
Breaking the Trust Dependence on Third Party
Processes for Reconfigurable Secure Hardware

Aimee Coughlin, Greg Cusack, Jack Wampler,
Eric Keller, Eric Wustrow

Click to edit Master title style

Hardware that protects against other parts of the system

• Implemented such that you can trust its functionality

What is secure hardware?

2

• Useful for defending against untrusted software

• Can defend against some kinds of physical threats

Click to edit Master title style

• Secure coprocessor that provides
cryptographic functions and key storage

• Most popularly used for disk encryption

Trusted Platform Modules

3

Click to edit Master title style

• Ensures that only trusted system
software can boot by checking the
signature of the software before it boots

Secure Boot

4

Click to edit Master title styleTrusted Execution Environments

5

CPUTEE

Operating System

App 1 App 2

MemoryIsolated Memory

Isolated App

Click to edit Master title styleProblem: Only Manufacturers Make Decisions

• What features to include

• When and if patches are available

6

Click to edit Master title styleWhat if Developers Could Make These Decisions?

Processor

Operating System

Application

Secure Hardware

define

Click to edit Master title style

• Leverage programmability of FPGAs to enable
reconfigurable secure hardware

• Expose programmability to developers

Enter FPGAs

8

Click to edit Master title styleThe Downside of Programmability

9

Secure HW
Function

FPGA

• Immutable nature of silicon is a basis for the
guarantees of secure hardware

• Programmability compromises security properties

Desired Config

Click to edit Master title style

• Immutable nature of silicon is a basis for the
guarantees of secure hardware

• Programmability compromises security properties

The Downside of Programmability

10

Attacker’s
Function

FPGA

Attacker

Desired Config

Click to edit Master title styleBitstream Protection (widely available)

Decrypt bitstream

FPGA

Encrypt
Bitstream

Secure HW
Function

Desired Config

Click to edit Master title styleBitstream Protection – can’t attack the device

Decrypt bitstream

FPGA

Encrypt
Bitstream

Secure HW
Function

Attacker
Desired Config

Click to edit Master title styleBitstream Protection – CAN attack the process

Decrypt bitstream

Desired Config

FPGA

Encrypt
Bitstream

Insecure HW
Function

Attacker

Encrypt
Bitstream

Breaking the Trust Dependence
on Third Party Processes for
Reconfigurable Secure Hardware

Click to edit Master title styleHigh-level Idea

Decrypt bitstream

Desired
Config

FPGA

• Self-provisioning
• Key creation and maintenance is

internal to device

• Policy-controlled update system Update
System

Secure HW
Function

Click to edit Master title styleDefining some Roles

• FPGA Manufacturer

• System Manufacturer

• System Provisioner <= loads an initial FPGA configuration

• Application Developer <= loads secure hardware configuration

• User <= operates the device

(roles may be overlap)

Click to edit Master title styleSelf-provisioning

• Start with empty device

Secure Boot

FPGA

Secure Storageself
Provision

config

Initial
config

Click to edit Master title styleSelf-provisioning

• Start with empty device

Secure Boot

FPGA

Secure Storageself
Provision

config

Initial
config

- Can only be read by
specific hardware

Click to edit Master title styleSelf-provisioning

• Start with empty device

Secure Boot

FPGA

Secure Storageself
Provision

config

Initial
config

- Stores a public key

- the device will only load an image
generated with the corresponding key

Click to edit Master title styleSelf-provisioning (1) – Generate Key Pair

• Special self-provisioning config used by system provisioner

Secure Boot

FPGA

Secure Storageself
Provision

config

self
Provision
system

(1) Generate a key pair
(2) Store the secret key in secure
storage.
(3) Program the public key to the
secure boot system on the device.

Initial
config

Click to edit Master title styleSelf-provisioning (1) – Generate Key Pair

• Special self-provisioning config used by system provisioner

Secure Boot

FPGA

Secure Storageself
Provision

config

self
Provision
system

Initial
config

(1) Generate a key pair
(2) Store the secret key in secure
storage.
(3) Program the public key to the
secure boot system on the device.
(4) Sign/encrypt the initial FPGA
configuration with secret key.

Initial
Config

(Signed)

Click to edit Master title styleSelf-provisioning (2) – Load Initial Config

• Only this specific configuration can be loaded onto the FPGA
(next power cycle)

Secure Boot

FPGA

Secure Storage

Initial
Config

(Signed)

Update
System

(w/ INITIAL
policy)

Initial policy could include
a one-time use key

Click to edit Master title styleLoading Secure HW App (1) – verify policy

• The user initiates the loading of a new config

Secure Boot

FPGA

Secure Storage

Initial
Config

(Signed)

Desired
Secure HW App

Update
System

(w/ INITIAL
policy)

(1) Receive an update.
(2) Verify that the update conforms to the
update security policy.

Click to edit Master title styleLoading Secure HW App (1) – verify policy

• The user initiates the loading of a new config

Secure Boot

FPGA

Secure Storage

Initial
Config

(Signed)

Desired
Secure HW App

Desired
Secure HW App

(signed)

Update
System

(w/ INITIAL
policy)

(1) Receive an update.
(2) Verify that the update conforms to the
update security policy.
(3) Use secret key to sign/encrypt the update
(using embedded encryption hw)

Click to edit Master title styleLoading Secure HW App (2) – Load Desired Config

• The secure HW App is then loaded

Secure Boot

FPGA

Secure Storage

Update
System

(w/ NEW policy)

Secure HW App

Desired
Secure HW App

(signed)

Click to edit Master title styleUpdate Policies: Implemented by the loaded config

• Flexibility to use a variety of means to protect the update
(including multiple-factors)
• User inputs, key maintained by trusted dev, key maintained by user, etc.

• Flexibility to implement a variety of policies
• Trust once (initially unprotected)

• One time key (protected by shared key)

• 2 factor (signed by trusted dev and user input PIN)

• No updates allowed

Click to edit Master title styleImplementation

• Self-provisioning, secure update, secure storage on Xilinx Zynq Ultrascale+

• Application: TEE (like SGX but with custom root of trust)

Server
endpoint

Enclave
driver

Isolated Execution
Environment

ECDSA
Enclave
Loader /
Verifier

ARM CPU

FPGA Fabric

Remote client

Remote
Attestation

Enclave
libraries

Secure
RNG config

Enclave
Logic

Click to edit Master title styleSDK for the TEE

Enclave Applications:

• SHA512

• Password manager

• Just copy-in / copy-out

• Contact Matcher (like Signal)

arm.c

User created

SDK

enclave.c

interface.json

ARM binary

libenc.c

libenc.h

Enclave library

HLS
Generated
HW config

HW encSW Enc

HW config w/
MicroBlaze

and executable

Selected Option

Click to edit Master title styleConclusion

Main Take Away:

• We don’t need to trust the system provisioner to maintain keys

Our system

• protects the most important key (self-provisioning)

• provides flexibility to determine how updates happen (policy)

Click to edit Master title styleThank you

Eric.Keller@Colorado.edu

