o L

il
BU-SAT §

LR . ’
e 4, &0 I

What is secure hardware?

Hardware that protects against other parts of the system
* Implemented such that you can trust its functionality

4

» Useful for defending against untrusted software

* Can defend against some kinds of physical threats

Trusted Platform Modules

* Secure coprocessor that provides TRUSTED
cryptographic functions and key storage COMPUTING GROUP"™
* Most popularly used for disk encryption S—

Secure Boot

* Ensures that only trusted system
software can boot by checking the
signature of the software before it boots

Allow OEM unlocking?

WARNING: Device protection features will
not work on this device while this setting is

turned on.

CANCEL ENABLE

N~ |

< Developer options

(0]3}

Take bug report

Desktop backup password
Desktop full backups aren’t currently protected

Stay awake
Screen will never sleep while charging

Enable Bluetooth HCI snoop log
Capture all bluetooth HCI packets in a file

OEM unlocking ®
Allow the bootloader to be unlocked

Running services
View and control currently running services

Debugging

USB debugging ®

Debug mode when USB is connected

™

Trusted Execution Environments

arm
TRUSTZONE e

App 2

Isolated App Operating System

|

-y (OteD

TEE CPU

Isolated Memory Memory

Problem: Only Manutacturers Make Decisions

Feature TPM TZ SGX

. Flexible Root of Trust 9 ® 0

* What features to include Trusted Execution Environment O ® ®
Remote Attestation o O ®

Peripheral Access O ® o

 When and if patches are available TrustedInput O © O
Hardware RNG o o o

Hardware Crypto @ O O

Secure Storage ® O @

Shared Architecture O @ ®

Oblivious Memory O O L

Cache Side Channel Defense ® O 0

TLB Side Channel Defense O o @

What if Developers Could Make These Decisions?

Application define

Operating System

Processor Secure Hardware

Enter FPGAS

* Leverage programmability of FPGAs to enable
reconfigurable secure hardware

* Expose programmability to developers

The Downside of Programmability

* Immutable nature of silicon is a basis for the Desired Config
guarantees of secure hardware

. - . ; rti
Programmability compromises security properties Secure HW

Function

The Downside of Programmability

Attacker

* Immutable nature of silicon is a basis for the Desired Config
guarantees of secure hardware

* Programmability compromises security properties Attacker’s
Function

10 Gy

Bitstream Protection (widely available

Desired Config

Application Note: UltraScale and
Using Encryption and Authenticz

i: Xl LINX Secure an UltraScale/UltraScale+

Bitstream
XAPP1267 (v1.3) October 12, 2018 Author: Kyle Wilkinson

Summary

i} IMPORTANT: See Xilinx Design Advisory 68832 at
https://www.xilinx.com/support/answers/68832.htm for important updates abo
programming with Vivado Design Suite 2016.4 and earlier versions.

This application note describes a simple step-by-step process to generate :
. bitstream and encryption keys (both AES-GCM and RSA authentication) usi

D e C ry pt b Itst re a m Vivado® Design Suite. Steps to program the AES-GSM encryption key and t
public key, along with the encrypted bitstream into a Xilinx UltraScale™ FPG

Design Suite are also included. This application note applies to both UltraS

TETPUR D DR (VI =T -V

Secure HW
Function

™

Bitstream Protection — can’t attack the device

, , Attacker
Desired Config

Decrypt bitstream

Secure HW
Function

Bitstream Protection — CAN attack the process

Attacker

Decrypt bitstream

Insecure HW
Function

Breaking the Trust Dependence
on Third Party Processes for
Reconfigurable Secure Hardware

High-level |[dea

* Self-provisioning

* Key creation and maintenance is Decrypt bitstream

internal to device

 Policy-controlled update system

Secure HW
Function

Defining some Roles

* FPGA Manufacturer

e System Manufacturer

* System Provisioner <= |oads an initial FPGA configuration

* Application Developer <=loads secure hardware configuration
e User <= operates the device

(roles may be overlap)

Self-provisioning

 Start with empty device

self Secure Storage

config

Initial
config

Self-provisioning

 Start with empty device

self Secure Storage

config

- Can only be read by
specific hardware

Initial
config

Self-provisioning

 Start with empty device

self Secure Storage

config

Initial

config - Stores a public key

- the device will only load an image
generated with the corresponding key

Self-provisioning (1) — Generate Key Pair

 Special self-provisioning config used by system provisioner

self Secure Storage

config

(1) Generate a key pair
self (2) Store the secret key in secure

Initial storage.

config Provision (3) Program the public key to the

system secure boot system on the device.

Self-provisioning (1) — Generate Key Pair

 Special self-provisioning config used by system provisioner

self Secure Storage
Provision f f Secure Boot

config

(1) Generate a key pair

self (2) Store the secret key in secure
Initial . storage.
config Provision (3) Program the public key to the
system secure boot system on the device.
(4) Sign/encrypt the initial FPGA
configuration with secret key.

Initial

Config
(Signed)

Gy

Self-provisioning (2) — Load Initial Config

* Only this specific configuration can be loaded onto the FPGA

(next power cycle)
Secure Boot

Initial

Config
(Signed)

Update
System
(w/ INITIAL

policy)

Initial policy could include
a one-time use key

Loading Secure HW App (1) — verify policy

* The user initiates the loading of a new config

(1) Receive an update.
(2) Verify that the update conforms to the

Initial

Config
(Signed)

ki update security policy.
Desired System
Secure HW App (w/ INITIAL
policy)

Loading Secure HW App (1) — verify policy

* The user initiates the loading of a new config
Initial

Secure Boot
Config

(Si ned) (1) Receive an update.
5 (2) Verify that the update conforms to the

Update update security policy.
Desired Syf)stem (3) Use secret key to sign/encrypt the update
Secure HW App (w/ INITIAL (using embedded encryption hw)
policy)

Desired
Secure HW App FPGA
(signed)

Gy

Loading Secure HW App (2) — Load Desired Config

* The secure HW App is then loaded

Update
System
(w/ NEW policy)

Secure HW App

Desired
Secure HW App
(signed)

Update Policies: Implemented by the loaded config

* Flexibility to use a variety of means to protect the update
(including multiple-factors)

* User inputs, key maintained by trusted dev, key maintained by user, etc.

* Flexibility to implement a variety of policies
* Trust once (initially unprotected)
* One time key (protected by shared key)
2 factor (signed by trusted dev and user input PIN)
* No updates allowed

Implementation

* Self-provisioning, secure update, secure storage on Xilinx Zyng Ultrascale+
* Application: TEE (like SGX but with custom root of trust)

Remote client ARM CPU
Remote Server Enclave
. < > R ,
Attestation o1 endpoint driver
: 4+
Enclave FPGA Fabric .l
.) IIIIIIIIIIIIIIIIIIHIIII IIIII'EnCIave
libraries .

Secure Enclave I Logic
RNG ECDSA Loader /

Verifier

llllllllllllllllllllllllllll

Isolated Execution
Environment

SDK for the TEE

Enclave Applications:
e SHA512
* Password manager

1 1 1
1 1 1
1 1 1
: |
1 libenc.c B
1 1 1
1 1 1
1 1 1

interface.json
arm.c | enclave.c

SDK

Selected Option
SW Enc HW enc

=
)
-
%
>

* Just copy-in / copy-out
* Contact Matcher (like Signal)

icnere Wl cenes
ARM binary MicroBlaze Generated

and executable HW config

Conclusion

Main Take Away:
* We don’t need to trust the system provisioner to maintain keys

Our system
 protects the most important key (self-provisioning)
 provides flexibility to determine how updates happen (policy)

Thank you

Eric.Keller@Colorado.edu

