Network Defragmentation in Virtualized Data Centers

Oliver Michel*, Eric Keller*, Fernando Ramos^ *University of Colorado Boulder, ^University of Lisbon

Virtualized Data Centers

Virtualized Data Centers

- Cornerstone of cloud computing
- Coexistence of tenants on shared infrastructure
- Scaling of resources based on demand

Elasticity is one of its key drivers

New requirement: network virtualization

 Different cloud applications require different topologies and different network guarantees

 A reality today: VMware NVP [NSDI'14], Microsoft AccelNet [NSDI'18], Google Andromeda [NSDI'18]

Limitations of existing approaches

- Core algorithmic challenge: Virtual Network Embedding (VNE)
 - Map the virtual network requests onto the substrate infrastructure

Existing VNE approaches lack a fundamental requirement: <u>elasticity</u>

Contribution #1: new scaling primitives to VNE

Expand VN / Contract VN

Problem: network fragmentation

Virtual Network Lifecycle

Problem: network fragmentation

- Fragmentation introduces several problems
 - Longer path lengths, higher latencies
 - Harder to map new VNs, lower acceptance ratios

Implementation

- Extended an existing VNE algorithm [Ballani11] with expand and contract primitives
- Cloud simulator
 - Leaf-Spine physical topology
 - Different virtual topologies

Leaf-Spine Physical Network Topology

Virtual Network Topologies: VC, VOC, 3T

Costs of fragmentation

 Simulation: leaf-spine topology; 28 switches and 384 servers; adding, deleting, expanding, or contracting virtual networks 1000 times (averaged over 10 runs; randomized workloads)

- Longer path lengths -> higher latencies and cost, poorer application performance, prolonged job completion times
- Lower acceptance ratios -> reduced revenue

Contribution #2: new management primitive

Expand VN / Contract VN

+

Network defragmentation

Network Defragmentation

- Optimize VNE algorithms to avoid fragmentation?
 - Hard: no prior knowledge of upcoming request

We explore a diferente approach: **explicit defragmentation** by periodically running a <u>network</u> <u>migration</u> algorithm (e.g., LIME [SOCC14])

Network defragmentation heuristic

- (Naive) remap of all virtual networks
 - 1. Unmap all VNs
 - 2. Sort by VN size (biggest to smallest)
 - 3. Re-embed each VN in order

Evaluation: mean path length stretch

Evaluation: fraction of paths by path length

Lower path lengths reduce latencies and cost, improve application performance, and by improving efficiency increase provider profit

Summary

- Future work
 - better defragmentation heuristics that minimize migration cost
 - integration with network migration

THANKS. QUESTIONS?

Oliver Michel

Fernando Ramos

oliver.michel@colorado.edu

fvramos@ciencias.ulisboa.pt

