
Shimmy: Shared Memory Channels for
High Performance Inter-Container

Communication
Marcelo Abranches*, Sepideh Goodarzy*, Maziyar Nazari*, Shivakant Mishra, Eric

Keller
University of Colorado, Boulder

*All three authors contributed equally to this paper

Crowd Monitoring

https://sequre.world/tag/computer-science/

Crowd Monitoring App in Edge Clouds

Using Berkeley socket
with TCP/IP for

containers
communication

SLOW!

Not utilizing
the network
resources!

The Problem
If each link has an
average of X ms
delay:

1x

2x

3x

4x

5x

Making Resized,
Objects detected,
faces blurred
images is going to
have 5 time X ms as
average delay

What if ?
we use shared memory channels for container communications ?

● What about remote
communications?

● Do we have a central
control over all the
containers host ?

● Modifying the
Applications

● Faster
○ Not going

through network
stack delays

● Accessible

What’s the solution?
● What about remote connections?

○ Remote communication is efficiently supported through synchronizing
shared memory regions via RDMA

● Do we have a central control over all the containers host ?
○ modern infrastructures we can assume these applications are running

within a container orchestration framework, which provides control over:

■ communication interface
■ communication medium

So We proposed ...

● Rethink the communication model

● Create shared memory channels between containers

● supporting both a pub/sub model and bi-directional streaming model

● Local communication is made more efficient

● Remote communication is efficiently supported through
synchronizing shared memory regions via RDMA

● Not only applicable to the edge clouds but also beneficial in core cloud
environments

The Architecture

Container 1 Container 2

Shm region

The Architecture

Container 1 Container 2

Shimmy
agent Shm region

The Architecture

Container
1

Container
2

Shimmy
agent

Shm
region

Container
3

Shimmy
agent

Shm
region

RDMA
Client

RDMA
Server

RDMA
Server

RDMA
Client

The Architecture

Prototype

Evaluation
● Setup:

○ two Cloudlab Servers (1x Xeon E5-2450 processor (8 cores, 2.1Ghz), 16GB Memory
(4 x 2GB RDIMMs, 1.6Ghz), 1 x Mellanox MX354A Dual port FDR CX3 adapter w/1 x
QSA adapter) running Ubuntu 16.04. For our system we have built docker containers
for the broker, publisher, and subscriber.

● We compared against Eclipse Mosquitto and Apache Kafka

○ Eclipse Mosquitto is based on pub/sub model which uses TCP/IP underneath

○ Apache Kafka is stream-processing software platform which uses TCP/IP

Local communication - 16 B messages

Remote communication - 16 B messages

Local communication - 100 KB Messages

Conclusion
● A new communication model based on shared memory channels
● Optimizes local communication, but supports remote communication

through RDMA
● Developed an Initial prototype which demonstrated

○ 1.78x lower latency than mosquitto for 100KB messages local
○ 2.85x lower latency than Kafka for 100KB messages local

○ 27x lower latency than mosquitto for 16B messages local
○ 82x lower latency than kafka for 16B messages local

○ 21x lower latency than mosquitto for 16B messages remote
○ 66x lower latency than kafka for 16B messages remote

Future work
● Integration with Kubernetes

○ Create a shared memory channel

○ Colocation of containers

○ Security

● Load Balancing

Discussions
What kinds of feedback we are looking to receive?

● how can we improve our communication models and infrastructure to provide a complete
low latency/high throughput platform for edge/cloud computing.

● What critical functionality in missing in our current proposal?

● What are other platforms that we should compare our platform with?

● Are there other technologies that we could leverage to improve our proposal?

● Are there other communication models or paradigms (other than pub/sub and streaming)
that we should provide?

Discussions (2)
The open issues the paper does not addressed

● Applications would need to be modified to take advantage of Shimmy’s architecture, but
we hope that the performance benefits will make it worth.

Thank you!

