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ABSTRACT
Signature-basedNetwork IntrusionDetection Systems (NIDSs) have

traditionally been used to detect malicious traffic, but they are

incapable of detecting new threats. As a result, anomaly-based

NIDSs, built on neural networks, are beginning to receive attention

due to their ability to seek out new attacks. However, it has been

shown that neural networks are vulnerable to adversarial example

attacks in other domains. But, previously proposed anomaly-based

NIDSs have not been evaluated in such adversarial settings. In this

paper, we show how to evaluate an anomaly-based NIDS trained on

network traffic in the face of adversarial inputs. We show how to

craft adversarial inputs in the highly constrained network domain,

and we evaluate 3 recently proposed NIDSs in an adversarial setting.
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1 INTRODUCTION
Network attacks continue to grow in complexity, scale, and num-

ber [24]. The impacts of these attacks range from high monetary

costs for exploited businesses and individuals, to more serious is-

sues, such as wide-scale power outages [14]. Due to the growing

number of attacks, and their severe, adverse effects, companies are

expected to invest billions of dollars by 2021 to find effective tools

that detect and eliminate network intrusions [15].

Network intrusion detection systems (NIDSs) are one part in

the line of defense against network attacks. Historically, these are

based on signatures – whether it be a known sequence of bytes

(with deep packet inspection) or known and fixed access patterns.
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While providing a degree of protection for networks, this approach

has a problem in that it relies on the signatures of known attacks.

In response, there has been a great deal of research. and even

commercial offerings, that leverage machine learning (with deep

neural networks) to augment the detection capabilities [1, 7, 17, 18,

26–29]. These anomaly-based NIDSs have been introduced due to

their ability to detect zero-day attacks (for which there is no pre-

existing signature) by looking for deviations from typical, benign

network traffic. To do so, these NIDSs are trained only on benign

traffic. Then, during inference time, the NIDS measures how similar

the new traffic is to the traffic seen during training time. Each packet

or flow seen by the NIDS is given a similarity score and compared

to a predefined threshold. If the packet or flow score exceeds the

threshold, the traffic is considered malicious.

While moving toward deep neural networks for NIDSs holds

great promise, there is an underlying problem that has yet to be ad-

dressed, their vulnerability to adversarial examples. Previous work

in other domains (e.g., image classification) has shown that neu-

ral networks are vulnerable to adversarial example attacks [4, 25],

small perturbations of the input that can bypass or purposely alter

the classification. In the case of images, this might be changing a

few pixels (imperceptible to the human eye) such that the classi-

fier misclassifies a specific person as a different person or hides

that person all together. Unfortunately, we don’t fully understand

the implications in the context of NIDSs because previously pro-

posed, anomaly-based NIDSs have not been evaluated in adversarial

settings [1, 7, 17, 18, 26–29]. The other downside of these anomaly-

based NIDSs is that they are evaluated on outdated datasets [7].

In order to address these issues, we introduce a technique to

evaluate anomaly-based NIDSs in an adversarial setting. We also

perform an evaluation of previously proposed NIDSs with this tech-

nique on a new dataset that contains 12 different network attacks.

To do so, we needed to overcome some challenges not seen in

other domains. When generating adversarial examples, we are con-

strained by two key factors: (i) we must retain the network protocol

correctness, and (ii) we must retain the attack’s semantics. There-

fore, in this paper, we illustrate how to craft adversarial examples

for networks by identifying traffic manipulations that can change

the network features but remain within the constraints above. In

summary, we make the following contributions:

• For the first time, we explain how an adversary can legiti-

mately modify network traffic in order to fool an anomaly-

based NIDS and not break underlying network protocols.

• We show how these transformations can be tailored towards

a packet-based NIDS, which predicts the malicious traffic in

real-time by extracting features from each packet.

• We demonstrate how an adversary can fool a flow-based

NIDS that detects malicious traffic based on the high-level
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features extracted from the whole flow by considering the

legitimate transformations we introduce.

• We evaluate the aforementioned NIDSs on a new network

traffic dataset, which contains a wide range of attacks, to

show how each of these attacks can be maliciously modified

to fool an NIDS.

2 BACKGROUND
2.1 Anomaly-based NIDSs
Anomaly-based NIDSs can be built in many different ways. In gen-

eral, for each input, they calculate a score, and if that score is higher

than a predefined threshold, they consider the input malicious. We

categorize these anomaly-based NIDSs into two different groups:

packet-based NIDSs and flow-based NIDSs. A packet-based NIDS

outputs a score for each packet that it receives. This decision is not

necessarily based solely on the current packet; it can also consider

the history of packets it has seen earlier. In contrast, flow-based

NIDSs make decisions based on features extracted from a whole

flow and mark the whole flow as malicious or benign. For the eval-

uation of packet-based NIDSs we consider Kitsune [18], and for the

evaluation of flow-based NIDSs we consider DAGMM [29] and a

BiGAN-based anomaly detector [28]. We refer the readers to these

papers for more details about each approach. These three NIDSs

are among the most cited anomaly detectors which have been pub-

lished recently. They also leverage very different techniques to

detect anomalies. Kitsune builds manual features which are ex-

tracted from the sequence of packets and keeps some internal state

for each flow. The other two are stateless. DAGMM [29] calculates

the energy of each flow in the Gaussian Mixture Model (GMM)

framework and uses that energy to detect anomalies, while the

BiGAN-based approach [28] uses the reconstruction error of the

generator and the output of the discriminator in the GAN frame-

work to detect anomalies. Therefore, by evaluating our attacks

against these 3 NIDSs we also show its potential to craft adversarial

examples in general.

2.2 DNNs in Adversarial Settings
It has been shown that deep neural networks used for tasks such

as image classification, speech recognition, etc. are vulnerable to

adversarial example attacks (i.e. evasion attacks) [4, 25]. Adversarial

example attacks are carried out during the inference phase. For this

attack, the attacker doesn’t change any of the model’s parameters

but modifies its own inputs in a way to make the model predict the

inputs as the desired class.

Szegedy et al. in [25] and Biggio et al. in [4] showed the vulnera-

bility of image classifiers to adversarial examples in the white-box

setting. The procedure to craft an adversarial example against an

image classifier can be formulated as a box-constraint optimization

problem as follows:

arдminδ | |δ | |p s.t. (x + δ ) ∈ [0, 1]m and F (x + δ ) = ytarдet

in which x is the legitimate input, δ is the perturbation added to a

legitimate input to make it adversarial. F (.) is the classifier which
maps an image to a label. ytarдet is the attacker’s desired class

andm is the number of pixels in the image. In order to solve this

minimization problem, different methods have been designed; they

can be found at the following references: [3, 5, 9, 19, 21, 25].

It has also been shown that adversarial examples can be crafted

against image classifiers in the black-box setting [4, 16, 20]. Recently,

many defenses have been proposed to make these models robust

against adversarial examples. However, since the release of the

defenses, other researchers have introduced new attacks to bypass

them [2, 13]. It has also been shown that adversarial examples exist

in the areas beyond digital images. Sharif et al. in [23] showed

how an adversary can print a sticker and add it to glasses to fool

face recognition systems in the physical world. Later, Eykholt et

al. in [8] showed that an adversary can place a few stickers on

a stop sign to fool a classifier potentially deployed on a moving

vehicle, e.g., causing the classifier to predict a stop sign as a speed

limit sign. Carlini et al. in [6] illustrated how an adversary can

craft adversarial examples against speech-to-text systems. Grosse

et al. in [10] also showed it is possible to craft adversarial examples

against malware detectors. Note that crafting adversarial examples

in each of these domains introduces its own problems that need to

be tackled to successfully fool the target model. For example, as is

shown in the work done by Sharif et al. [23], attacks designed for

digital images could not fool the target face recognition system in

the physical world. This is due to the fact that printers are unable

to print every pixel value of a digital image. As a result, the authors

added a constraint to their adversarial example generation, which

dictated that pixels could only be changed to a color that a printer

could print. Similarly, crafting adversarial examples against NIDSs

introduces its own challenges which we will discuss in the next

section.

3 NIDS IN ADVERSARIAL SETTING
3.1 Threat Model
Before outlining our approach, we define the threat model we con-

sider in evaluating anomaly-based NIDSs. Figure 1 provides an

overview of our threat model and system overview. In order to

have a complete evaluation, we consider a white-box setting. That

is to say, we consider that the attacker has a copy of the NIDS

deployed on the victim network and knows all of its parameters.

The NIDS deployed on the victim network receives a copy of all the

packets that travel through the network entrances ( 5○). We also

consider that attacker’s resources are limited to what she already

used to create the original attack. In other words, in order to gen-

erate the adversarial version of a network attack, we assume the

attacker does not want to use more machines or more IP addresses.

The attacker also is considered to be outside of the victim’s network

( 1○).

3.2 Challenges in Crafting Adversarial
Examples for NIDS

Crafting adversarial examples against NIDSs that are trained on

network traffic introduces its own complications and constraints.

Thus, the crafting procedure needs to be tailored for NIDSs. Here,

we mention some of the differences that exist between images and

network traffic that prevent an adversary from fooling the NIDSs

with the same procedure used against image classifiers. First of all,

pixels in an image can be modified freely. This is not the case for
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Figure 1: System overview and threat model considered
when evaluating and designing anomaly-based intrusion de-
tection systems. 1○: The attacker sits outside the victim net-
work and generates adversarial examples. 2○: Adversarial ex-
amples are sent to the local copy of the NIDS for evaluation.
3○: A classification score is produced by the NIDS based on
the input. If the output score is greater than the threshold,
the attacker applies some modifications, 4○, to improve the
adversarial example. This loop back process is carried out a
maximumof N times. If the score in 3○ is less than the thresh-
old, the packet ismirrored to theNIDS and sent to the victim
network 5○.

a sequence of network packets. For example, if features that are

fed into an NIDS are packet headers, changing some of the head-

ers could cause the communication between the attacker and the

victim to breakdown. To this extent, during the crafting procedure,

attackers should ensure that the communication channel does not

timeout or breakdown. Second, pixels in an image can be modified

independently of each other. This is not true for typical features

fed into an NIDS. In many cases these features are dependent on

each other, and there is no guarantee that a valid network flow ex-

ists that matches the features generated by the crafting procedure.

For example, a flow’s average interarrival time between packets is

directly tied to the flow’s duration and number of packets through

the following relationship: Flow_IATavд =
DurationF low

Pkt_countF low−1
As a result, we cannot arbitrarily change these features indepen-

dently. We must ensure the inherent properties of flows are not

violated. In addition, all adversarial image pixels can be modified to

fool an image classifier, but this is not the case for NIDSs. Many of

the features that are fed into them are extracted from the packets

generated by the victim. These are packets that the attacker doesn’t

have control over. The differences between adversarial image gen-

eration and adversarial network traffic generation along with the

security concerns that fooling an NIDS raise, demonstrate the need

to explore how an NIDS can be evaluated in an adversarial setting.

3.3 Legitimate Packet Transformations
If we are able to manipulate the malicious packets of an attack to

have specific features that mimic benign traffic, we will be able to

bypass NIDSs.

We declare an attack a success if the manipulated attack packets

meet the following three requirements.

(1) The packets must carry out their original malicious intent

effectively (e.g. a port scan, after transformation, should scan

the victim’s ports).

(2) Packet transformations must not break the underlying pro-

tocols the attack relies on (e.g. a TCP-based attack cannot

violate TCP).

(3) The attackmust not be flagged as an intrusion by the anomaly-

based NIDSs. We will evaluate this requirement for existing

systems in Section 5.

From these requirements and from studying the features used in

existing anomaly-based NIDSs, we identify three, general, packet

manipulation techniques that can be used for crafting adversarial

versions of network attacks.

The manipulations are as follows:

• Split: The attacker can increase the number of packets sent

by splitting the original payload of each packet across multi-

ple packets. For TCP, as long as sequence numbers, acknowl-

edgement numbers, and IP IDs are updated properly, the

attack remains effective as no information is lost and the

packets are reassembled at the victim host.

• Delay: The attacker may adjust the time between outgoing

packets by either increasing or decreasing the time elapsed

between subsequent packets. Since the packets themselves

are not modified, the attack will not only maintain its effec-

tiveness (so long as there is not a connection timeout), but it

will also adhere to the underlying network protocols.

• Inject: The attacker also has the ability to construct fake

packets with arbitrary lengths, transmission times, and flag

combinations. She can send the decoy packets among the

real attack packets as long as she can ensure that these fake

packets are ignored by the victim but processed by the NIDS.

By doing so, an NIDS takes into account packets that both

reach and don’t reach the victim into its decision on whether

or not the current flow is malicious. The attacker can rely on

the fundamentals of TCP, UDP, and IP protocols to guarantee

these decoy packets are processed by the NIDS but not by

the victim host. For example, the attacker can inject a TCP

packet with a sequence number smaller than the ACK num-

ber acknowledged by the victim. Furthermore, by setting the

TTL field of the IP header such that the TTL is greater than

zero when processed by the NIDS but decrements to zero

prior to reaching the victim, the attacker ensures the packet

is dropped after reaching the NIDS but before the victim.

Therefore, in order to fool an NIDS which is trained on network

traffic packets, the adversary should modify the malicious traffic

with a set of legitimate transformations as described above. In the

next section, we describe how we can use these transformations to

attack several NIDSs.

4 CRAFTING ADVERSARIAL EXAMPLES
In this section, we first explain how to tailor the legitimate transfor-

mations introduced in the previous section towards packet-based

NIDSs, and then move on to flow-based NIDSs.

4.1 Adversarial Examples for Packet-based
NIDSs

Algorithm 1 shows how we tailored legitimate transformations,

introduced in the previous section, towards Kitsune. In a nutshell,

Kitsune keeps some internal states for each flow and each packet
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moves through the network, updates the corresponding state. Then

it calculates a score, based on features extracted from the internal

state to decide whether the current packet is from a malicious traffic

or not. In order to fool Kitsune, Each malicious packet that is sent

from the attacker, is fed through the local neural network copy and

the output score is registered. If the score of that packet is close to

the threshold found during training time, we see if waiting a few

moments can help reduce its score. More specifically, we implement

the TryDelay procedure, which performs a binary search in the

range between 0 and 15 seconds to see if adding a delay can bring

the score of the current packet to less than 0.9 × threshold . In the

case that the score is greater than the threshold, we also try splitting

the packet.

The TrySplit procedure tries to convert a large packet into mul-

tiple smaller packets such that the score of all of them becomes

smaller than the threshold. Since we don’t know what the right

cut-offs are to split the original packet, we search for the correct

cut-off by trying different values. More specifically, we split the

payload of packet with L bytes into two packets with r and L − r
bytes of payload, where r is chosen randomly. Since this cutoff

might not be the right one, we need to backup the state of the local

NIDS related to the current flow and restore it in case the split failed.

When this happens, we try a different r . We need to do checkpoint

the NIDS’s state to make sure that the state of local copy remains

the same as the remote NIDS. If the first portion (r bytes) of payload
could fool the NIDS, we would do the same thing for the second

part (the remaining L−r bytes) recursively until the whole packet’s
payload would be sent and none of them would be detected. Finally,

if delaying or splitting the original packet could help to fool the

local copy, the attacker will make the appropriate change(s) and

send the packet(s) to the victim. Otherwise, the original packet

would be sent.

If the malicious packet is sent from the victim and its score is

larger than the threshold, the only thing the attacker can do is to

change the state of the NIDS such that the victim’s packet do not

pass the threshold. In this case, we see if injecting a fake packet

from the attacker before the victim’s packet can fool the NIDS for

both packets such that the score of both of them becomes less than

threshold. More specifically, in the TryInject procedure, we send a

packet from the attacker with different payload sizes. If that packet’s

score is less than the threshold, we send the victim’s packet after

that. If the score of both packets is less than the threshold, we inject

that packet, otherwise we restore the state of the local NIDS to the

state before sending the fake packet. We repeat this for another fake

packet with different length. Also, since the TryInject procedure is

a slow process, we run it occasionally. We keep track of the times

that TryInject succeeds and fails for each attack. Then, for each

new packet from victim, we run the TryInject procedure with the

probability of δ = #successes
(#successes+#f ailures) . After each success, we

reset δ to one. In practice, this means that, given a network attack,

if TryInject does not work for a while, we run it less frequently. If

suddenly it succeeds for a packet, we again try it on consecutive

victim’s packets more frequently.

Algorithm 1 Crating adversarial examples for Kitsune

1: procedure CraftAdvEx(x ) ▷ x is a malicious packet

2: if x is sent from the attacker then
3: if scorex > 0.9 × threshold then
4: TryDelay(x )
5: if scorex > threshold then
6: TrySplit(x )
7: end if
8: Send the split packets with appropriate delay if suc-

cessful.

9: end if
10: else ▷ x is sent from victim

11: TryInject(x )
12: Send the fake packet before victim’s packet if successful.

13: end if
14: end procedure

4.2 Adversarial Examples for flow-based NIDSs
In order to evaluate flow-based NIDSs in an adversarial setting,

we group the features fed into them into 4 different groups. As

we mentioned earlier, manipulating the features fed to an NIDS

in an adversarial manner is different from changing the pixels

of an image. Here we consider two of the main differences. One

difference is that some of the flow-based features can’t be changed

because the attacker doesn’t have control over them since they are

extracted from the victim’s traffic. Also, some features depend on

other features. For example, the mean of packet payloads in the

forward direction can be calculated based on two other features,

total length of payloads in the forward direction and the total

number of forward packets. There is another type of feature in

which their value depends on the actual packets of the flow and

cannot be calculated by the value of other features (e.g., std of

packet payloads in forward direction). As a result, we group flow

features into the following four groups.

(1) Features that should not be changed because they are ex-

tracted from backward flowing packets (victim packets).

(2) Features that can be changed independently of each other

by using the legitimate transformations. These include total

forward packets, total number of push flags in the forward

direction, maximum packet interarrival time (IAT) in the

forward direction, etc.

(3) Features whose values depend on the second group and can

be calculated directly by a set of them.

(4) Features that cannot be directly recalculated based on in-

dependent features, and a sequence of packets affect their

values.

We tailored our adversarial crafting algorithm based on these 4

groups. We defined 3 masks that are the subset of each other. Each

mask blocks a specific numbers of features from being updated

by back propagating gradients through the models. The first mask

only allows the procedure to modify the independent features (e.g.,

the second group). The second mask adds some of the 4th group

features, and finally, the third mask adds all of the features of

the fourth group to the set of modifiable features. In the crafting

procedure, we first check whether we can fool the NIDS by using
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the first mask. In the case of failure we use the second and third

masks. More specifically, the loss function we defined to minimize

during the crafting procedure is as follows:

AdvLoss = F (x + δ ⊙maski )

where F is the model and F (.) is the score predicted by the model. ⊙

is the element-wisemultiplication operator andδ is the perturbation
that we want to find to add to the original features to fool the NIDS.

By generating the adversarial features this way, we can be sure

that applying legitimate transformations to the malicious flows

will result in each feature from the first three groups matching the

adversarial feature found.

However, the fourth group of features would have different val-

ues, and that can cause the overall flow to be detected by the NIDS.

Therefore, in order to increase the chance of fooling the NIDS, in

the crafting procedure, we do not stop the algorithm immediately

after the score of a given sample drops below the threshold. To

have a confidence interval, we continue to modify features in order

to decrease the score further below the threshold. We considered

this interval in order to compensate the effect of different values

between the fourth group of features and increase the chance of

fooling the NIDS with the real sequence of packets.

Algorithm 2 demonstrates how we tailored the crafting proce-

dure for flow-based NIDSs. In this algorithm threshold ′ is a smaller

value than the real threshold of the NIDS to provide the confidence

interval we discussed. Note that we start with a small learning

rate to keep the modifications small and increase the learning rate

exponentially in case of failure. The adversarial features we find

with this algorithm against a given NIDS show the lower bound of

the NIDSs robustness. This is because for some of the adversarial

examples, there might not be a real sequence of packets that have

those features.

Algorithm 2 Crating adversarial examples for Flow-based NIDSs

1: procedure CraftAdvEx(x ) ▷ x is a malicious flow

2: for each mask ∈mask1,mask2,mask3 do
3: for each lr ∈ 0.001, 0.01, 0.1, 1.0 do
4: for each i ∈ [0, totalIter ] do
5: take one step of GD with learning rate=lr

6: x ′ ← x + δ
7: Recalculate group 3 features

8: if scorex ′ < threshold ′ then
9: return x ′

10: end if
11: end for
12: end for
13: end for
14: end procedure

5 EVALUATION
In this section, we evaluate the performance of the aforementioned

NIDSs in both a normal setting and an adversarial setting with the

traffic manipulations described in Section 3. We first discuss the

dataset used, then discuss the metrics used for our evaluation and

finally, empirically demonstrate to what degree Algorithms 1 and 2

are effective in fooling different NIDSs.

5.1 Dataset
To evaluate network intrusion detection systems, we used a highly

cited dataset containing network traces of twelve network attacks

from the Canadian Institute of Cybersecurity (CIC)
1
[22]. Sharafaldin

et al. in [22] compared eleven available datasets based on eleven

criteria and concluded that all of them have some shortages such as

lack of traffic diversity and volumes, limited number of attacks, etc.

Therefore they built a new dataset which satisfies all of the eleven

criteria.

The attacks are: FTP-Patator, SSH-Patator, Dos slowloris, DoS

slowhttptest, DoS Hulk, DoS GoldenEye, Heartbleed, Web attacks,

Infilitration, Botnet, PortScan and DDoS. These attacks were carried

out over a 5-day work week in a controlled environment. Each

attackwas implemented using popular network tools or waswritten

in Python by the authors. The network traces of each attack were

collected to study and identify intrusion traffic characteristics.

The CICIDS2017 [22] dataset contains flows extracted from pack-

ets files using the CICFlowMeter Tool [11]. The tool also extracts 80

behavioral flow features for each flow. The full list of features can

be seen in the Appendix in Table 1. Each flow and its corresponding

flow features were labeled as either benign or with the specific

attack name, but the individual packets were not labeled. Thus,

in order to evaluate the packet based NIDSs, we labeled packets

as malicious or benign based on the information Sharafaldin et al.

provided for this dataset. From the PCAP files provided within the

dataset, we excluded IPv6 packets and labeled the other packets in

the following way: for each attack, we labeled all of the packets

sent or received between the attacker IP(s) and the victim IP(s) as

malicious for the duration of that attack. All other packets were

labeled as benign. We also exclude web attacks from our evalua-

tion because the features extracted in our evaluation are only from

packet headers and detecting web attacks requires deep packet in-

spection. The whole dataset contains more than 56 million packets.

We trained the packet and flow-based NIDSs on the Monday traffic,

which contains over 11.6 million benign packets (529,481 flows).

The NIDSs were then tested on the network traffic generated from

Tuesday to Friday, which contains both benign and network attack

traffic. This test set contains 12 different network attacks, which

make up 10.33% of the overall packets and 24.22% of the overall

flows. The dataset’s full packet and flow statistics can be found in

Table 2 in the Appendix.

5.2 Evaluation Metrics
5.2.1 True Positive Rate (TPR). TPR shows the ratio of malicious

traffic that is detected as malicious to all of the malicious traffic

when the model’s threshold is fixed to a specific number.

5.2.2 False Positive Rate (FPR). FPR shows the ratio of benign

traffic that is considered malicious to all of the benign traffic when

the model’s threshold is fixed to a specific number.

5.3 Performance in Adversarial Setting
In order to see how each of the aforementioned NIDSs detect ad-

versarially modified network attacks, we chose their individual

thresholds in a way to keep their FPR at 0.1 since those NIDSs

1
The dataset can be downloaded at: https://www.unb.ca/cic/datasets/ids-2017.html
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Figure 2: The TPR of different NIDSs for each attack when
FPR is 0.1 when sending normal traffic and the adversarial
version of it.

can detect most of the network attacks at this rate in a normal

setting. In order to evaluate Kitsune, we used GMM as its detector

because it could detect malicious traffic better than using the sug-

gested ensemble of autoencoders. To fool this NIDS, we modified

the malicious packets from the CICIDS2017 dataset with Algorithm

1. We fed all the packets into the NIDS, as in the normal setting,

but due to the computational complexity of crafting adversarial

examples, we only ran it on the first 25,000 packets of an attack. To

evaluate the flow-based NIDSs in an adversarial setting, we used

Algorithm 2 to find the adversarial features for malicious flows.

Due to the computational complexity of this procedure we only

did it for the first 5000 flows of each attack in the cases where the

attack contained more than 5000 flows.

The results of this evaluation are shown in Figure 2. For each

NIDS considered, we show both the TPR under normal conditions,

as well as under adversarial conditions. As it can be seen in this

figure, for a packet-based NIDS, the detection rate drops by up to

70% (for Heartblead) in adversarial setting and for flow-based NIDSs

the detection rate drops by up to 68% (for PortScan). In fact, the

performance of each NIDS decreases dramatically in most cases,

indicating that these NIDS are not robust in the face of adversarial

examples. More specifically, for Kitsune, the average TPR in an

adversarial setting across all attacks drops to 16.6% from 43.6% in a

normal setting; for DAGMM, it drops to 35.2% from 60.8%, and for

BiGAN-based, it drops to 35.7% from 49.3%.

6 DISCUSSION AND FUTUREWORKS
As we saw, all of the previous NIDSs are vulnerable to adversarial

example attacks to some degree. One thing that is common among

all of them is that they behave in a deterministic way. That is to

say, the inputs that the attacker generates by the help of her local

copy will fool the victim’s NIDS if they fool the local copy; for

the same input these NIDSs output the same score. We know that

the attacker can’t query the victim’s NIDS directly otherwise she

would be detected. Therefore, one way to make NIDSs more robust

against adversarial examples is to make them behave stochastically.

Then for the same input the adversary’s local copy and actual NIDS

would output different scores. This adds extra hardship for making

adversarial examples. Because in this case, fooling the local copy

doesn’t guarantee to fool the actual NIDS. In the future, we want

to design an NIDS by this approach to see how it improves the

robustness of the NIDS against adversarial examples.

Also, as we mentioned earlier, for the evaluation of flow-based

NIDSs, we found the lower bound of robustness of each NIDS.

In order to find their exact robustness, we need a tool to modify

packets in a flow to match the extracted features with those we

found. We leave production of this tool for future work.

Also in previous work [12], it is discussed how to add a network

forwarding element known as a traffic normalizer on the joint path

of the NIDSs and the victims to make sure that the NIDS processes

the same packets that the victim does. Thereby, limiting the ability

of an attacker outside the victim’s network to inject fake packets

into the stream by using bad sequence numbers, specific TTL val-

ues, etc. However, noramlizers tend to introduce complications for

normal traffic. A normalizer can raise the TTL value of packets it

forwards to a pre-defined value to ensure the packet is not only

processed by the NIDS, but also by the destination. This can cause

some of the packets to loop forever and consume a network’s band-

width if the normalizer is deployed on a loop. Also, normalizers

can prevents some of the tools that are used for debugging in the

network from functioning properly, such as traceroute. Further-

more, normalizers process each packet in depth; therefore, adding

latency into communication channels. Extra latency can prove to

be detrimental to real-time applications. Due to the issues these

normalizers introduce, they are not widely used, so we did not

consider them in our evaluations. But even by considering them,

they won’t affect the algorithms we introduced to modify a traffic.

The only difference is that only the delay and split transformations

can be used to fool the NIDS in this situation.

7 CONCLUSION
In this paper, we showed how to evaluate anomaly-based NIDSs in

an adversarial setting. We identified the legitimate transformations

which an adversary can make to malicious traffic to fool the NIDS

and not break the underlying network protocols. Finally, in our

Empirical study, we showed the effectiveness of our approach by

tailoring the legitimate transformations towards both packet-based

and flow-based NIDSs. We found out that by using the transfor-

mations we introduced in this paper the detection rate of an NIDS

trained on packet-level features can be dropped by up to 70% and

the detection rate of an NIDS trained on flow-level features can be

dropped by up to 68%.
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APPENDIX
The details of the dataset we used for our evaluation.

Features Fwd Bwd Flow
Total Duration ✗ ✗ ✓

Total Packets ✓ ✓ ✗

Total Length of Packets ✓ ✓ ✗

Pkt Len Min/Max/Mean/Stddev ✓ ✓ ✓

IAT Min/Max/Mean/Sttdev ✓ ✓ ✓

Bytes/s ✗ ✗ ✓

Pkts/s ✓ ✓ ✓

PSH/URG Flags ✓ ✓ ✓

FIN/SYN/RST/ACK/CWE/ECE Flags ✗ ✗ ✓

Total Length of Headers ✓ ✓ ✗

Down/Up Ratio N/A N/A ✓

Avg Bytes/Bulk ✓ ✓ ✗

Avg Packets/Bulk ✓ ✓ ✗

Avg Bulk Rate ✓ ✓ ✗

Initial Window Bytes ✓ ✓ N/A

Packets w/ payload >= 1 ✓ ✗ ✗

Min. Packet Header Size ✗ ✓ ✗

Active Time Min/Max/Mean/Stddev ✗ ✗ ✓

Idle Time Min/Max/Mean/Stddev ✗ ✗ ✓

Table 1: Features extracted from flows for classifying net-
work trafficwith flow-based NIDS. ✓ and ✗ indicate whether
or not the feature was calculated for packets in moving in
the labeled direction. "Flow" indicates features calculated
taking into account packets flowing in both directions. Fea-
tures were extracted using the CICFlowMeter Tool [11].
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Set Type # of P % of P # of F % of F

Train Benign 11,680,917 100 529,481 100

Test

Benign 39,946,287 89.67 1,741,803 75.78

FTP-Patator 110,736 0.25 7,935 0.35

SSH-Patator 138,621 0.31 5,897 0.26

DoS slowloris 47,586 0.11 5,796 0.25

DoS slowhttptest 39,257 0.09 5,499 0.24

DoS Hulk 2,245,526 5.04 230,124 10.01

DoS GoldenEye 106,177 0.24 10,293 0.45

Heartbleed 49,296 0.11 11 0.00

Web Atks 39,823 0.09 2,179 0.10

Infiltration 209,920 0.47 36 0.00

Botnet 9,871 0.02 1,956 0.09

PortScan 324,062 0.73 158,839 6.91

DDoS 1,280,602 2.87 128,025 5.57

All Attacks 4,601,477 10.33 556,628 24.22

All 44,547,764 100.00 2,298,431 100.00

Table 2: The statistics of the dataset used for our evalua-
tion. Columns headers containing "P" contain packet infor-
mation, while column headers containing "F" show flow in-
formation.
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