

Stochastic Substitute Training: A Gray-box Approach to Craft Adversarial Examples **Against Gradient Obfuscation Defenses**

Mohammad Hashemi, Greg Cusack,* Eric Keller 10/19/18

- Neural Networks are everywhere
- Vulnerable to attacks!
- obfuscate gradients
- But are they vulnerable in a more realistic setting?

Response: Design robust neural networks that block or

• Even these are vulnerable in a white box setting! [Athalye et al. ICML '18]

Stochastic Substitute Training

A general, gray-box attack for breaking defenses that obfuscate gradients

Crafting Adversarial Examples

Optimization Problem

$argmin_{\delta} \|\delta\|_{p} s.t. (x + \delta) \in [0, 1]^{m} \text{ and } F(x + \delta) = y_{target}$

But neural networks are not convex!

Carlini & Wagner (C&W) Attack

Modified Objective Function
iminimize
$$c \cdot ||\delta||_p + f(x + \delta)$$
 s.t. $x + \delta \in [0,1]^m$
iminimize $f(x') = max(max_{i \neq t}(Z(x')_i) - Z(x')_t, -\kappa)$

Modified Objective Function
iminimize
$$c \cdot ||\delta||_p + f(x + \delta)$$
 s.t. $x + \delta \in [0,1]^m$
iminimize $f(x') = max(max_{i \neq t}(Z(x')_i) - Z(x')_t, -\kappa)$

- $Z(x')_i$ -> Logits of non-target classes
- $Z(x')_t \longrightarrow Logit of target class$
 - $k \longrightarrow Determines classification confidence$

[Carlini et al. IEEE S&P '17]

Black Box Attack (Transferability)

Adversarial Example

Target NN #1 Architecture: a1 Parameters: p1

Target NN #2 Architecture: a2 Parameters: p2

Black Box Attack (Substitute Training)

Leverage Transferability of Adversarial Examples

[Biggio et al. ECML/PKDD '13], [Papernot et al. Asia CCS '17]

Stochastic Substitute Training (Threat Model)

- Fortifying Defenses
 - Classifier predicts adversarial examples as their correct class
 - Threat Model
 - Send inputs and see logits
- Detecting Defenses
 - Identify when adversarial examples are fed into the classifier
 - Threat Model
 - Send inputs, see logits, and the output of the detector

Stochastic Substitute Training

Crafting Adversarial Examples

minimize $||\delta||_p + c.f(x + \delta)$ s.t. $x + \delta \in [0, 1]^m$ $f(x') = max(max_{i\neq t}(Z(x')_i) - Z(x')_t, -\kappa)$

1]^m Iteration

Noisy Data Augmentation

- Substitute model more closely approximates decision boundaries of target model
- Helps substitute model learn how the robust model's class probabilities change in the neighborhood of each sample
- Multiple copies of training models created with varying levels of random noise
 - Each substitute model approximates the decision boundaries for some specific images better than others

Random Feature Nullification

[Wang et al. SIGKDD '17]

Feature Mask

Randomly Nullified Feature Vector

Random Feature Nullification Attack

- Trained target model
- Nullified 50% of features
- Trained substitute model on multiple replications of MNIST test set
- Augmented each set with various levels of random noise
- Define three success metrics
 - RFN-50, RFN-70, RFN-90

[Wang et al. SIGKDD '17]

Random Feature Nullification Attack

Adversarial Example (RFN-50)

Original Image

Norm

Thermometer Encoding

Idea: Discretize features to mask gradients

$$\tau(p)_j = \begin{cases} 1, & \text{if } p \ge j/k \\ 0, & \text{otherwise} \end{cases}$$

p: pixel valuek: encoded vector sizej: index of resulting vector

[Buckman et al. ICLR '18]

Thermometer Encoding Attack

- Used pre-trained model fortified with thermometer encoding and adversarial training as target model
- Trained four identical substitute models on CIFAR-10 test set with different levels of random noise
- Crafted adversarial examples for the first 100 CIFAR-10 images in the test set

[Buckman et al. ICLR '18], [Athalye et al. ICML '18]

Thermometer Encoding Attack

D

Adversarial Example

SafetyNet

[Lu et al. ICCV '17]

Safety Net Attack

- Trained lacksquare
 - Two substitute models for the original classifier
 - Substitute model for the detector
- Metrics for Success
 - Does the adversarial example fool the classifier? ●
 - Is the confidence ratio less than 25%
 - Did the detector predict the adversarial example as a legitimate sample?

Original Image

Adversarial Example

Defense-GAN

[Samangouei et al. ICLR '18]

Defense-GAN Attack

- Trained substitute model with random noise with noise in range [-0.95 - 0.95]
- Used cross entropy loss function for training
- 100% success in fooling classifier and detector
- More powerful than the first approach as this is a true black box attack

Original Image

Adversarial Example

Jacobian-Based Data Augmentation

Black Box Attack vs. SST (RFN) 100 Success Rate (%) 75 50 25 0 **RFN-50 RFN-90 RFN-70** SST Threshold for Success JBDA

[Papernot et al. Asia CCS '17]

Adversarial Example Comparison against Thermometer Encoding

Original Image

SST

JBDA Black Box

Conclusion

in attempt to protect themselves against adversarial examples

Leveraged our approach against fortifying and detecting defenses

defense and model parameters, and the training data.

Black box attack evaluations

• Craft ways to attack deep neural network models that obfuscate gradients

• We can design attacks with no knowledge of the type of defense, the

Questions?

Mohammad Hashemi mohammad.hashemi@colorado.edu

Eric Keller eric.keller@colorado.edu

Gregory Cusack gregory.cusack@colorado.edu

