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Why do systems need to find nodes?
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Looking Under The Hood
How do systems search for nodes?
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Limitations of Current Approaches
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What if we have a data center with 1000s of servers?What if we have a data center with 1000s of servers?

Create clusters!



  



  

Independent clusters acting as their own datacentersIndependent clusters acting as their own datacenters



  

This increases operational complexity!This increases operational complexity!

Now we manage several entities (instead of one)Now we manage several entities (instead of one)



  

Multi-vendor/site cloud
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Scalable and generic search service for distributed systems
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Abstractions
Node Attributes Query Structure
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Query Processing with Directed Pulling
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Implementation & Evaluation
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Evaluation

● Deployed in Amazon EC2

● 4 regions: Canada, California, Ohio, Oregon

● In each region: 8 VMs (4 vCPUs, 16GB RAM)

● FOCUS server running in California (same VM config)

● Testing up to 1600 simulated node agents
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Conclusion
● Current systems’ scalability is limited

– This is due to tightly-coupled node management

● FOCUS is scalable search service

– Employs a loosely-coupled node management (p2p)

– Scales better than current approaches (15x improvement)

– Imposes minimal overhead on nodes

– Integrates well with current systems



  

Thank You!
Questions?


