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ABSTRACT
Many applications for network operation and management require
information about traffic flows and how they are processed through-
out the network. Currently, the telemetry systems that support
these applications at scale force users to choose between infras-
tructure cost and information richness. The root cause lies in how
the systems cope with high traffic rates: by either sampling or
integrating custom hardware in the switch, which limits informa-
tion richness; or by relying on post-processing with servers, which
drives up cost. This paper introduces TurboFlow, a telemetry system
for commodity programmable switches that does not compromise
on either design goal. TurboFlow generates information rich traffic
flow records using only the processing resources available on the
switch. To overcome the challenge of high traffic rates, we decom-
pose the flow record generation process and carefully optimize it
for the heterogeneous processors in programmable switches. We
show that the resulting design allows TurboFlow to support multi-
terabit workloads on commodity programmable switches, enabling
high coverage flow monitoring that is both information rich and
cost effective.
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1 INTRODUCTION
Monitoring of network traffic and performance is critical for many
applications. Security systems correlate communication patterns
across large groups of hosts to detect botnets [39]; debuggers com-
pare statistics from each switch along the path of a problematic TCP
flow to diagnose misconfiguration [51]; load balancers analyze per-
flow utilization to reduce congestion [2]; and researchers carry out
large scale, long term measurement campaigns [4, 74, 78] to guide
future work.

For all of the above examples and many other monitoring ap-
plications [5, 50, 54, 66, 84, 88], high coverage is important. To
function most effectively, or in some cases at all, the applications
need information about all the TCP/UDP flows in the network and
how packets in each one were processed by the switches along their
path. Rather than measure traffic and switch state directly, which
would not scale, high coverage monitoring applications typically
operate on flow records (FRs) streamed up from telemetry systems
in the data plane [51, 62, 68]. FRs are appealing because they are
compact summaries of fine-grained flows, 2-3 orders of magnitude
smaller than the corresponding packets [42], which makes them
ideal for large scale collection and analysis.

FRs are powerful for applications, but scaling telemetry infras-
tructure up to support high coverage FR generation can be expen-
sive. For example, dedicated appliances for FR generation are rated
for around 100 Gb/s of traffic [19, 33]. In large networks with thou-
sands of switches [4, 74, 78], each capable of forwarding traffic at
multi-terabit rates, the telemetry infrastructure for high coverage
FR generation would comprise many racks of servers.

Generating FRs at the switch, e.g., with NetFlow switches [20,
72, 93], is more cost effective, but also more challenging due to
higher traffic rates. Current systems sacrifice information richness
of the FRs, with respect to either their accuracy or feature set. A
common approach is to generate FRs with software running on the
switch CPU, based on sampled packets [67]. The sampling allows
the CPU to cope with high traffic rates, but reduces accuracy and
therefore application effectiveness. For example, sampling 1 out
of every 1000 packets, a recommended ratio for 10 Gb/s links [76],
will miss low rate attack flows [14]. Specialized monitoring ASICs
are the alternative [20], which use hardware data paths and high
speed memory to generate FRs at line rate. They offer performance
without sampling, but lock the switch into exporting FRs with fixed,
usually simple, features. This limits the applications that can be
supported and also reduces their effectiveness [50, 84, 90].
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Figure 1: Overview of TurboFlow.

Ultimately, the only telemetry systems capable of generating un-
sampled FRs with custom features all place significant workloads on
servers [19, 33, 51, 62], which makes them prohibitively expensive
for high coverage monitoring in large or high speed networks.

Introducing TurboFlow. Motivated by the desire for practical
high coverage flow monitoring without sacrificing information
richness, we introduce TurboFlow, a FR generator optimized for
programmable switches. TurboFlow produces fully customizable
FRs for extremely high rate traffic, i.e., > 1 Tb/s, without sampling
or relying on any support from servers. It can be deployed to com-
modity programmable switches [55], allowing them to serve as
drop in replacements for current monitoring switches but with
higher quality FRs that better support the hundreds of currently
available (or yet to be developed) flow monitoring applications.

Design. Generating information rich FRs at Tb/s rates with the pro-
cessing resources available in a programmable switch is challenging.
Switches have two types of processors: programmable forwarding
engines (PFEs), e.g., P4 [8] hardware; and standard CPUs, e.g., low
power 2-8 core Xeons. By themselves, neither processor can sup-
port an information rich FR generator. PFEs do not have enough
memory to track all concurrently active flows and have restrictive
computational models that prevent implementation of the complex
data structures required for FR generation. Software on the switch
CPU, on the other hand, does not have necessary throughput.

Rather than trying to shoehorn FR generation into either the
PFE or CPU, we decompose it into two complementary parts that
are well suited for the individual processors. The PFE does pre-
processing to reduce the workload of the CPU, while the CPU
handles complex logic that the PFE cannot support. Each processor
relies on the other to overcome its limitations, and the modular
design enables optimizations that improve performance by orders
of magnitude.

Figure 3 depicts the high level idea. The PFE generatesmicroflow
records (mFRs), which are similar to FRs but only account for the
most recent packets in each flow. Generating mFRs in the PFE
instead of full FRs reduces memory requirements and allows us
to use a data structure better suited to the PFE’s limitations. The
data structure is similar to a hash table but with one important
simplification. Whenever two flows collide, the PFE sends a mFR for
the older flow up to the switch CPU and replaces it with the newer
entry. This simple logic can be implemented even on PFEs with

highly restrictive computational models. The PFE’s DMA engine
transfers mFRs to the CPU’s main memory, where an aggregator
groups them into full FRs using a hash table optimized for the task.
These FRs can be exported directly to collection or analysis servers
without any additional processing.

Even though it runs on a switch CPU, the aggregator does not
need to sample to monitor multi-terabit traffic with high packet
rates. We optimize its main bottleneck, the hash table that maps
mFRs to FRs, to reduce cache misses, accelerate key comparison
operations, andmaskmemory latency. All of this maximizes the rate
of mFRs that it can process. Additionally, since the PFE combines
multiple packets into each mFR, the mFR rate it needs to support is
already much lower than packet rate.

Evaluation. We implemented TurboFlow on two P4 [8] switches
with significantly different PFE architectures. First, the Wedge
100BF-32X [55], a 32x100 GbE switchwith a Tofino [65] PFE; second,
a 4x10 GbE prototype switch using a NFP-4000 PFE [63]. On both
platforms, TurboFlow scales to monitor all links with workloads
from Internet and simulated data center traces.

Benchmarks show that our aggressive optimizations play a large
role, improving the performance of the switch CPU component by
a factor of 20. PFE acceleration is also significant, further improving
performance by a factor of 10 or more, depending on the workload.
Based on analysis of the benchmark results, TurboFlow makes
high coverage and information rich monitoring cost effective in
Internet and data center scenarios. Compared with other recent PFE
accelerated telemetry systems, TurboFlow reduces the equipment
and power cost of generating FRs by a factor of more than 5.

The implementation, benchmarks, and analysis demonstrate
that TurboFlow is a powerful telemetry system for high coverage and
information rich flowmonitoring that can be deployed to commodity
programmable switches.

Contributions. This paper makes 4 contributions. First, an analy-
sis of the trade offs between richness and cost for high coverage
flow monitoring. Second, TurboFlow, a FR generator optimized for
the architectures of programmable switches, enabling them to gen-
erate information rich FRs for high rate traffic without assistance
from servers. Third, a working implementation of TurboFlow that
demonstrates effectiveness on commodity programmable switches.
Fourth, a thorough evaluation and cost analysis of TurboFlow,
demonstrating that it can enable high coverage and information
rich network monitoring at low cost.

2 FLOWMONITORING SWITCHES
Flow records (FRs), depicted in Table 1, compactly summarize in-
formation about packet flows and how they were processed by the
network. TurboFlow focuses on FRs that aggregate packets at the
level of IP 5-tuple, i.e., by TCP connection or UDP stream. FRs are
commonly referred to as NetFlow [18] or IPFIX [23] records and
used by many applications, as Table 2 shows.

FRs are an appealing record format because they are extremely
compact, which makes network-wide monitoring practical. For ex-
ample, an hour-long packet trace from a 10 Gb/s Internet router
link would contain nearly 1 TB of data and over 1 billion pack-
ets [12]. At such high rates, it is not practical to collect or analyze



TurboFlow: Information Rich Flow Record Generation on Commodity Switches EuroSys ’18, April 23–26, 2018, Porto, Portugal

Flow 1 Flow 2

Flow Key

Source IP 10.1.1.1 10.1.1.6
Dest. IP 10.1.1.2 10.1.1.7
Source Port 34562 12520
Dest. Port 80 88
Protocol TCP UDP

Flow Features

Packet Count 5 7
Byte Count 88647 3452
Max Queue Length 0 34
Avg. End-to-end Latency (us) 10 300

Table 1: Example flow records.

data from more than a hand full of links. On the other hand, a FR
trace that summarizes the flows with the record format depicted in
Table 1 is around 5 GB with 50 million records. This represents a
20X reduction in processing rate and a 200X reduction in bit rate for
the application. At these much lower rates, an analysis application
implemented on an efficient general purpose stream processing
platform [57] could monitor hundreds of 10 Gb/s links with a single
server.

FRs are also appealing because they summarize traffic at the level
of individual TCP or UDP streams. The fine granularity preserves
information that is important for many applications. For example,
host communication patterns can reveal botnets [39] or other at-
tacks [84] while per-stream packet counts can make it easier to
localize misconfiguration in the network core [51] and perform
traffic engineering [87]. Additionally, the fine granularity makes
FRs flexible – FRs with the same features can be used for many
different applications. This is in contrast with other approaches
to scalable monitoring, such as sketching [91], where the network
is configured to measure coarse grained statistics that are only
relevant to specific applications.

The compactness and fine granularity of FRs enables efficient
and powerful network-widemonitoring applications. However, gen-
erating the FRs represents additional (and potentially significant)
work for the network infrastructure, especially when high coverage
is the goal. There are two main approaches to FR generation. First,
dedicated appliances or NetFlow probes [29], commodity servers
that convert packets, mirrored from network switches, into FRs.
Appliances are designed to cover individual links, e.g., they are
rated for around 40 - 100 Gb/s of traffic [19, 33], which makes them
a cost prohibitive solution for high coverage monitoring.

A more cost effective approach is to use flow monitoring switches,
which generate FRs summarizing the packets that they forward.
Eliminating the reliance on servers in the FR generation process
greatly reduces infrastructure cost. Operating at the switch has the
additional benefit of providing visibility into statistics and metadata
related to how a switch processes packets, for example, input and
output ports, queue lengths, and ingress timestamps. This visibility
enables network performance metrics, such as those shown in Table 2,
that an appliance could not compute.

Feature Type Examples Applications

Traffic Characteristics

Metadata QoS type, IP options,
TCP options & flags

Security [84], flow
scheduling [2, 41],
auditing [50], heavy
hitter detection [91],
QoS monitoring [62]

Statistics duration, packet
count, byte count,
jitter, max packet size

Network Performance

Metadata ingress port, egress
port, selected route

Loop and black hole
debugging [51], per-
formance queries [62],
load balancing [79],
network design [74]

Statistics max queue depth,
avg. latency, dropped
packet count

Table 2: Types of FR features and example applications.

FR generation at the switch is highly desirable, but also chal-
lenging because of high packet and flow arrival rates. On a single
10 Gb/s Internet link, flow and packet arrival rates are around 10 -
50 K and 300 - 500 K per second, respectively [13]. Switches have
aggregate throughput rates hundreds of times higher, in the multi-
terabit range [55], meaning a switch based FR generator needs to
keep up with tens of millions of flow and hundreds of millions of
packets per second.

Current systems work around the challenge by sacrificing one of
three important design goals: feature richness, accuracy, or the cost
of FR generation. We describe these design goals and summarize
prior systems below.

2.1 Design Goals

Feature Richness. Feature richness is the capability to include
custom statistics and metadata in the FRs. Custom features enable a
wider range of applications because different types of applications
require different features. For example, consider bot detection [39],
QoS measurement [87], and incast debugging [62]. Bot detection
systems analyze communication graphs between hosts, which can
be generated using only basic features that describe properties of
the packets in the flow, for example packet counters, byte coun-
ters, and timestamps. QoS measurement, on the other hand, also
required statistics about the performance of the network, such as
dropped packet counts and path delays. Incast debugging requires
completely different features that describe internal operation of the
switch, e.g., queue depth.

Besides supporting more applications, feature richness can also
improve the effectiveness of many applications, such as machine
learning classifiers [90] or anomaly detectors [5] that can take
advantage of a wide wide variety of features.

Accuracy. Accuracy describes how closely FRs represent the un-
derlying traffic. There are two dimensions to accuracy. First, feature
accuracy of the statistics in a single FR. Inaccurate features directly
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Low Generation Accurate Rich
Cost Records Features

Fixed FE

Packet Sampling ✓ ✗ ✓

NetFlow ASICs ✓ ✓ ✗

PFE Accelerated

FlowRadar ✗ ✓ ✗

Marple ✗ ✓ ✓

TurboFlow ✓ ✓ ✓

Table 3: Comparison with prior switch FR generators.

reduce the effectiveness of many applications. For example, con-
sider traffic load balancers [2, 41] that re-route flows to maximize
network bisection bandwidth. Inaccurate traffic statistics can cause
the load balancers to identify the wrong flows for re-routing, or in-
correctly estimate the amount of bandwidth a flow is utilizing [91].
The end result is lower bisection bandwidth.

Inaccurate statistics can also cause security systems to miss
anomalies [10], such as the outbreak of an attack.

An orthogonal dimension of accuracy is flow accuracy, or what
fraction of traffic flows are represented in the FRs. Flow accuracy
matters for most applications, but for security applications in par-
ticular. For example, if FRs are biased against short flows, as occurs
when generating FRs from randomly sampled packets [34], intru-
sion detection systems can underestimate the magnitude of DDoS
attacks [59]. Poor flow accuracy also leaves applications vulnerable
to adversaries that specifically try to avoid monitoring [37], e.g., to
circumvent intrusion detection or billing.

GenerationCost. Generation cost quantifies the number of servers
required to convert data exported from the switch into FRs, which
directly increases equipment and power costs of the network. Op-
erators [38] and researchers [1, 41, 48] go to great lengths to mini-
mize these costs, which makes it unlikely that systems with high
generation cost would be deployed for high coverage monitoring,
regardless of how much they could benefit applications. In practice,
operators rely on low cost approaches that sacrifice feature richness
or accuracy. For example, recent data center measurement studies
used packet sampling at extremely high ratios, e.g., 1:30000 [74]
packets, which skews the accuracy of both FRs and FR features [31].

2.2 Prior Systems
FRs have a long history of use [50], and many systems have been de-
veloped for FR generation using switches. Prior literature describes
earlier systems in detail [42], which were designed for switches
with traditional, fixed-function hardware. We classify these systems
into two broad categories that have similar general properties with
respect to feature richness, accuracy, and generation cost. Table 3
summarizes them, along with recent telemetry platforms that, like
TurboFlow, are designed to utilize the programmable forwarding
engines in modern switches.

Sampling. Sampling systems clone a fraction of packets or flows [34,
67, 75], sometimes along with internal switch statistics, from the
forwarding engine to the switch CPU, which generates FRs in soft-
ware. The sampling is necessary to prevent overloading the CPU,
but reduces the feature and flow accuracy of the records. Sampling
is widely used in practice because it has low cost and available on
many commodity switches [67].

NetFlow ASICs. Some switches use custom hardware to gener-
ate FRs [20, 72, 93]. Depending on the design, the hardware may
either sample [35] packets, but at a lower ratio than software, or
even account for every packet [68]. A common design that can
account for every packet is including a FR generation module in
the forwarding engine ASIC [68] that stores per- flow statistics in
high speed TCAM counters. Older ASICs were limited to simple
features, e.g., byte and packet counters [93]. Newer ASICs, such as
those in switches designed for the Cisco Tetration platform [68],
support additional features including latency, TCP window size,
packet size, TTL, and TCP option variation [68]. Custom hardware
provides accuracy, since it can account for every packet, but locks
the monitoring applications into a fixed set of flow features.

PFE Accelerated. A recent trend in networking is the commodi-
tization of programmable forwarding engines (PFEs)[15, 64, 65]
in next generation switches, line cards, and network interfaces.
PFEs are emerging now because the chip area and power cost of
programmability is becoming negligible, while the ever increasing
number of protocols is making fixed function ASICs impractical [6].
PFEs are appealing for monitoring because they can compute cus-
tom statistics at line rate over a rich set of packet header and pro-
cessing metadata.

Several recent systems [51, 62] have proposed to leverage their
capabilities for telemetry. These systems could be configured to gen-
erate FRs, but would have a high generation cost because they rely
on post processing at server clusters, to aggregate data streamed
from the switch into complete records.

In FlowRadar [51], the PFE encodes per-flow statistics into count-
ing Bloom filters [7], which a server can later decode and convert
into FRs. The decoding is expensive, especially for FRs that include
features besides IP 5-tuple.

Marple [62] is a system for streaming queries of network perfor-
mance statistics, which can include queries for FRs. Marple splits
the query processing between PFEs and a scale out key-value store,
e.g., Redis [71]. The PFE partially computes the statistics requested
by the query. It streams updates for each flow to the key-value
store, which aggregates the updates together. For efficient gener-
ation, the fields in the query are limited statistics and metadata
that are efficiently mergeable [62], i.e., each update only requires
the PFE to send a bounded amount of state to the backing store.
The class of efficiently mergeable features is large. However, even
with efficiently mergeable features, generating FRs with Marple
is still expensive because it relies on scale out key-value stores
for post processing. For example, Marple is reported to require
around 1 key-value server to service queries for a single 64 x 10
GbE switch [62].
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3 TURBOFLOW OVERVIEW
TurboFlow is a FR generator for commodity programmable switches
with P4 PFEs [63, 65]. It produces accurate and feature rich FRs
for terabit rate traffic without requiring any post processing at
servers. Figure 2 depicts how TurboFlow integrates into a network
infrastructure. The ingress pipeline of a switch PFE includes a
TurboFlow module that generates microflow records (mFRs). The
switch CPU runs a TurboFlow process that converts the mFRs into
FRs and exports them to collection or analysis servers. Operators
can customize the features in the FRs, which can also be packed
into standard formats, such as IPFIX [23] or NetFlow [22], that are
used by many existing flow collectors [82].

Challenges. Programmable switches have two types of processors:
general purpose CPUs and specialized programmable forwarding
engines (PFEs). Neither processor can support the full FR generation
workload itself.

Switch CPUs cannot support the required packet rates, e.g., hun-
dreds of millions of packets per second for terabit rate traffic. The
main bottleneck is mapping packets to FRs, which can take many
cycles because of high memory latencies and expensive key com-
parison operations. For example, using Redis [71] on the Wedge
100BF- 32X’s CPU (a quad core Intel D1517 [44]) provides a through-
put of around 500 K packets per second per core – two orders of
magnitude lower than necessary.

PFEs, on the other hand, can support key lookups at high rates
using on chip memory, but the memory is too small to store FRs for
the full set of active flows. Additionally, many PFEs have restricted
computational models [81] that prevent implementing a full key-
value data structure that can support operations other than lookups,
e.g., insertions, at line rate.

Design. With TurboFlow, depicted in Figure 3, we overcome these
challenges by decomposing the FR generation algorithm into com-
ponents that can be optimized for each processor. The PFE produces
microflow records (mFRs) that summarize active flows over short
timescales. Focusing on mFRs reduces the set of concurrently ac-
tive flows to lower memory requirements and permits simpler data
structures that map well to PFE hardware.

A mFR aggregator, running on the switch CPU, stitches the
mFRs together into complete flow records, using a key value data
structure optimized to leverage performance features in modern
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Figure 3: TurboFlow architecture.
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CPUs. Operating on mFRs instead of packets lowers the rate of key
value operations that the CPU must sustain and the optimizations
reduce their individual cost to maximize throughput.

4 THE MFR GENERATOR
The mFR generator produces mFRs that summarize burst of packets
within flows. MFRs have the same format as FRs, depicted in Table 1.
They can include any custom features that the PFE can compute.
Capabilities vary by hardware. the most limited PFEs can perform
logical operations, simple arithmetic, and estimate floating point
operations [79] with limited precision. Additionally, we focus on
the large class of efficiently mergeable statistics, as described in Sec-
tion 2.2 and prior work [62]. This includes the average, minimum,
and maximum of any packet header field or metadata associated
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with processing, all of the features listed in Tables 1 and 2, and all
statistics supported by NetFlow ASICs.

The mFR generator, illustrated in Figure 4, contains a mFR table
and a mFR record buffer. ThemFR tablemaps packet keys to records
based on their hash values. If the record has the same key as the
packet, its features are updated. If the keys do not match, the current
record is replaced with a new one and appended to the end of an
evicted record buffer, a ring buffer that is DMAed to the switch
CPU’s main memory.

The mFR generator is designed specifically so that it can map to
the restrictive computational models of real PFE hardware. Below,
we describe how it maps to programmable P4 ASICs [9, 81], which
are highly restrictive; and NPUs [63, 89], which are less restrictive
but have lower throughput.

Mapping to P4 Programmable ASICs. Figure 5 illustrates the
general architecture of a P4 programmable ASIC. It has a pipeline
of stages that each spends a fixed number of cycles processing each

packet. A stage contains TCAM to store forwarding rules, SRAM
for counters and other state that persists across packets, i.e., register
arrays in P4 [8], a vector of processing units to modify packet
headers or metadata carried along with it, and a small number of
stateful processing units that can execute simple stateful programs
while accessing the SRAM.

The architecture has two important benefits. First, it provides an
extremely high and guaranteed throughput – any P4 program that
compiles to the PFE will run at line rate, which is around 1 billion
packets per second, or 1 packet per clock cycle, for recent designs [9,
65, 81]. Second, it is straightforward to implement functionality
that can be expressed as match + action packet processing because
the primitives of P4 map directly to the hardware.

Since the architecture is so specialized for match + action process-
ing, it can be difficult to map more complex functions to the hard-
ware. Sequential operations must be implemented as a sequence of
actions in multiple stages. Stateful operations, which TurboFlow
relies on, are highly constrained. In current ASICs, each register
array can only be accessed once per packet, at a single location, to
meet the per-stage time budget. Stateful processing units enable
programmable atomic updates to the register arrays, e.g., with si-
multaneous reads and writes or predicated updates. However, the
atomic operations must be simple to meet chip space and timing
budgets [? ].

Figure 6 illustrates how the mFR generator maps to the pro-
cessing stages in a programmable ASIC. It uses register arrays in
SRAM banks to store the mFR table and evicted mFR buffer, packet
metadata as a scratchpad for decision logic, and P4 tables to define
control flow. The pipeline operates on packets in parallel with other
forwarding functionality. There are no back branches or loops in
the pipeline, which is a requirement of both the P4 language and
programmable ASICs. Also, not depicted in the figure, all the per-
sistent state is striped across memory banks. For example, an array
of N 13 byte IP 5-tuple keys is actually 4 register arrays: 3 32-bit
arrays and 1 8-bit array, each with length N and stored in a separate
bank. This allows the pipeline to only need at most 1 read or write
to any memory bank, per packet. The logical stages in Figure 6
implement the following logic.

(1) Computes the hash of the packet’s key.
(2) Loads the key of the last flow with that hash from the key

table into metadata, then writes the current packet’s key
back.

(3) Sets a metadata flag indicating whether or not an evict is
needed by comparing the current key with the previous key,
which is now in metadata.

(4) Loads the features values of the flow from the feature table
into metadata, and resets or updates the features depending
on the evict flag.

(5) Loads the next free position in the output buffer, writes back
a conditionally updated value: if the evict flag is set, the
previous position plus the length of a mFR record; if not, the
original value.

(6) (through 8) Writes the key and features of the previous flow
to the evicted buffers.
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Added Instruction Example P4 14 Code Throughput Change

Control flow if (...){ -15.5%
branch apply(...); }
Apply table apply(...); -9.5%
Read memory register_read(...); -3.0%
Write memory register_write(...); -3.0%
Modify header modify_field(...); -0.5%

Table 4: P4 primitives cost on the NFP-4000.

Mapping to an NPU. Network processors (NPUs) [64, 89] are an
older and more flexible architecture for high throughput packet
processing. The trade off is lower maximum throughput than pro-
grammable ASICs and fewer compiler guarantees on performance.
There are many NPU architectures, the most flexible of which use a
pool of RISC cores to process packets, as Figure 7 depicts. The cores
are arranged into islands with local SRAM for code and data storage,
a large shared off-chip DRAM for forwarding tables and other per-
sistent state, and a high bandwidth switch fabric interconnecting
the components.

Unlike programmable P4 ASICs, P4 primitives do not map di-
rectly to the hardware of NPUs. Instead, NPUs support P4 with
software libraries and toolchains [64] that compile P4 into routines
for lower level languages, e.g., micro-C.

Mapping the mFR generator to an NPU requires optimization to
maximize throughput. One consideration is minimizing the number
of cycles required to process each packet. As Figure 4 shows, we
found that some P4 primitives, most importantly applying tables
and branching in the outer control flow of the pipeline, can be
expensive on NPUs. We optimized the mFR generator to minimize
the number of tables and branches in the outer control flow. Figure 8
shows P4-14 psuedocode after optimization, which only requires
applying 2 tables per packet.

A second performance concern is synchronizing state without
contention. Each core operates on a different packet concurrently,
and needs thread safe access to the shared mFR state. The P4 library
for the NPU that we targetted, the NFP-4000 [64], has a coarse
grained semaphore that locks an entire array. This caused high con-
tention and only allowed one thread to operate at a time. To elim-
inate contention, we implemented a simple spin-lock semaphore

// Metadata.
metadata tempMfr_t tempMfr;
metadata pktMeta_t md;

// Register arrays to store mFR table and evict buffer.
register keyArr[NUM_MICROFLOWS_TRACKED];
register pktCtArr[NUM_MICROFLOWS_TRACKED];
register evictBufArr[1];
register evictBufKey[BUF_SIZE];
register evictBufPktCt[BUF_SIZE];

// Control function -- call from P4 ingress.
control MfrGenerator {

apply(UpdateKey);
if (md.keyXor == 0) {

apply(UpdateFeatures);
} else {

apply(ResetFeatures);
}

}

// Tables.
table UpdateKey { default_action :UpdateKeyAction(); }
table UpdateFeatures { default_action

:UpdateFeaturesAction(); }
table ResetFeatures { default_action

:ResetFeaturesAction(); }

// Actions.
// Update key for every packet.
action UpdateKeyAction() {

modify_field_with_hash_based_offset(md.hash, 0,
key_field_list, HASH_SIZE);

register_read(tempMfr.key, keyArr, md.hash);
register_write(keyArr, md.hash, pkt.key);
modify_field(tempMfr.keyXor,

(pkt.key string^ tempMfr.key));
}
// Update features when there is no collision.
action UpdateFeaturesAction() {

register_read(tempMfr.pktCt, pktCtArr, md.hash);
register_write(pktCtArr, md.hash, tempMfr.pktCt+1);

}
// Reset features and evict on collision.
action ResetFeaturesAction() {

register_read(tempMfr.pktCt, pktCtArr, md.hash);
register_write(pktCtArr, md.hash, 1);
register_read(tempMfr.evictBufPos, evictBufArr, 0);
register_write(evictBufArr, 0, tempMfr.evictBufPos+1);
register_write(evictBufKey, tempMfr.evictBufPos,

tempMfr.key);
register_write(evictBufPktCt, tempMfr.evictBufPos,

tempMfr.pktCt);
}

Figure 8: mFR generator psuedocode for NFP-4000.
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that allows a core to lock a single row of the mFR table or record
buffer, as shown in Figure 9.

5 THE MFR AGGREGATOR
The mFR aggregator runs on the switch CPU and stitches mFRs,
streamed up from the PFE, into full FRs. The challenge in designing
the mFR aggregator is optimizing the key-value data structure to
maximize the rate at which it can map mFRs to complete FRs.

5.1 Reading mFRs
The DMA engine of the PFE copies mFRs from the evicted records
buffer into free cells in a larger ring buffer inmainmemory. ThemFR
aggregator processes the mFRs in batches and sends the addresses
of free cells back to the DMA engine. This design is similar to
high performance NIC drivers [73], and allows the DMA engine
to dynamically vary the copy rate, as long as there are free cells
available.

To use multiple cores, TurboFlow spawns multiple mFR aggre-
gators that each maintain their own buffers. The PFE statically load
balances mFRs across the buffers based on key.

5.2 Aggregating mFRs
The aggregator stores FRs for active flows in a hash table. For each
mFR, the aggregator either updates the features of an existing FR,
inserts a new FR, or, for TCP packets with FIN flags, copies a FR
to an output buffer, and removes it from the hash table. The hash
table is the core bottleneck for the aggregator, and optimizing it
was the focus of our implementation. We found four optimizations
that significantly improved performance.

Linear Probing. TurboFlow uses a linear probing hash table [69].
Linear probing has high cache locality, which significantly increases
throughput given the small size of individual FRs. When a hash
table miss occurs, the next FR to check will likely be in the CPU’s
cache already.

Flat Tables. The aggregator stores FRs directly in the hash table,
i.e., each slot stores a FR, rather than a pointer to a container. This
eliminates dereferencing, which saves cycles and further reduces
cache misses.

128 Bit Integer Keys. The aggregator represents flow keys as
two 64 bit integers: the first stores IP addresses; the second stores
ports, protocol, and (optionally) physical link ID. This allows the
key comparison function to use SSE 4.1 operations to compare a
pair of 128 bit keys in only 2 instructions [43].

Lookup Prefetching. The aggregator batches lookups to mask
memory latency. It prefetches the hash table slots where each FR
in the batch is most likely to be before processing, so the memory
lookups occur in parallel with the processing of the first few records.
Prefetching also compliments linear probing: when a record is not
in the expected slot, the linear probing algorithm is likely to have
placed it in the slot immediately proceeding, which would also be
loaded by the prefetch.

5.3 Exporting Flow Records
A separate thread of the aggregator packs the evicted FRs into
packets and exports them to collection or analysis servers. It also
periodically scans the hash table entries and expires all flows that
have been inactive for longer than a pre- configured length of time.

5.4 Worst Case Performance
Allocating more PFE memory to the mFR generator reduces the
rate of mFRs sent to the CPU by decreasing collisions, which lets
TurboFlow scale to traffic higher rates and leaves more CPU cycles
for other applications. But how much PFE memory does should an
operator allocate to meet a target mFR rate?

To guide configuration, we derive Equation 2, an expected worst
case bound for the rate of the mFR stream based on the size of the
mFR table in the PFE (T ), expected packet rate (E[p]), flow rate
(E[f ]), and number of simultaneously active flows (â). Table 5 lists
the expected worst case rates in terms of â, given a fixed packet
rate and flow rate.

Table Size a 2 × a 3 × a 4 × a 5 × a

P [evict ion] .65 .40 .28 .22 .18
Packets : mFR 1.53 2.5 3.57 4.54 5.55

Table 5: Eviction chance with a active flows.

The expected worst case rate depends on the probability that an
individual packet causes an eviction, which Equation 1 describes.
An Eviction occurs when there is a collision. The probability of a
packet collidingwith a prior entry is equal to 1minus the probability
that all other active flows map to different slots than the packet. 1

T
is the probability of a single flow having the same hash value as the
packet, (1 − 1

T ) is the probability of a single flow having a different
hash value, and (1 − 1

T )â ) is the probability that all â active flows
have different hash values than the current packet.

P [evict ion] = 1 − (1 −
1
T
)â ) (1)

E[m] = E[f ] + (E[p] − E[f ]) ∗ P [evict ion] (2)
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Trace Capacity Flow Rate Packet Rate

Internet Router Link 10 Gb/s 5K - 40K 0.250 M - 0.6M
DC ToR Switch 1280 Gb/s 478K 124.0M
DC Agg. Switch 1440 Gb/s 1291K 134.0M

Table 6: Evaluation workloads.

6 EVALUATION
We implemented TurboFlow and used benchmarks, simulation, and
analysis to answer the following questions:
• What are the computational and memory requirements for
TurboFlow?
• How much do optimizations in the mFR aggregator improve
throughput?
• What is the overall monitoring capacity of a switch running
TurboFlow, and how difficult is it to tune?
• What is the infrastructure cost of high coverage monitoring
with TurboFlow?

6.1 Experimental Setup

Evaluation Platforms. We implemented the programmable ASIC
and NPU designs of TurboFlow 1. The programmable ASIC im-
plementation targetted the Wedge 100BF-32X [55], a 32x100 GbE
switch with a Tofino [65] PFE and an Intel D1517 quad core CPU
with 8 GB of RAM. The NPU implementation targetted a switch
built using a commodity server with a 4x10 GbE NFP-4000 [63]
NPU, packaged as a PCIe card, and an AMD Opteron-6272 CPU.

Each implementation had the same mFR aggregator, written in
C++, but different mFR generation code, written in a combination of
P4 and platform specific languages, for access to hardware features
not supported by P4. The Tofino implementation required plat-
form specific code for the stateful operations, while the Netronome
implementation used our custom semaphore, written in micro-C.

6.2 Benchmark Workloads
We configured TurboFlow to produce FRs that included IP 5-tuples
and 4 features: packet count, byte count, start timestamp, and end
timestamp. We benchmarked it with traces that represent Internet
router and data center switch workloads, as Table 6 summarizes.

Internet Routers. We used 8 1-hour long traces from 10 Gb/s
links between core Internet routers [11], collected in 2015. Each
trace contains 1 - 2 billion anonymized packet headers, representing
over 99% of the packets that crossed the links during the collection
periods. To scale the workload up to Tb/s rates, we modeled a router
that monitors many 10 Gb/s links with independent traffic flows.
In TurboFlow, we allocated a different segment of the mFR table
for each link, and statically load balance mFRs from each link to
the CPU buffers. This represented a scenario where the packet rate,
flow rate, and number of active flows, i.e., all the variables in the
worst case performance equation, scaled linearly with link capacity.

1TurboFlow code repository: https://github.com/jsonch/turboflow

Logical Stage # Tables # VLIWs # SALUs # TCAMs

1. Compute hash 0 0 0 0
2. Update key 4 3 4 0
3. Set evict flag 1 1 0 0
4. Update features 4 3 4 12
5. Load buffer pos 1 2 1 3
6&7. Update evicted buf. 8 2 8 0

Total 9.38% 2.86% 35.42% 5.21%

Table 7: Tofino pipeline usage for TurboFlow.

Data Center Switches. We generated packet traces of a simulated
data center using YAPS [49], an event based simulator parameter-
ized by the data center traffic statistics reported in [4]. YAPS is based
on the simulators used in other recent work [3, 36]. We modeled
a 40 GbE two tier data center network composed of 144 end hosts
that generated traffic, 9 ToR switches that connected to end hosts,
and 4 aggregation switches that interconnected the ToR switches.

6.3 Microbenchmarks
We first measured the computational and memory requirements of
the PFE and CPU components of TurboFlow.

Tofino PFE. On the Tofino, the mFR generator was compiler guar-
anteed to run at line rate. The primary questions was how many of
the Tofino’s computational resources TurboFlow required, which
determines how much room there is for other functionality. Ta-
ble 7 shows requirements for three important resources, based on
output from the Tofino compiler. The mFR generator required no
more than 36% of any resource, which leaves room for many other
functions to process packets in parallel with TurboFlow.

TurboFlow used under 10% of the table, VLIW, and TCAM re-
sources, which common data plane functions such as forwarding
and access control rely on.

TurboFlow consumed a larger portion of the Tofino’s stateful
ALUs (SALUs). Recent prototype data plane applications would
also use SALUs [28, 45, 51, 62]. Although not all of these applica-
tions may be able to map to the Tofino, we can estimate an upper
bound for the number of SALUs they would require by counting
the number of register reads or writes in their P4 code. By this met-
ric, we estimated that a data plane cache for read heavy key-value
stores would require 7 SALUs [45], a Paxos implementation [28]
would require 9, and a simple EWMA estimate of link utilization
for traffic load balancing [19] could be implemented with 1. Based
on SALU requirements, all of these applications could be deployed
concurrently with TurboFlow.

Table 7 also shows that the hash computation required no addi-
tional resources. We avoided the need to compute it by configuring
the SALUs to compute the hash of the packet’s key while accessing
the register arrays.

NFP-4000 PFE. In an NPU architecture the main computational
resources is CPU time, which is shared by all the data plane func-
tions running in the NPU. We measured an average per-packet
cycle count of 3423 for the TurboFlow mFR generator, using the

https://github.com/jsonch/turboflow
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Figure 10: Packet rate throughput on the NFP-4000.

Cycles Mem Ops. Hashing Apply Tables

3423 66.76% 2.13 % 27.81%
Table 8: Single thread cycle count on NFP-4000.
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Figure 12: mFR aggregator throughput with optimizations.

NFP-4000’s single thread debugger. As Table 8 shows, memory ac-
cesses dominated the cost, which took approximately 200 cycles

per read or write. Applying the evict or update tables in the control
flow was also expensive, and could be merged with the key update
table to further optimize future code.

Figure 10 plots the multi-core performance of TurboFlow on the
NFP-4000. With all cores of the device enabled, it sustained around
11 M packets per second, enough to saturate the 40 Gb/s interface
even with small 300B packets. The finer grained semaphore and
branch reduction/table merging optimizations described in Sec-
tion 4 were important in reaching this throughput, as Figure 10 also
shows.

Running additional data plane functions alongside TurboFlow
would reduce throughput. To estimate how much, we measured
the cost of all P4 primitives. The most expensive operations were
applying tables (around 1200 cycles each) and reading / writing to
register arrays (around 200 cycles each). Based on these measure-
ments, we estimate that running TurboFlow along with 5 custom
forwarding tables and another stateful P4 program that requires
9 register reads and 9 register writes, e.g., a Paxos [28] implemen-
tation, would cost around 13,000 cycles per packet, resulting in a
throughput of around 3 M packets per second, or 20 - 30 Gb/s with
average packet sizes around 600 B - 1 KB, which is common [11].

mFR to Packet Ratio. The PFE reduces the switch CPU’s work-
load by aggregating packets into mFRs. We quantify the workload
reduction in terms of the mFR to packet ratios. Figure 11 plots mFR
to packet ratios for the Internet router and DC switch traces. 1 MB
of PFE memory reduced CPU workload by a factor of at least 10
in all traces. Workload reduction was more significant in the data
center traces because there were fewer active flows and flow arrival
rates were lower. There, 100 KB of PFE memory reduced the CPU
workload by a factor of 45 (for aggregation switches) and 135 (for
the top of rack switches).

Switch CPU Throughput. Figure 12 plots throughput of the mFR
aggregator with different optimizations, averaged over 100 trials.
The rightmost bar of each cluster (batch) shows throughput with
all the optimizations described in Section 5. The mFR aggregator
had an average throughput of 13.73 mFRs/s with 1 core, and scaled
almost linearly with additional cores; cores 2 through 4 increased
throughput by 8.4, 8.9, and 7.79 mFRs/s, respectively.

The leftmost bar (redis) in Figure 12 shows a baseline TurboFlow
aggregator implemented using Redis [71]. It scaled well, but was
much less efficient than TurboFlow. The difference is a factor of
20. The Redis implementation is a strawman that emphasizes the
benefit of optimization when constrained to the switch CPU. How-
ever, even compared to a much more efficient C++ implementation
using a std::unordered_map (std), the TurboFlow optimizations still
provided a 5.67X throughput increase.

The horizontal lines in Figure 12 illustratewhy the extra through-
put matters, with two workloads that require the switch CPU to pro-
cess around 10M mFRs/s. First, 1 Tb/s of traffic with the multi-link
Internet router workload with and 5 MB of PFE memory dedicated
to TurboFlow; second, 3.2 Tb/s of DC traffic at a ToR switch (derived
by time-accelerating the 1.28 Tb/s ToR trace by a factor of 2.5). The
mFR rates for these workloads are computed based on the packet
rates of the traces and the packet to mFR ratios shown in Figure 11.
The TurboFlow aggregator can support both of these workloads
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Resource 4 Features 8 Features Rel. Cost

(Tofino) Tables 18/64 26/64 44%
(Tofino) sALUs 17/44 25/44 47%
(NFP-4000) Cycles 2915 4415 29%
(Switch CPU) mFR Throughput 13.73M 12.57M 8.4%

Table 9: The cost of generating additional features.

PFE Memory Internet Link ToR Switch Aggregation Switch

PCIe load (mFRs to CPU)

49 KB 22.57 Mb/s 242.93 Mb/s 856.99 Mb/s
98 KB 19.01 Mb/s 173.06 Mb/s 563.17 Mb/s
196 KB 15.39 Mb/s 129.52 Mb/s 397.63 Mb/s
786 KB 9.27 Mb/s 100.04 Mb/s 286.92 Mb/s
1572 KB 7.05 Mb/s 94.65 Mb/s 267.52 Mb/s

Network load (FRs to collector)

- 1.75 Mb/s 89.71 Mb/s 247.92 Mb/s

Table 10: Communication overheads for TurboFlow.

with 1 or 2 cores, which neither the Redis nor C++ baselines could
support, even using all 4 cores.

Feature Richness. Table 9 shows the cost of generating FRs with
4 additional features (maximum queue depth, packet size, inter-
arrival time, and average queue depth). On the Tofino, this required
8 additional tables and sALUs to widen the mFR table and evicted
mFR buffer. On the NFP-4000, the additional memory operations
added cycles. For the switch CPU, the new features had a smaller
impact on throughput because the main bottlenecks were per-mFR
operations rather than per-byte operations.

PCIe and Network Overhead. Table 10 shows that even when
only using small amounts of PFE memory, data rates to the CPU are
low, in the sub 1 Gb/s range. For context, the PCIe 3.0 x4 interfaces
of the Tofino and NFP-4000 have theoretical maximum throughputs
of 32 Gb/s. Network overhead for exporting the complete FRs to
collection servers is even lower, requiring less than 1

1000 as much
bandwidth as the original monitored traffic.

6.4 Monitoring Capacity and Tuning
Using the benchmark results and statistics from the workload traces,
we analyzed the effective monitoring capacity of a Wedge BF32-
100X running TurboFlow, and the difficulty of tuning.

Aggregate Capacity. Table 11 summarizes the monitoring capac-
ity of TurboFlow in terms of Tb/s of link capacity, using different
amounts of PFE memory and numbers of switch CPU. We derived
these capacities based on the average packet sizes in the workload
traces, the mFR to packet ratios in Figure 11, and the average mFR
throughputs in Figure 12. The table shows that TurboFlow can scale
to produce FRs for terabit rate traffic with both Internet and data
center workloads, using reasonable amounts of PFE memory and
CPU cores.

Number of CPU Cores
PFE Memory 1 2 3 4

Internet Router
0 MB 300 Gb/s 600 Gb/s 900 Gb/s 1200 Gb/s
1 MB 600 Gb/s 1200 Gb/s 1700 Gb/s 2200 Gb/s
4 MB 800 Gb/s 1400 Gb/s 1900 Gb/s 2500 Gb/s
8 MB 900 Gb/s 1600 Gb/s 2300 Gb/s 2800 Gb/s
16 MB 1100 Gb/s 1800 Gb/s 2600 Gb/s 3200 Gb/s
24 MB 1200 Gb/s 2000 Gb/s 2800 Gb/s 3500 Gb/s

Data Center Aggregation Switch
1 MB 6.4 Tb/s 9.3 Tb/s 13.6 Tb/s 14.4 Tb/s

Table 11: Aggregate monitoring capacity for TurboFlow.
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Figure 13: mFR rates over time in 1 core Internet trace.

Without any PFE processing, i.e., the PFE has no mFR table
and sends every packet to the CPU as a mFR representing 1 packet,
TurboFlow scales to 1.2 Tb/s of aggregate Internet links when using
all 4 cores. A small amount of PFE memory, 1 MB, can replace 2 of
those cores to reach the same capacity. At the other extreme, the
switch can also scale to the same traffic rates using 24 MB of PFE
memory and only 1 CPU core.

For perspective, Marple [62], the only other recent PFE acceler-
ated system capable of efficiently generating FRswith these features,
is estimated to require an 8 core dedicated server to support a 64x10
GbE switch [62] with Internet scale workloads derived from the
same links.

Tuning. To analyze the difficulty of tuning TurboFlow, i.e., select-
ing how much PFE memory to use, which determines mFR rate
and thus CPU load, we measured the stability of configurations
over time and the safety of the analytic formulas we derived in
Section 5.4.

Figure 13 plots mFR rates during .5 second intervals in the
12/2015 core Internet router trace. MFR rates were stable throughout
the duration of the trace and variance was low. Given the stability,
it would be practical to tune TurboFlow based on a short initial
sample of traffic in these workloads.

Figure 14 plots a histogram of the ratio of worst case expected
mFR rate to average measured mFR rate, with trials for all 8 2015
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Figure 14: Worst case to measured mFR rates for 2015 Inter-
net router traces.

core Internet router traces. The ratio is always above 1, demon-
strating that the worst case formula in Section 5.4 provided a safe
bound in all scenarios. Since switch CPU load is stable over time,
operators can use the formulas to find an initial configuration and
later tune PFE memory allocation to meet target switch CPU loads.

6.5 Telemetry Infrastructure Cost
To analyze the cost of high coverage monitoring with TurboFlow,
we modeled the equipment and power costs of a generating and
analyzing FRs in a network built from Wedge 100BF-32X switches
and commodity servers. We compared the cost of monitoring with
TurboFlow to a model that represents a lower bound estimate of
cost using either Marple [62] or FlowRadar [51].

6.6 Cost Model
The cost model calculates the equipment cost (in dollars) and power
consumption (in Watts) of monitoring with respect to the capacity
of the monitored links (in Tb/s). We assume that cost is continuous,
e.g., it is possible to deploy a fraction of a server, and that cost
scales linearly with the total capacity of the monitored links. Linear
scaling is a reasonable assumption because monitoring work can
be statically load balanced across the servers, e.g., based on link or
traffic flow, and the overhead of transferring FRs across the network
is negligible (Table 10).

Cost =
F lowRate (w )/Capacity (w )

ServerTput (t, i )/ServerCost
(3)

Equation 3 is the cost function per Tb/s of traffic for a monitoring
task t (either generating FRs or analyzing FRs), using a telemetry
system i (either TurboFlow or FlowRadar / Marple) with a traffic
workload w (Internet router, DC ToR switch, or DC aggregation
switch). The numerator describes the workload, it normalizes their
flow rates by capacity for equal comparison. The denominator
expresses the number of FRs that can be processed per cost unit
(dollar or Watt), which depends on the task, the telemetry system,
and the cost of the servers.

RawCost. We based server cost on a reference server with an Intel
Silver 4110 CPU 8 core CPU, which costed approximately $3500 in
2017 and uses around 600 Watts under full load.

Workload Switches + Generation + Analysis

Equipment Cost (per Tb/s)

DC ToR $3600 $3603 (+ 0.1%) $3642 (+ 1.2%)
DC Agg. $3600 $3608 (+ 0.2%) $3702 (+ 2.9%)
Internet $3600 $3636 (+ 1.0%) $4059 (+ 12.8%)

Power Cost (per Tb/s)

DC ToR 150 W 158 W (+ 5.6%) 164 W (+ 10.0%)
DC Agg. 150 W 159 W (+ 6.1%) 174 W (+ 16.7%)
Internet 150 W 163 W (+ 9.2%) 234 W (+ 56.3%)

Table 12: Cost of monitoring infrastructure with TurboFlow.

For perspective, we also reference the cost of the raw switches
as a lower bound on the cost of a data plane with no monitoring.
Wedge 100 series switches costed around $3600 per Tb/s in 2017 and
have a typical power consumption of around 150W per Tb/s [32].

Server Throughput. We estimate per-core server throughput for
FR generation and analysis.

We define FR generation work as any processing required to
collect telemetry data from switches, convert it into FRs, and copy
the records into in-memory buffers for analysis applications to
consume. For TurboFlow, the processing is simply collecting FRs
from switches and copying them to buffers for analysis. We use a
conservative throughput of 50M FRs/s, which corresponds to filling
the buffer with 25B FRs at a bit-rate of 10 Gb/s, well within the
capacity of a single server core [73]. We factored in TurboFlow’s
usage of the switch CPU by adding 7.8W to the power cost of FR
generation, modeling a scenario where TurboFlow fully utilizes the
entire 25W CPU to generate FRs for its 3.2 Tb/s of switch links.

Marple and FlowRadar do post processing to aggregate data from
the switch into complete FRs. We estimate an upper bound on their
throughput based on the optimistic assumption that the processing
servers will only need to do 1 key- value operation per flow. In
practice, this would be higher since both systems export multiple
records per FR. We measured the per-core throughput of Redis,
widely used scale out key-value at 625K key-value updates/s per
core of the reference server, consistent with other benchmarks [71].

Analysis work includes any processing of FRs to extract higher
level informatino. To estimate the throughput of a FR analysis
process, we implemented a simple traffic classifier in C++ using
Dlib [47]. The classifier predicts the application that generated a
flow record (e.g., https, ssh, dns), using flow features described in
prior work [90]. We benchmarked the per-core throughput of the
classifier at 4.25 M FRs/s on the reference server.

Workload Profiles. We use the flow rates and capacities listed in
Table 6 to normalize cost. For the Internet workload, where average
flow rate depends on trace, we used the highest rate of 40K / s.

6.7 Cost Analysis
Table 12 summarizes the modeled cost of high coverage monitoring
with TurboFlow. Generating FRs added under 1 % to equipment cost
and under 10 % to power cost. Analyzing the FRs, which depends
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Workload DC ToR DC Aggregation Core Internet
System TurboFlow PFE Accelerated TurboFlow PFE Accelerated TurboFlow PFE Accelerated

Cost Metric (Per Tb/s) Unit Power Unit Power Unit Power Unit Power Unit Power Unit Power
Generation $3 8 W $268 44 W $8 9 W $645 107 W $36 13 W $2880 479 W
Analysis $39 6 W $39 6 W $94 15 W $94 15 W $423 70 W $423 70 W
Total $42 14 W $308 51 W $102 24 W $740 123 W $459 84 W $3303 550 W

TurboFlow Saving $265, 36 W per Tb/s $637, 98 W per Tb/s $2844, 466 W per Tb/s

Table 13: Cost comparison between TurboFlow and other PFE accelerated telemetry systems.

entirely on the analysis application rather than the telemetry in-
frastructure, was more expensive. However, even though the traffic
classifier that we benchmarked was unoptimized and did computa-
tionally expensive machine learning, the overall monitoring cost
was still reasonable because of the highly efficient FR generation
with TurboFlow.

Table 13 compares the cost of TurboFlow to other recent PFE
accelerated telemetry systems. TurboFlow reduced both equipment
and power costs of generating FRs by a factor of > 5 for all workloads.
This corresponded to a cost reduction of > 3, evenwhen also running
the analysis application.

7 DISCUSSION
7.1 Lessons Learned
TurboFlow is one of the first published systems with an implemen-
tation for commodity multi-terabit rate P4 switches. For future
work, we summarize some of the lessons we learned in developing
it.

Target Hardware Early. Even though PFEs can be programmed
in high level languages like P4, they have many hardware-specific
restrictions and extensions. If the ultimate goal of a projects is a
PFE implementation, it is useful to consider the lower level details
of hardware platform early in the design. The first implementa-
tion of TurboFlow was for the reference P4 behavioral software
switch [24], and did not fully consider the restrictions of hardware.
It was effective in theory but required significant optimization for
the NPU and a complete redesign for the programmable ASIC. In
proceeding work, we have found that it is most efficient to target
hardware from day one. Although there is a learning curve, all cur-
rent P4 hardware vendors have SDEs and cycle-accurate simulators
that make this more straightforward than it may seem.

Decompose Complex Processing. The restrictions of the pro-
grammable ASIC and, to a lesser extent, the NPU, are obstacles
for complex applications. The most challenging restriction for
TurboFlow was that in the programmable ASIC, each position in a
register array could only be accessed once per packet. We learned
that although these restrictions may prevent the implementation
of a full system in the PFE, it is often possible to decompose or
redesign parts of it to take advantage of the high performance of
PFEs.

Leverage Switch CPUs. Programmable PFEs are a major change
in the architecture of commodity switches. Another change that

has not received as much attention is the increased throughput
between the PFE and CPU. Both the Tofino and NFP-4000 have
PCIe 3.0 links with DMA engines and > 10 Gb/s throughput. This
is orders of magnitude more than in traditional switches, where
it was on the order of Mb/s [26]. TurboFlow shows that the extra
bandwidth makes the switch CPU an valuable asset that can enable
powerful new features without requiring new hardware.

7.2 Looking Ahead
TurboFlow leverages commodity programmable switches for pow-
erful and cost effective monitoring that can be deployed to next-
generation networks. Here, we discuss how TurboFlow may inter-
act with advances that are further out.

Future PFEs. As transistor sizes continue to shrink, PFEs will
continue to evolve to support increased flexibility and programma-
bility. A recent example is the proposed dRMT ASIC [16], which
implements stateful operations using a pool of memory processors
that can be invoked multiple times per packet. This design sup-
ports a flexible run to completion model, similar to the NPUs, but
with additional fine-grained throughput guarantees that depend
on the number of memory operations per packet. TurboFlow moti-
vates research into how the flexibility can be used for both more
advanced trafficmetrics, such as streaming estimates of complex sta-
tistics [25], and also more advanced in-PFE memory management
techniques.

Although future PFEs will be more flexible, they are still likely
to have memory constraints because SRAM density [27] does not
increase as rapidly as network demand [21]. This suggests that
TurboFlow, and the more general idea of systems that combine
PFE and optimized CPU processing, will remain relevant for future
generations of network devices.

Network Growth. Network traffic is predicted to continue grow-
ing at an annual rate of around 20-30%, for both data centers and
the larger Internet [21]. To meet this demand, switches will likely
need to scale horizontally, with additional processing cores and
more parallel memory banks. PFE ASICs scale by integrating multi-
ple pipelines that each handle a subset of ports, while PFE NPUs
and CPUs scale by adding cores, co-processors, and memory chan-
nels [27]. TurboFlow is well suited to taking advantage of horizon-
tal scaling and can serve as a starting point for future telemetry
systems that are optimized for higher throughput hardware.
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8 RELATEDWORK
TurboFlow builds onmany prior networkmonitoring and telemetry
systems. At a high level, TurboFlow is the first system that can
generate feature rich and unsampled FRs at terabit rates using only
commodity switch hardware.

Scalable Monitoring. Many previous systems achieved scala-
bility by sampling packets [34, 67, 70, 85], or using sketches to
estimate certain statistics [91]. These approaches require fewer PFE
resources than TurboFlow, but sacrifice information richness.

An orthogonal approach to scaling is balancing the monitoring
workload across multiple devices. CSamp [75], OpenNetMon [87],
and other systems [17, 58, 86] load balance monitoring work across
routers or switches based on traffic flow. A similar technique would
also reduce workload for switches running TurboFlow, but at the
expense of sacrificing coverage and flow accuracy.

PFE Accelerated Telemetry. TurboFlow builds on other recent
PFE accelerated telemetry systems [51, 62] with different design
goals. These systems are designed for periodic measurement tasks,
e.g., a network administrator manually debugging an incast by
querying specific switches for statistics about certain flows. On the
other hand, TurboFlow is designed for high coverage and always-
on monitoring. To meet these more aggressive design goals, we
optimized the entire flow generation process to meet the resource
constraints of a switch and analytically bound the expected worst
case performance. Intead of optimizing for the switch, Marple and
FlowRadar rely on external servers to post process data exported
from the PFE, which adds overhead that makes high coverage mon-
itoring cost prohibitive.

Query Refinement. TurboFlow is complementary to concurrent
work on network query refinement [40], where the data plane of
a network streams an increasingly selective flow of packets to a
software processor. The refinement improves scalability of packet
level monitoring, which is orthogonal to flow level monitoring.
While a packet stream has more detailed information about indi-
vidual flows, it loses information about all the flows filtered out.
TurboFlow accounts for all packets in its information rich flow
records, and is lightweight enough to run at all times. The flow
records from TurboFlow can help provide context for a packet
query or determine how an ongoing query should be refined.

Switch CPUs. Several prior systems have proposed coupling tra-
ditional fixed function FEs with switch CPUs, using the CPUs for
caching forwarding rules [26, 46, 61], more flexible packet process-
ing [53, 80, 83], or counter processing [60]. In these systems the
CPU has a fixed interface to the FE, similar to OpenFlow [56], that
allows it to send and receive packets, poll counters, and install for-
warding rules. The fixed interface and high cost of forwarding rule
installation are obstacles to using these systems for FR generation.
The only way for the CPU to offload FR generation work to the FE
is by installing per-flow forwarding rules and periodically polling
their counter values. This strategy leaves the CPU with too much
work because forwarding rule installation rates are much lower
than flow arrival rates, e.g., 300-1000 per second [26], compared
to >10,000 new flows per second for a single 10 Gb/s link [13].
TurboFlow leverages the increased flexibility of PFEs to implement

a custom mFR based interface between the PFE and CPU that al-
lows the work to be partitioned at a finer granularity for better PFE
utilization.

CPU Optimizations. TurboFlow is also related to work that op-
timizes network functions such as lookup tables [30, 92], key value
stores [52], software switches [77], and sampled FR generation [29]
on general purpose CPUs. There is overlap in some of the opti-
mizations that all of these systems use, e.g., batching is generally
effective. To our knowledge, TurboFlow is the first to propose and
evaluate the specific hash table optimizations described in Section 5
for the task of FR generation with commodity switch CPUs, which
are much less powerful than server CPUs.

Energy Savings. A primary goal of TurboFlow is information rich
monitoring at low energy cost. Many other works have demonstrate
the practical importance and challenge of reducing power consump-
tion with, for example, energy saving load balancers [41, 48] and
architectures [1]. TurboFlow is a complimentary way to reduce
power consumption in networks that use flow monitoring, inde-
pendent of routing or architecture. Additionally, many systems
designed to reduce energy consumption themselves analyze flow
records, for example, to understand network demand and balance
load more effectively. TurboFlow can serve as a platform to sup-
port the necessary monitoring at low cost. Wider availability of
information rich flow monitoring can also open the door to more
sophisticated algorithms to further improve efficiency.

9 CONCLUSION
High coverage flow monitoring has many applications, but current
systems either sacrifice the information richness of the FRs or the
cost of the telemetry infrastructure. As a solution, we introduced
TurboFlow, a FR generator for commodity programmable switches
that produces unsampled and feature rich FRs for multi-terabit rate
traffic without requiring any assistance from servers. To achieve this
goal, we carefully decomposed the FR generation algorithm into
components that can be optimized for the two available processing
units in a commodity programmable switch: its PFE and CPU. The
result is a powerful and efficient system that operates well within
the constraints of real switch hardware. Our implementations for
commodity switches and evaluation with Internet and data center
traces showed that TurboFlow can generate information rich FRs,
scales tomulti-terabit rates, provides a tunable and efficient trade off
between PFE memory and switch CPU utilization, and minimizes
the cost of telemetry infrastructures without sacrificing accuracy
or feature richness. These attributes make TurboFlow a powerful
tool for high coverage flow monitoring.
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