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Abstract—Finding nodes which match certain criteria, based
on potentially highly dynamic information, is a critical need
in many distributed systems, ranging from cloud management,
to network service deployments, to emerging IoT applications.
With the increasing scale, dynamicity, and richness of data,
existing systems, which typically implement a custom solution
based around message queues where nodes push status to a
central database, are ill-suited for this purpose. In this paper,
we present FOCUS, a general and scalable service which easily
integrates into existing and emerging systems to provide this
fundamental capability. FOCUS utilizes a gossip-based protocol
for nodes to organize into groups based on attributes and
current value. With this approach, nodes need not synchronize
with a central database, and instead the FOCUS service only
needs to query the sub-set of nodes which have the potential
to positively match a given query. We show FOCUS’s flexibility
through an operational example of complex querying for Virtual
Network Functions instantiation over cloud sites, and illustrate
its ease of integration by replacing the push-based approach in
OpenStack’s placement service. Our evaluation demonstrates a
5-15x reduction in bandwidth consumption and an ability to scale
much better than existing approaches.

I. INTRODUCTION

Many distributed systems need the ability to find a node, or

a set of nodes, whose attributes match some criteria. A prime

example is in cloud management systems, where admins need

to identify nodes which satisfy certain properties, such as those

that have low CPU utilization, to make scheduling/migration

decisions. With the emergence of applications such as edge

cloud computing, and Network Service Provider (NSP) de-

ployments [1]–[3] of Virtual Network Functions (VNFs) [4]

modern systems are becoming more geographically distributed

with more autonomous control within each regional domain.

This introduces new challenges around scalability and the need

to obtain node attributes directly from the nodes themselves.

Existing approaches, such as those used in cloud man-

agement platforms like OpenStack [5], Kubernetes [6], and

Mesos [7] can not currently be used beyond the boundaries of

a single site because their architectures were not designed for

these new requirements. This is because they utilize either

a push or pull-based approach to obtain node information,

and neither is sufficient. With push-based approaches (used

in OpenStack), the nodes periodically push their current state

through message queues [8] to a central database. Fundamen-

tally, this leads to the centralized database being out of sync

with the state as held at the end nodes. Further, as we show

in Section III, this approach has limited scalability, requiring

applications to work around these limitations (introducing

various trade-offs in data freshness, operational complexity

and search overhead). In pull-based systems, such as used in

Google’s Borg [9], the controller polls nodes for their current

state on demand. This allows for the end nodes to serve as

the definitive source of information, but results in expensive

communication and ultimately not scalable. While the need

for finding nodes that are geo-distributed is recognized as

important (e.g., by the OpenStack community [10]), the fact

is existing systems simply do not support it.

In this paper, we introduce FOCUS, a scalable service

providing timely search across geo-distributed nodes with

varied and highly dynamic state. Its design is inspired by

scalable peer-to-peer (p2p) systems such as BitTorrent [11]. In

particular, central to FOCUS is a gossip-based system where

nodes (geographically distributed over the wide area) form

groups based on attributes and geographic proximity, which

then allows FOCUS to perform directed queries to only the

nodes which have the potential to positively respond to the

query. We couple this with a query interface which allows

FOCUS to be easily integrated into existing applications and

support a wide range of complex queries. We demonstrate its

flexibility by considering the operational query requirements

of a deployed, complex system to instantiate VNFs in an

NSP network (Section V-B). We demonstrate its ease of use

by replacing equivalent (but not scalable) functionality within

OpenStack, for its VM placement service (Section IX).

In summary, this paper describes FOCUS – a novel dis-

tributed service for finding nodes, with the following key

technical contributions:

• FOCUS provides a query interface which can be easily

integrated into larger systems. We demonstrate this by

showing how FOCUS can handle complex queries in a

production deployment of an NFV service, and replacing

OpenStack’s message queue based node finding system

for placement with a FOCUS-based solution.

• We introduce an approach which enables directed pulls

through sortable attribute-based groups. This is scalable

and enables end nodes to be the ultimate source of

information, as only a subset of nodes might match a

query.

• We integrate a gossip-based peer-to-peer coordination

into a general distributed application service, which en-

ables end nodes to self-form into groups. This, in turn,

alleviates any load on a central component, which in turn,

provides much greater scalability.





Category Query Examples

Sites Get all service provider-owned cloud sites

Services Get services of type vGateway, vDNS

Site attributes Sites within 100 miles of a given location and support
SRIOV with KVM version 22

Service
attributes

vGateways that have the VLAN Tag for the matching
customer VPN ID

Site capacity Sites that have a certain tenant quota, available
upstream bandwidth, vCPU, available Memory

Service capac-
ity

vDNS that can support 10000 resolutions/second,
vCDNs that has a hot cache for Customer Y

TABLE II: Example queries in an operational ONAP deployment.

need to handle a large scale – managing network services

across hundreds, soon to be thousands, of sites, where each

site has hundreds or thousands of servers. As such, it makes

sense to separate functions – the homing service deals with

site/service-level constraints and a cloud-level service like

OpenStack handles host-level constraints. With FOCUS, we

could rethink the architecture wherein the homing service

performs both functions, using FOCUS to optimize the search

over all hosts/services across sites in a scalable manner.

III. LIMITATIONS OF EXISTING SYSTEMS

To motivate how FOCUS should be architected, we first

examine the way node finding is commonly built into systems

today (based around message queues) and why we believe

this is not a great match for this purpose. We then discuss

some architectural alternatives which could (at a glance) be a

solution, but have significant shortcomings as well.

A. Node Finding with Message Queues

As illustrated in Figure 2a, the approach is broadly char-

acterized by the nodes periodically pushing information about

their current status (attributes and current values) to a central

database through a message queue. This allows the query

processing server to respond to any query to find a node by

simply querying the database.

As an example system that is built like this, OpenStack has

agents that run on each compute node (usually one per physical

host). These nodes each produce a few messages per second

containing their current state (e.g., number of VM instances,

available memory, disk, CPUs, etc) through RabbitMQ [8]

(the default messaging queue of OpenStack). A process within

OpenStack consumes this information from RabbitMQ and

feeds the information into a database.

To quantify the scalability limitation of message queues,

we deployed a VM on Amazon EC2 [14], dedicated to run

a RabbitMQ server with 8GB of RAM and a CPU with 4

virtual cores (each 2.4GHz), and we used 5 other VMs to

host simulated producers (nodes). In each run, we had 100

consumers consuming from 100 queues to which the producers

push their messages (we found this to be the most effective

way to consume data). Each producer was sending five 1KB

messages per second to the server (mimicking OpenStack

hosts’ behavior). We measured message latency and CPU

usage of the RabbitMQ process 30 seconds into the tests.

Figure 3 shows the latency (left y-axis) and CPU usage

(right y-axis) when we varied the number of producers from

1K to 8K. As shown, RabbitMQ hits its scalability limit

around 6k nodes, and crossed over 50% CPU utilization as

early as 2k nodes. While one can argue that adding more

RabbitMQ servers can scale the solution, we argue that this not

only will consume more resources, but it will also complicate

the management of RabbitMQ (multiple RabbitMQ servers

need to synchronize through distributed consensus [15], [16]).

Such model puts too much emphasis on the messaging queue,

making it a bottleneck and a single point of failure. We,

therefore, conclude that message queues are not the most

efficient means for finding nodes.

B. Alternate Architectures

Before presenting our gossip-based approach, it is worth

considering some alternatives.

1) Pull: A first alternative is to pull information from the

nodes in response to a query, rather than have the nodes

periodically push information. This is illustrated in Figure 2b.

When a query comes in, the server can poll the nodes for

their current state. The nodes would then send a response to

the server, which would process the responses and form a

response to the node finding query.

Pull-based approaches are generally not considered scalable,

as the server needs to query many nodes simultaneously, and

the synchronized responses coming back from the nodes can

result in server overload, or problems such as TCP incast [17].

2) Hierarchy: It is natural to assume that we could just add

hierarchy to address the limitations of push-based message

queues or simple pull-based approaches. Here, we consider

two approaches to hierarchy and conclude that neither is ideal.

Aggregating: Rather than N nodes all sending to a single

central server, we can introduce a layer of nodes that simply

aggregate the data (as illustrated in Figure 2c). We note that

this approach reduces the event rate (number of messages) at

the central server, but does not reduce bandwidth consumption,

nor does it reduce the event rate at the database.

Sub-setting: Rather than push all the way to the central

server, we could effectively divide the infrastructure into sub-

sets that each are designed with the nodes all pushing to their

subset manager (as illustrated in Figure 2d). Then a central

server would query (pull) each of the subset cloud managers

anytime a query comes in. This has two key problems. First,

this solution partitions the infrastructure, which as has been

argued before, is not ideal as crossing the partition boundaries

are an added challenge [18]. Second, this inherently increases

management complexity – we are now running and managing

several cloud managers as opposed to just a single one.

IV. FOCUS ARCHITECTURAL OVERVIEW

FOCUS, as illustrated in Figure 1, is a system which

provides a service to systems that need to find a set of nodes

which have certain attributes. Overall, we have two main

objectives: (i) serve as a general purpose service for node

finding across many applications, and (ii) efficiently scale both

in terms of performance and operational complexity. In this

section, we highlight the key design/architectural aspects that

help achieve this and then elaborate in subsequent sections.
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Fig. 2: Various alternate architectural designs that can be used for node finding.
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Fig. 3: RabbitMQ test showing latency of messages and CPU usage of the
RabbitMQ process while varying the number of producers (i.e., nodes).

Integrable Query Interface: In order to be useful to

applications, we need FOCUS to have an interface that is

easy to integrate and powerful enough to cover a variety of

applications’ needs. We provide a simple REST API in which

a query contains attributes and the range (or specific) values to

match. Further, we demonstrate the richness by illustrating the

queries needed in a production deployment of NFV services.

Query Processing with Directed Pulling: As explained

in Section III-B, simple pull-based approaches do not scale

beyond a small set of nodes. Yet, at the same time, pulling

provides the ability to have the most up-to-date information.

To balance between the goals of the scalability (both in terms

of performance, and in terms of operational management)

and supporting applications with dynamically changing nodes,

we introduce directed pulling in FOCUS. Specifically, in our

solution, we pre-filter nodes and only send pull requests to

nodes which have the potential to positively match the query.

Gossip-based Node Coordination: To realize directed

pulling, we use a gossip-based approach to group nodes

based on attribute and value. Crucially, the nodes themselves

organize into groups and gossip with each other in order to

determine when group membership should change. Then, if

needed, they communicate with the central FOCUS node, and

change groups. This distributes load from the central server to

all nodes, and enables more decentralized decision making. To

answer a query, FOCUS simply needs to know which groups

a given node is part of (or, said in the inverse, which nodes

are part of which groups). Note that, with this approach, we

avail all the benefits of the sub-setting approach in Section

III-B without incurring any of the operational complexity of

maintaining multiple managers.

V. INTEGRABLE QUERY INTERFACE

A key goal of FOCUS is to be useful across a broad range

of distributed applications – i.e., it has a query interface that

is easily integrated, and rich enough to support the needs of

applications. In this section, we first discuss the abstractions,

then describe a real-world example.

A. Abstractions

In this section, we provide a high-level overview of the

abstractions provided by FOCUS. As depicted in Figure 1, an

application can specify constraints for the nodes it wants to

find, and FOCUS will efficiently query the nodes and return

nodes (out of possibly thousands) that satisfy the constraints.

Node Attributes: Nodes have attributes that can be de-

scribed as either static or dynamic. Values of static attributes

do not change (e.g., number of CPU cores) while values of

dynamic attributes can and do change over time (e.g., free

memory). For multi-site environments, the nodes within a

given site inherit the global attributes of that site. For example,

a node representing a host in a cloud site will contain not only

host attributes such as available CPU and memory, but will

also inherit attributes such as “US-East” which describes the

cloud site’s geographic region.

Query Structure: Queries are attribute-oriented, meaning

that each application issuing a query should specify the

attributes and their desired values. A query structure contains a

list of queryable attributes, and for each attribute there are the

following fields: name, upper bound value, lower bound value,

limit, and a freshness parameter. The attribute name is used to

describe the attribute of interest to the requester application.

The upper bound and lower bound values are used to support

lesser/greater than operations. If an exact match is needed, then

both bounds should be of the same value. The limit specifies

the maximum number of responses to be returned. And finally,

the freshness field can be specified in terms of milliseconds (a

value of zero means the response must be as close to real time

as possible to guarantee extremely fresh results). We note that

this is one version of a query structure, and there are multiple

versions that FOCUS supports for other attribute types (e.g.,

location, text-based attributes, etc).

B. Example Queries used in VNF Homing

To illustrate the use of FOCUS, here we consider an op-

erational example of the VNF homing service described in

Section II-B. In this example, we specifically present the

case which matches today’s use (first searching for sites and

services, and then performing instantiation), rather than re-

architecting the solution which could be enabled by FOCUS

(searching for physical hosts and services across sites and

deploying a service chain in a one step process).

Figure 4 shows the homing requirements of a virtual Cus-

tomer Premises Equipment (vCPE) [19] network service, that

provides residential broadband connectivity. Figure 4a shows

the layout architecture, connecting the residence to the vG

(virtual gateway) hosting infrastructure at the Service Provider

Edge (PE). Here, the bridged residential gateway (BRG) is the
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Fig. 4: VNF homing: an apt use-case that illustrates the use of FOCUS

for homing the residential virtual Customer Premises Equipment (vCPE)
service [19] in ONAP [1].

vCPE located at the residential customer premises, while the

vG Multiplexer (vGMux) is a shared network function at the

PE that maps layer-2 traffic between a subscriber’s BRG and

its unique vG, ensuring traffic isolation between customers.

Homing the vCPE service requires finding a slice of an

existing vGMux instance and finding a suitable cloud site for

spinning up a new instance of the vG. Figure 4b shows the

homing policies (or constraints) that drive the selection of an

optimal vGMux and the corresponding PE site to host the

vG for a given customer. While the first two constraints are

relatively static, the hardware capabilities of a cloud site may

change as new host aggregates are added, and instantaneous

site capacities may vary at even shorter time scales since

resources are typically shared among multiple services and

customers. As shown in Figure 4b, FOCUS is a perfect fit for

this problem wherein those constraints can be expressed as a

query to FOCUS which will return a set of candidate vGMux

instances and sites (FOCUS ‘nodes’) that satisfy all constraints.

VI. QUERY PROCESSING WITH DIRECTED PULLING

In this section, we discuss the key concept of grouping

nodes based on their attribute values, how FOCUS is able to

pull from the right subset of nodes, and key optimizations for

FOCUS’s query processor.

Attribute-based Grouping: As demonstrated in Section V,

the state of each node is described in the form of attributes

(e.g., CPU utilization, free memory and disk, location, etc).

Naturally, grouping nodes based on their attribute values

makes it possible to filter out many nodes that cannot satisfy

certain queries. Driven by our query structure, we group nodes

based on attribute values that are within a specific range. For

example, in Figure 1, there are two groups of nodes – one for

nodes with free RAM of 4 to 6GB, and another for nodes with

1-4 virtual CPUs. Note that a node can be in multiple groups

simultaneously (e.g., having 5GB of RAM and 2 vCPUs).

In Section VII, we discuss how nodes form such groups in

a dynamic manner, adapting to changing attribute values.

Query Conjunctions through Sorted Pulls: Having pre-

filtered nodes and prior (coarse-grained) knowledge of the

current state of each node in the system, it is possible for

FOCUS to direct queries to only those nodes that have the

potential to satisfy the queries. Specifically, when FOCUS

receives a query, it parses the query and sends it to the

corresponding groups that satisfy the query conditions. The

members of the group, then, will respond with their current

state. For instance, consider a query to retrieve nodes with

4GB of RAM. FOCUS will send the query only to the group

that has 4 to 6GB of free RAM (exemplified in Figure 1).

Multi-attribute/constraint queries, if not handled well, can

undermine the advantages of pre-filtering and attribute-based

grouping. That is, if a query containing too many constraints

for different attributes is sent to every single group of nodes

that correspond to each attribute, then this can quickly de-

generate to the case where the query is sent to every single

node in the system. Instead, FOCUS sends the query to the

smallest group that corresponds to one of the query’s attributes

(mechanism described in Section VII). Then, the nodes within

that group can answer to all constraints in the query. This

narrows down the scope of nodes to which a query must be

sent even further.

Optimizations: In addition to sending queries to the small-

est group, we further optimize our querying with a cache

to store query responses along with a timestamp of when

they were fetched. Checking the cache is the first step in

processing a query. As described in Section V, each query

has a freshness parameter, which is checked against responses

fetched from the cache. Should cached responses not qualify

for the query freshness or in the event of a cache miss, the

query will be sent to the appropriate group. Moreover, under

heavy-load conditions, and after determining what groups to

which the query must be sent, FOCUS has the mechanism to

delegate to the querying application the act of actually sending

the query to the nodes. As a result, the load on FOCUS is

alleviated, making it more lightweight and scalable. However,

responses for those delegated queries will not traverse FOCUS,

and consequently will not be cached.

VII. GOSSIP-BASED NODE COORDINATION

Our attribute-based groups are p2p groups that implement

the gossip protocol [20], through which each node gossips

membership information with only a few members of the

group, who in turn gossip with other nodes until convergence

in reached. The gossip channel is also used to disseminate

queries received from the FOCUS server. In this section, we

describe how nodes form those groups and how FOCUS is able

to maintain information that is later used to process queries.

Dynamic Groups Management: Upon registering with FO-

CUS, a node reports its current attributes and the corresponding

values. In return, FOCUS will provide entry points into the

appropriate groups for the node to join. Each of the node’s

dynamic attributes corresponds to a specific p2p group based

on the attribute value1. When there are no existing groups

1Static attributes are maintained in the FOCUS distributed data-store (de-
scribed in Section VIII) and therefore do not need to be managed via groups.
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following static attributes (arch:x86, cores:8), then an entry at

the table for the arch attribute will look like the following.

node ID arch attributes timestamp

IP address x86 {cores:8} time value

Storing other attributes in each attribute table makes it much

more efficient to query the database. That is, to perform a

query with multiple attributes, we just need to query one table,

the table with the lowest number of entries. These tables are

also updated by the DGM when it learns new information.

2) The Dynamic Groups Manager (DGM):

Deterministic Group Naming: Choosing consistent group

IDs is crucial when referring new nodes to groups as well as

when routing queries to the desired group. The DGM, using a

deterministic group naming function, constructs group names

using an attribute cutoff. For instance, if the disk attribute

cutoff is set to 10, then a group named disk.10GB will contain

nodes that have between 10 and 20 GB of free disk space. Our

deterministic group naming function accepts an attribute-value

pair, and returns the corresponding group name.

Group Tables: The DGM keeps track of groups by storing

them in a primary key-value lookup table, which frequently

gets synchronized with the Cassandra data-store. We note

that since group information is essentially maintained by

the groups themselves, failure recovery of the DGM comes

naturally. That is, when the DGM fails and a new one is in-

stantiated, group representatives will send their corresponding

group information, which the new DGM uses to populate its

primary group tables. As discussed in Section VII, information

about nodes transitioning between groups will be kept in a

temporary table until they appear in one of the groups updates.

3) The Query Router: In order to separate the load between

the northbound API (consumed by querying applications) and

the southbound API (consumed by nodes), we bind the Query

Router to a different port than the DGM. It runs a process that

has a cache table in memory, which is checked every time

a query is received. For queries with only static attributes,

the Query Router will get the corresponding values directly

from the database. Otherwise, it will send the query to the

corresponding group after consulting the DGM. To prevent

FOCUS from indefinitely blocking on queries, FOCUS uses a

configured timeout after which the query processing will abort.

B. Node Agents

Our node agent consists of two light-weight processes:

a node manager and a p2p agent, both of which run on

every node in our system. The node manager is responsible

for communicating with the FOCUS service for managing

node registration and requesting group suggestions. And the

p2p agent (which runs a Serf client [23]) is responsible for

connecting to other p2p agents for each of the node’s attribute

groups, one group per attribute.

Node Manager: The node manager has three tasks. (i) It

runs OS commands that collect resource (attribute) information

(CPU usage, free RAM and disk, etc). (ii) It handles communi-

cation with the FOCUS service. (iii) It provides an interface for

Dashboard / CLI

Scheduler
Placement 

API

DB

Resource 

Provider

API: allocation_candidates 
Input: requests, limit 
Output: list_of_candidates

SQL select 
statement

API: select_destinations 
Input: requests, limit 

Output: list_of_allocations

API: get_by_requests 
Input: requests, limit 
Output: list_of_nodes

(1)

(2) (3)

(4)

Scheduler Client
Nova AgentsNova AgentsNova Agents

update DB

Fig. 6: Order of API calls within OpenStack for provisioning a VM instance.
The shaded area shows where FOCUS is integrated by replacing the object
that queries the database with a FOCUS client that queries the FOCUS service.

receiving queries and commands (e.g., representative election)

from the FOCUS service. When a node receives a query, the

node manager will gossip the query (via its p2p agent) to the

members of its group and gets the response back.

p2p Agents: Each node runs a separate Serf agent for each

group it joins. When a node requests group entry information

from FOCUS, it will get a list of entry points for each group.

Each entry point consists of the IP address and the port number

at which the Serf agent of the node is listening. The requesting

node can use this information to join the p2p group. In the case

of first node to register for a group, FOCUS will let the node

know there are no entry points; consequently, the node will

start a Serf agent and immediately let FOCUS know about its

Serf binding port so that future nodes can join. Note that, the

Serf agent is configurable with a set of parameters, including:

the number of neighbor nodes to gossip with (gossip fanout)

and a gossip interval parameter. In our implementation of the

FOCUS node agent, we set the fanout to 4 nodes and the gossip

interval to 100 milliseconds2. This setting achieves a balance

between overhead on the node agents and query performance.

IX. OPENSTACK INTEGRATION

In this section, to demonstrate FOCUS’s usability, we pro-

vide a detailed overview of how we integrated FOCUS into

OpenStack’s VM placement service (using OpenStack version

3.15.0 and Nova version 18.0.0), thereby providing a much

more scalable solution compared to RabbitMQ (as described in

Section III). First, we provide an overview of how OpenStack

finds nodes for new VM placements (and live migration),

which is illustrated in Figure 6.

Finding Nodes for VM Placement: OpenStack follows

a model that resembles the one in Figure 2a, where Nova

compute nodes running on each physical host periodically

push their state updates to a centralized database through

RabbitMQ, containing information about current capacities

(cpu, ram, disk, etc) and virtualization-specific information

(number of installed VMs, number of vCPUs, etc). Each VM

placement request object takes the following form.

struct{ int limit, dict resources}

The limit field is used to limit the number of nodes in

the response. The dictionary of resources contains the

minimum required resources for the requested VM image.

2This allows a 400-node group to reach convergence in as little as 0.6 sec.
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Such resources typically are: RAM (specified in Megabytes),

Disk (specified in Gigabytes), and VCPUs (an integer value

specifying the number of required virtual CPUs).

When a VM placement request is issued, the following

steps take place (in accordance with steps in Figure 6). (1)

A scheduler client (mainly used by the dashboard or CLI)

will call the scheduler API select_destinations by

passing the requested resources and a limit for the desired

number of placement candidates. (2) The scheduler, in turn,

will verify the request and then call the Placement API

GET method allocation_candidates, which returns a

list of placement candidates so that the scheduler can issue

commands to the desired candidates to spawn a new VM.

Upon receiving a placement request, the Placement service (3)

calls the Resource Provider’s get_by_requests method,

which (4) queries the database and returns a list of candidates.

Integrating FOCUS: The allocation_candidate

class of the placement service makes an indirect call to the

database in order to fetch the available hosts and their state.

The following line of code makes the request.

cands = rp_obj.AllocationCandidates

.get_by_requests(requests,limit)

We replace this particular functionality, corresponding to the

shaded box in Figure 6 for steps (3) and (4) with a FOCUS-

based solution. Specifically, we replace the above call to the

central database with the following single call to FOCUS.

cands = fc_obj.query(requests,limit)

Where fc_obj is an instance of a class that we implemented

to handle queries from OpenStack to FOCUS. Currently, it

supports placement queries, and adding support for other

queries merely requires adding more functions to this class.

Augmenting FOCUS’s Node Agents: We augmented our

node agents (that now run on the physical hosts running

the Nova compute agents) with the libvirt virtualization

library [25] in order to gather resource information. Our

node agent interfaces with libvirt and connects to the

QEMU hypervisor [26] to gather the required information.

This addition to our node agent resulted in less than 100 lines

of additional code to the original node agent code. Although

our current integration connects to the QEMU hypervisor,

we can easily integrate with other hypervisors (Xen [27],

KVM [28], VMWare ESX [29], etc) that libvirt supports.

X. EVALUATION

In this section, we evaluate the performance of FOCUS

and compare it against different node finding approaches. Our

evaluation of FOCUS answers the following questions:

1) How does FOCUS scale compared to other solutions?

2) How efficiently does FOCUS perform with real-world

query traces?

3) What are the FOCUS benchmarks with respect to group

size, and overhead on the node agents?

A. Testbed Setup

To evaluate the performance of FOCUS, we deployed it on

Amazon’s EC2 [14] and to simulate geo-distributed nodes,

we chose four different EC2 regions in North America: Ohio,

Canada, Oregon, and California. In each region, we instanti-

ated 8 VMs each with 16GB of memory and 4 vCPUs to host

our FOCUS node agents. Since multiple node agent programs

are consolidated onto the same VM in our experiments, we

introduced a randomness factor3 to the node agents which

they use to change their attribute values so that they do not

report the same information of the VM on which they run.

Each node agent reported 4 attributes: CPU usage, number of

available vCPUs, free RAM MB, and free DISK GB space.

The attribute-based group cutoffs were as follows: {CPU

usage: 25%, vCPUs: 2, RAM MB: 2048MB, disk: 5GB}. This

means that nodes with CPU utilization between zero and 25%

will be in the same group, and nodes that have 1 to 2 virtual

CPUs will be in the same group, and so on.

B. FOCUS vs. Existing Systems

Bandwidth Consumption: In this experiment, we evaluate

FOCUS’s scalability by measuring the bandwidth consumption

at the query server. We also compare our results with the

following node finding approaches. (i) Naive push and pull,

where node state is either frequently pushed from the nodes

(Figure 2a) or pulled on-demand (Figure 2b). (ii) Static hier-

archy (Figure 2d), where the number of state managers is 16.4

We also compare against (iii) RabbitMQ with two configura-

tions (publish and subscribe), where nodes either periodically

publish information (pub) or subscribe for queries (sub) and

then respond. The query/update frequency is 1/second.

Figure 7a shows that FOCUS consumes less bandwidth

than other systems. For instance, when the number of nodes

reaches 1600, FOCUS can eliminate up to 86%, 92%, 93%,

and 95% of the communication between the server and nodes

when compared to static hierarchy, RabbitMQ (pub), naive

push/pull5, and RabbitMQ (sub), respectively. This shows that

FOCUS, with attribute-based grouping and directed pulling,

can scale much better than other approaches.

Query Processing Latency: Figure 7b shows the average

query latency for FOCUS when compared to RabbitMQ while

processing 40 queries per second. Note that FOCUS was

deployed according to the setup described earlier in Section

X-A; however, our RabbitMQ deployment was in one region of

EC2 where we ran a RabbitMQ server and multiple simulated

producers. Up to 1K nodes, RabbitMQ shows faster responses.

However, after 1K nodes, RabbitMQ could not scale, while

FOCUS’s latency stays relatively constant. This is because

instead of sending queries to all nodes, FOCUS used directed

pulling to send queries only to the corresponding p2p groups.

C. Query Latency for Real-world Traces

In order to get a sense of how well FOCUS can perform in

real-world deployments, we replayed a cloud trace from the

Chameleon cloud testbed [30], containing OpenStack KVM

3The randomness factor depends on the attribute value range. E.g., the value
for cpu usage can be randomly assigned from 0 to 100.

4We chose 16 because that was the average number of group representatives
that are in charge of reporting group information to FOCUS.

5Naive push and pull showed identical results; hence, merged into one line.
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