Scaling Hardware Accelerated Network Monitoring to Concurrent and Dynamic Queries with ***Flow John Sonchack**, Oliver Michel, Adam J. Aviv, Eric Keller, Jonathan M. Smith

University of Colorado Boulder

Debugging

Who is causing microbursts?

- Queue Lengths
- Drop Counts

Debugging

Who is causing microbursts?

- Queue Lengths
- Drop Counts

Traffic Engineering

Which flows are colliding?

Utilization

>1 Tb/s Switches

100 Gb/s Links

Who is causing microbursts?

- Queue Lengths
- Debugging Drop Counts

Which flows are colliding?

Utilization

Traffic Engineering

Security

Are any hosts compromised?

 Packet timing statistics

Measurement Challenges Concurrent Applications High Packet Rates

Debugging

Who is causing microbursts?

- Queue Lengths
- Drop Counts

Which flows are colliding?

Utilization

Traffic Engineering

Are any hosts compromised?

 Packet timing statistics

Custom Hardware Processing (e.g., NetFlow) Cluster

Custom Hardware Processing (e.g., NetFlow) Cluster

Flexibility

Applications can't define custom statistics

Efficiency

Measurement Tput:

< 1 M packets /
second per core</pre>

Network Tput: > 100 M packets / second per switch

Custom Hardware Processing (e.g., NetFlow) Cluster

Flexibility

Efficiency

[Marple SIGCOMM 17, TurboFlow EuroSys 18, Sonata SIGCOMM 18]

SELECT packet.length GROUP BY tcp flow AGGREGATE average

Custom Hardware Processing (e.g., NetFlow) Cluster

Flexibility

Efficiency

Reconfigurable Switch ASICs

[Marple SIGCOMM 17, TurboFlow EuroSys 18, Sonata SIGCOMM 18]

Concurrency

SELECT packet.length GROUP BY tcp flow AGGREGATE average

Concurrency Challenges with Reconfigurable ASICs

- Max Queue Length
- Total Drop Count

Concurrency Challenges with Reconfigurable ASICs

Concurrency Challenges with Reconfigurable ASICs

*Flow: Efficiency and Concurrency?

Question: can we leverage reconfigurable ASICs for concurrent monitoring?

*Flow: Efficiency and Concurrency?

Question: can we leverage reconfigurable ASICs for concurrent monitoring?

Insight: concurrency challenges are caused by trying to do too much in the ASIC.

Average Utilization Calculation Max Packet Length Calculation

. . .

Average Utilization Calculation Max Packet Length Calculation

. . .

Jitter Calculation

Concurrency

Outline

- Motivation
- Design
- Implementation
- Evaluation

*Flow	Design
SELECT <i>ip length</i> GROUP BY <i>tcp flow</i> AGGREGATE <i>sum</i>	 Decoupling calculation Generalize selection & grouping
Common Preprocessing	App. Specific Calculation

Decoupling Calculation

SELECT ip length GROUP BY tcp flow

AGGREGATE **sum**

Preprocessing	

					111 R.
		1-1-1-1	 1*****	110 0 17 11 0 0 11	
				:	•

Decoupling Calculation

SELECT ip length GROUP BY tcp flow

Grouped Packet Vector (GPV): { *flowKey* : *packetLength*}

*Flow Architecture

Outline

- Introduction
- Design
- Implementation
- Evaluation

*Flow Implementation

Background: Stateful Match Action ASICs

Untracked Flow:

Outline

- Motivation
- Design
- Implementation
- Evaluation

Evaluation: Concurrency and Efficiency

Evaluation: <u>Concurrency</u> and Efficiency

				Q	uery	Stages	ALUs
			•	Connec	ction Count		
			••	Avg.	Latency		
*Elow	Stages Alle	•	Flowlet Sizes				
	Clagoo	/ 200	•••	Packe	et Counts		
Cacile		•		TCP Nor	n-Monotonic		
			··	TCP Out	of Sequence		
		PV				statisti	CS
	*Flow Cad	he	Vs		Compiled [Marple SIG	Queries	5
Ë							

Evaluation: <u>Concurrency</u> and Efficiency

The *Flow Cache can service **any** query but only requires as many hardware resources as **~1** compiled query.

*Flow	Stages	ALUs
Cache	11	33

GPV

	Query	Stages	ALUs
	Connection Count	4	10
	Avg. Latency	6	11
	Flowlet Sizes	11	31
	Packet Counts	5	7
	TCP Non-Monotonic	5	6
•.	TCP Out of Sequence	7	14
		statisti	ĊS
		•	

[Marple SIGCOMM 17]

*Flo	w C	ach	ne	

Vs

·•••••

https://www.caida.org/data/passive/trace_stats/

Outline

- Motivation
- Design
- Implementation
- Evaluation

In The Paper

□ NetFlow

Efficient Flexible Concurrent Dynamic Netflow х X Software **PFE** Queries *Flo

On Github

www.github.com/jsonch/starflow

// Tables.

table UpdateKey { default_action :UpdateKeyAction(); } table UpdateFeatures { default_action :UpdateFeaturesAction(); } table ResetFeatures { default_action :ResetFeaturesAction(); }

// Actions. // Update key for every packet.

3.2 Tb/s *Flow Cache Prototype for **Barefoot** Tofino

register_write(evictBufArr, 0, tempMfr.evictBufPos+1); register_write(evictBufKey, tempMfr.evictBufPos, tempMfr.key); register_write(evictBufPktCt, tempMfr.evictBufPos,

tempMfr.pktCt);

}

Conclusion (and Thank You for Listening!)

