

FOCUS: Scalable Search Over Highly Dynamic Geo-distributed State

Azzam Alsudais
Mohammad Hashemi
Eric Keller

Zhe Huang, Bharath Balasubramanian
Shankaranarayanan Puzhavakath Narayanan
Kaustubh Joshi

IEEE ICDCS 2019 – Dallas, TX, USA
July 9, 2019

Why do systems need to find nodes?

Cloud Management

Use Cases

VM Provisioning

Cloud Management

Use Cases

VM Provisioning

Cloud Management

Use Cases

VM Migration

VM Provisioning

Cloud Management

Use Cases

VM Migration

Monitoring

VM Provisioning

Cloud Management NVF Automation

Use Cases

VM Migration

Monitoring

VM Provisioning
Geo-distributed VNF

Service Chain Placement

Cloud Management NVF Automation

Use Cases

VM Migration

Monitoring

VM Provisioning
Geo-distributed VNF

Service Chain Placement

Cloud Management NVF Automation

Required information is assumed available

Use Cases

VM Migration

Monitoring

VM Provisioning
Geo-distributed VNF

Service Chain Placement

Cloud Management NVF Automation

Required information is assumed available

But HOW is node information collected?

Use Cases

VM Migration

Monitoring

Outline

● How do systems find nodes?

● Limitations of current approaches

● FOCUS design

● Evaluation

● Conclusion

Looking Under The Hood
How do systems search for nodes?

Node finding in

Hosts

Hosts

RabbitMQ Server

 Push

Hosts

RabbitMQ Server

Dequeue

 Push

Central DB

Hosts

RabbitMQ Server

Dequeue

$ openstack server create --flavor FLAVOR_ID --image IMAGE_ID

 Push

Central DB

Hosts

Placement Service

RabbitMQ Server

Dequeue

$ openstack server create --flavor FLAVOR_ID --image IMAGE_ID

 Push

Central DB

Hosts

Placement Service

RabbitMQ Server

Dequeue

Query

$ openstack server create --flavor FLAVOR_ID --image IMAGE_ID

 Push

Central DB

Hosts

Placement Service

RabbitMQ Server

Dequeue

Query

$ openstack server create --flavor FLAVOR_ID --image IMAGE_ID

Provision VMs

 Push

Central DB

Limitations of Current Approaches

Hosts

 Central DB

Placement Service

RabbitMQ Server

Dequeue

QueryProvision VMs

 Push

Hosts

 Central DB

Placement Service

RabbitMQ Server

Dequeue

QueryProvision VMs

 Push

Hard to scale > 100s of nodes!

Hosts

 Central DB

Placement Service

RabbitMQ Server

Dequeue

QueryProvision VMs

 Bottleneck

 Push

Hard to scale > 100s of nodes!

What if we have a data center with 1000s of servers?What if we have a data center with 1000s of servers?

What if we have a data center with 1000s of servers?What if we have a data center with 1000s of servers?

Create clusters!

Independent clusters acting as their own datacentersIndependent clusters acting as their own datacenters

This increases operational complexity!This increases operational complexity!

Now we manage several entities (instead of one)Now we manage several entities (instead of one)

Multi-vendor/site cloud

Multi-vendor/site cloud

Finding nodes across cloud
sites/vendors is even harder!
Finding nodes across cloud

sites/vendors is even harder!

Scalable and generic search service for distributed systems

Main Components

Main Components

Query Processing with Directed Pulling

Main Components

Query Processing with Directed Pulling

Gossip-based Node Coordination

Main Components

Easy-to-integrate Query Interface

Query Processing with Directed Pulling

Gossip-based Node Coordination

Main Components

Easy-to-integrate Query Interface

Query Processing with Directed Pulling

Gossip-based Node Coordination

Abstractions

Abstractions
Node Attributes

Abstractions
Node Attributes

Static

Dynamic

Abstractions
Node Attributes

Static

Dynamic

Never change

Abstractions
Node Attributes

Static

Dynamic

Never change

cpu cores, arch, etc

Abstractions
Node Attributes

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Abstractions
Node Attributes

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Abstractions
Node Attributes

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Abstractions
Node Attributes Query Structure

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Abstractions
Node Attributes Query Structure

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Attribute List

Abstractions
Node Attributes Query Structure

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Attribute List

name (string)

upper bound (int)

lower bound (int)

Abstractions
Node Attributes Query Structure

Static

Dynamic

Never change

cpu cores, arch, etc

Frequently change

Usage: cpu, ram, disk,
bandwidth, etc

Attribute List

name (string)

upper bound (int)

lower bound (int)

freshness (int)

limit (int)

Query Processing with Directed Pulling

Attribute-based Grouping

Attribute-based Grouping

Group nodes
according to

their attribute
values

Group nodes
according to

their attribute
values

Attribute-based Grouping

cpu_usage {50-100}%

Group nodes
according to

their attribute
values

Group nodes
according to

their attribute
values

Attribute-based Grouping

cpu_usage {50-100}% cpu_usage {0-50}%

Group nodes
according to

their attribute
values

Group nodes
according to

their attribute
values

Attribute-based Grouping

cpu_usage {50-100}% cpu_usage {0-50}% avail_RAM {4-8}GB

Group nodes
according to

their attribute
values

Group nodes
according to

their attribute
values

Attribute-based Grouping

cpu_usage {50-100}% cpu_usage {0-50}% avail_RAM {4-8}GB cpu_cores {8-12}

Group nodes
according to

their attribute
values

Group nodes
according to

their attribute
values

Nodes

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Nodes

Groups
metadata

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Nodes

Query: {get nodes with cpu_usage < 50 and avail_RAM > 4GB}

Groups
metadata

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Nodes

Query: {get nodes with cpu_usage < 50 and avail_RAM > 4GB}

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Query

Nodes

Query: {get nodes with cpu_usage < 50 and avail_RAM > 4GB}

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Query

Nodes

Query: {get nodes with cpu_usage < 50 and avail_RAM > 4GB}

cpu_usage {50-100}%

cpu_usage {0-50}%

avail_RAM {4-8}GB

Query

–
– Response

Gossip-based Node Coordination

Gossip-based Coordination

cpu_usage {50-100}%

Gossip-based Coordination

cpu_usage {50-100}%
Nodes in a group are connected

through a p2p gossip channel
Nodes in a group are connected

through a p2p gossip channel

Gossip-based Coordination

cpu_usage {50-100}%
Nodes in a group are connected

through a p2p gossip channel
Nodes in a group are connected

through a p2p gossip channel

Nodes exchange membership
information

Nodes exchange membership
information

Gossip-based Coordination

cpu_usage {50-100}%
Nodes in a group are connected

through a p2p gossip channel
Nodes in a group are connected

through a p2p gossip channel

Nodes exchange membership
information

Nodes exchange membership
information

One node pushes group info
to the FOCUS server

One node pushes group info
to the FOCUS server

Gossip-based Coordination

cpu_usage {50-100}%
Nodes in a group are connected

through a p2p gossip channel
Nodes in a group are connected

through a p2p gossip channel

Nodes exchange membership
information

Nodes exchange membership
information

Queries are propagated via
gossip channel

Queries are propagated via
gossip channel

One node pushes group info
to the FOCUS server

One node pushes group info
to the FOCUS server

Dynamic Groups Management
Operations flow in

Node P2p group

Dynamic Groups Management
Operations flow in

Node P2p group

register

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

state change

leave p2p group(s)

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

state change

leave p2p group(s)

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

state change

leave p2p group(s)

query

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

state change

leave p2p group(s)

query disseminate query
to nodes

Dynamic Groups Management
Operations flow in

Node P2p group

register

refer to group(s)

join p2p group(s)

state change

leave p2p group(s)

query

response

disseminate query
to nodes

Implementation & Evaluation

 Node Manager

Dynamic
Groups

Manager
Registrar

Query
Router

Cache

REST API

REST API

FOCUS Agent

Query

Implementation

p2p Agent

 Node Manager

Dynamic
Groups

Manager
Registrar

Query
Router

Cache

REST API

REST API

1.9K
LoC

1.2K
LoC

FOCUS Agent

Query

Implementation

p2p Agent

 Node Manager

Dynamic
Groups

Manager
Registrar

Query
Router

Cache

REST API

REST API

1.9K
LoC

1.2K
LoC

FOCUS Agent

Serf

Query

Implementation

p2p Agent

Evaluation

● Deployed in Amazon EC2

● 4 regions: Canada, California, Ohio, Oregon

● In each region: 8 VMs (4 vCPUs, 16GB RAM)

● FOCUS server running in California (same VM config)

● Testing up to 1600 simulated node agents

Number of Nodes

B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
B

ps
)

vs. Other Approaches

Naive Push/PullNaive Push/Pull

RabbitMQ (Publish)RabbitMQ (Publish)

Static HierarchyStatic Hierarchy

RabbitMQ (Subscribe)RabbitMQ (Subscribe)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Number of Nodes

B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
B

ps
)

vs. Other Approaches

Naive Push/PullNaive Push/Pull

RabbitMQ (Publish)RabbitMQ (Publish)

Static HierarchyStatic Hierarchy

RabbitMQ (Subscribe)RabbitMQ (Subscribe)

Adding a layer of
intermediate nodes

acting as aggregators

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Number of Nodes

B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
B

ps
)

vs. Other Approaches

Naive Push/PullNaive Push/Pull

RabbitMQ (Publish)RabbitMQ (Publish)

Static HierarchyStatic Hierarchy

RabbitMQ (Subscribe)RabbitMQ (Subscribe)

Nodes publish their
state (i.e.,fancy push)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Number of Nodes

B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
B

ps
)

vs. Other Approaches

Naive Push/PullNaive Push/Pull

RabbitMQ (Publish)RabbitMQ (Publish)

Static HierarchyStatic Hierarchy

RabbitMQ (Subscribe)RabbitMQ (Subscribe)
Nodes subscribe for

queries

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Number of Nodes

B
an

dw
id

th
 C

on
su

m
pt

io
n

(K
B

ps
)

vs. Other Approaches

Naive Push/PullNaive Push/Pull

RabbitMQ (Publish)RabbitMQ (Publish)

Static HierarchyStatic Hierarchy

RabbitMQ (Subscribe)RabbitMQ (Subscribe)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

Measuring BW Consumption at the Query Server
(frequency = 1 query/update per second)

95%
improvement

with Real-world Cloud Traces*

* “Chameleon Cloud: A configurable experimental environment for largescale cloud research,” https://www.chameleoncloud.org/.

with Real-world Cloud Traces*

* “Chameleon Cloud: A configurable experimental environment for largescale cloud research,” https://www.chameleoncloud.org/.

75K OpenStack VM placement requests 75K OpenStack VM placement requests

with Real-world Cloud Traces*

* “Chameleon Cloud: A configurable experimental environment for largescale cloud research,” https://www.chameleoncloud.org/.

75K OpenStack VM placement requests 75K OpenStack VM placement requests

Replayed at accelerated rate (15,000x)Replayed at accelerated rate (15,000x)

with Real-world Cloud Traces*

* “Chameleon Cloud: A configurable experimental environment for largescale cloud research,” https://www.chameleoncloud.org/.

75K OpenStack VM placement requests 75K OpenStack VM placement requests

Replayed at accelerated rate (15,000x)Replayed at accelerated rate (15,000x)

Latency stabilizes after 600 nodes
→ because group size is capped (~150 nodes per
group)

Latency stabilizes after 600 nodes
→ because group size is capped (~150 nodes per
group)

Microbenchmarks

Resource usage of the
FOCUS server (40 queries/s)

Resource usage of the
FOCUS server (40 queries/s)

Microbenchmarks

Resource usage of the
FOCUS server (40 queries/s)

Resource usage of the
FOCUS server (40 queries/s)

Overhead imposed by node
agent (KBps)

Overhead imposed by node
agent (KBps)

Microbenchmarks

Resource usage of the
FOCUS server (40 queries/s)

Resource usage of the
FOCUS server (40 queries/s)

Overhead imposed by node
agent (KBps)

Overhead imposed by node
agent (KBps)

Query response time for
different group sizes

Query response time for
different group sizes

Conclusion
● Current systems’ scalability is limited

– This is due to tightly-coupled node management

Conclusion
● Current systems’ scalability is limited

– This is due to tightly-coupled node management

● FOCUS is scalable search service

– Employs a loosely-coupled node management (p2p)

– Scales better than current approaches (15x improvement)

– Imposes minimal overhead on nodes

– Integrates well with current systems

Thank You!
Questions?

