.ocal communication is made more efficient

e Remote communication is efficiently supported through
synchronizing shared memory regions via RDIVIA

e Not only applicable to the edge clouds but also beneficial in core cloud
environments

The Architecture

Shm region

[Containem } [ContainerZ }

The Architecture

Shimmy
agent

Shm region

[Container 1 }

[Container 2

~

J

The Architecture

4 N

. | .
Shimmy [[Shm™ | _Server T Ell?e'\:l]f Shm Shimmy
agent /| region Client | Sorver region agent

4)\)\
Container Container Container
1 2 3

The Architecture
éontainer : \

Orchestrator Container Orchestration API

Shimmy

Scheduler Controllers e aler

Key Value Store

ﬁ Orch daemon | \ ﬁ Orch daemon | \

I Container daemon I I Container daemon I
Shimmy _|RDMA_|_L| RDVIA Shimmy
agent Shm - or » server S agent
regi I regio
\ client client

y4 N\ Y

g

Container Container Container

Host 1 Host 2

Prototype

Redis

Kubernetes API

|

I

1

REST API

publisher

shem.write

[

REST API
Broker

(topic)

Shared IPC

shm.create

Shared-Memory

REST API

shem.read

Subscriber

-

Kubernetes Node

Evaluation

e Setup:

o two Cloudlab Servers (1x Xeon E5-2450 processor (8 cores, 2.1Ghz), 16GB Memory
(4 x 2GB RDIMMs, 1.6Ghz), 1 x Mellanox MX354A Dual port FDR CX3 adapter w/1 x
QSA adapter) running Ubuntu 16.04. For our system we have built docker containers
for the broker, publisher, and subscriber.

e We compared against Eclipse Mosquitto and Apache Kafka
o Eclipse Mosquitto is based on pub/sub model which uses TCP/IP underneath

o Apache Kafka is stream-processing software platform which uses TCP/IP

Local communication - 16 B messages

10® —

Throughput (Messages/second)

B Shimmy

] Kafka

1 Mosquitto| |

1074 1075 1076
Number of Messages

Latency (seconds)

B Shimmy
[Mosquitto |4
[Kafka

1075 1076
Number of Messages

Remote communication - 16 B messages

Throughput (Messages/second)

B Shimmy

1 Kafka

|3 Mosquitto] |

10"4 10”5 10”6
Number of Messages

B Shimmy
rrrrrrrrrrrrrrrrrr [Mosquitto |

1 Kafka

1074 1075 1076
Number of Messages

Local communication - 100 KB Messages

Throughput (Messages/second)

B Shimmy
[Mosquitto
1 Kafka

10™5

1076

Number of Messages

Latency (seconds)

B Shimmy
[Mosquitto
[Kafka

10"4 10°5 1076
Number of Messages

Conclusion

e Anew communication model based on shared memory channels
e Optimizes local communication, but supports remote communication
through RDMA

e Developed an Initial prototype which demonstrated

(@)

(@)

(@)

(@)

1.78x lower latency than mosquitto for 100KB messages local
2.85x lower latency than Kafka for 100KB messages local

27x lower latency than mosquitto for 16B messages local
82x lower latency than kafka for 16B messages local

21x lower latency than mosquitto for 16B messages remote
66x lower latency than kafka for 16B messages remote

Future work

e Integration with Kubernetes

o Create a shared memory channel
o Colocation of containers

o Security

e Load Balancing

Discussions

What kinds of feedback we are looking to receive?

how can we improve our communication models and infrastructure to provide a complete
low latency/high throughput platform for edge/cloud computing.

What critical functionality in missing in our current proposal?
What are other platforms that we should compare our platform with?
Are there other technologies that we could leverage to improve our proposal?

Are there other communication models or paradigms (other than pub/sub and streaming)
that we should provide?

Discussions (2)

The open issues the paper does not addressed

e Applications would need to be modified to take advantage of Shimmy’s architecture, but
we hope that the performance benefits will make it worth.

Thank youl!

