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ABSTRACT
It has been shown that adversaries can craft example inputs to neu-

ral networks which are similar to legitimate inputs but have been

created to purposely cause the neural network to misclassify the

input. These adversarial examples are crafted, for example, by cal-

culating gradients of a carefully defined loss function with respect

to the input. As a countermeasure, some researchers have tried to

design robust models by blocking or obfuscating gradients, even in

white-box settings. Another line of research proposes introducing

a separate detector to attempt to detect adversarial examples. This

approach also makes use of gradient obfuscation techniques, for

example, to prevent the adversary from trying to fool the detector.

In this paper, we introduce stochastic substitute training, a gray-box

approach that can craft adversarial examples for defenses which

obfuscate gradients. For those defenses that have tried to make

models more robust, with our technique, an adversary can craft ad-

versarial examples with no knowledge of the defense. For defenses

that attempt to detect the adversarial examples, with our technique,

an adversary only needs very limited information about the defense

to craft adversarial examples. We demonstrate our technique by

applying it against two defenses which make models more robust

and two defenses which detect adversarial examples.
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1 INTRODUCTION
Deep learning has evolved in many areas. These deep neural net-

works show promising results in tasks such as malware detection

[37], autonomous driving [7], network intrusion detection [34],

diagnosis in medical images[12], and in applications such as image

classification, deep neural networks can even surpass human level

performance. [10] Deep reinforcement learning has also demon-

strated promising results in recent years in many decision making

problems, such as human level control in Atari video games [23],
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defeating the best human players in the game of Go [31], making a

humanoid robot run [30], and resource management in a cluster

with different resource types [21].

Despite their success in a wide range of applications, deep neu-

ral networks, like other traditional classifiers, suffer from a vul-

nerability to adversarial examples. When working with images,

an adversarial example is an image which is carefully modified to

make a classifier predict it incorrectly with minimal modifications

to the image. In many cases, the perturbation that is added to these

images is imperceptible to a human observer. Therefore, a human is

likely to classify the images as they did before the alterations. This

problem is not limited to modifications to digital images. Kurakin

et al. in [15] showed for the first time that this attack is applicable

in the physical world as well. Later, Eykholt et al. in [8] showed

that an adversary can place a few stickers on a stop sign to fool a

classifier, e.g., causing it to predict the sign as a speed limit sign.

Due to the threat that adversarial examples pose, many researchers

have proposed solutions to address this vulnerability. These works

fall into two main categorizations. In one line of work, researchers

introduced different mechanisms to make classifiers more robust

to adversarial examples such that the models classify adversarial

inputs that are visually close to legitimate inputs correctly [4, 36].

We refer to these defenses as “fortifying defenses”. In the other

line of work, others have tried to distinguish between legitimate

examples and adversarial examples using some detection mecha-

nisms [19, 29]. We refer to these defenses as “detecting defenses”.

One method an attacker can use to craft an adversarial example

is to calculate the gradients of a loss function with respect to the

input. Carlini et al. in [5] showed that an adversary can bypass ten

detection methods by changing this loss function. Since that time,

both the detecting defenses and fortifying defenses have evolved.

The defenses now leverage techniques that prevent the adversary

from getting a useful gradient from the model or the detector even

when the loss function is changed. These techniques are called gra-

dient masking as introduced by Papernot et al. in [26]. Athalye et

al. in [1], however, demonstrated these defenses are still vulnerable

by showing a white-box approach to craft adversarial examples

against these defenses, where the attacker needs to know about the

defenses, their parameters, and model parameters.

In this paper, we introduce Stochastic Substitute training (SST),

which is an easy and general gray-box attack, for breaking de-

fenses that obfuscate gradients without any knowledge about the

model’s parameters, the defense parameters, or access to the train-

ing dataset. SST only assumes access to the logits (inputs of softmax

layer) and doesn’t need to be tailored to different defenses in the

case where they fortify a model. That is, for fortifying defenses, SST

is completely generic. For detecting defenses, the attacker should

Session: AI Security / Adversarial Machine Learning AISec'18, October 19, 2018, Toronto, ON, Canada

25

https://doi.org/10.1145/3270101.3270111
https://doi.org/10.1145/3270101.3270111


bring the detection conditions into the loop of crafting adversarial

examples. We do this by training a substitute model with stochas-

tically modified inputs. These inputs are the set of images that an

adversary wants to craft adversarial examples for. We evaluate two

fortifying defenses and two detecting defenses. But our approach is

not limited to these defenses and can be applied to others as well.

We make the following contributions:

• We introduce Stochastic Substitute Training (SST) to craft

adversarial examples for models that obfuscate gradients, as

old methods, such as those introduced in [6, 9, 27, 33], are

ineffective in crafting adversarial examples for models that

obfuscate gradients.

• We evaluate two fortifying defenses, random feature nulli-

fication (RFN) [36] and thermometer encoding [4], on the

MNIST [16] and CIFAR-10 [14] datasets respectively. With

SST, we show that an adversary can craft adversarial ex-

amples for models fortified with these defenses with no

knowledge about the defense and with a small amount of

perturbation.

• We evaluate two detecting defenses, SafetyNet [19] and

Defense-GAN [29], on the MNIST dataset. We show how an

adversary can bypass these detection methods.

• We compare against two black-box attacks [18, 26] that can

be used to evaluate defenses which obfuscate gradients with-

out knowledge about the defense. We show that evaluating

with these black-box approaches provides the defenses have

a false sense of security. Since, with the minimal extra visi-

bility (the logits) in our gray-box approach, we are capable

of crafting adversarial examples that the black-box attacks

cannot.

The rest of this paper is organized as follows: in Section 2, we

provide the reader with background information. Then, in Section

3, we introduce SST, our new approach for crafting adversarial

examples for defenses which obfuscate gradients. In Section 4, we

evaluate our approach against fortifying defenses, and in section 5,

we evaluate our approach against detecting defenses. In Section 6,

we compare against two black-box attacks against the aforemen-

tioned defenses, and finally in Section 7, we conclude the paper.

2 BACKGROUND
In this section, we first briefly explain how deep neural networks

work for image classification and then introduce the notation we

use in this paper. Finally, we go over how an adversary can craft

an adversarial example.

2.1 Deep Neural Networks
A deep neural network (as a classifier), as illustrated in Figure 1, is

a non-linear function which maps an input to a probability vector

where each of its elements corresponds to a class score. The element

that has the largest score is considered as the prediction. A deep

neural network consists of multiple layers that are connected to

each other sequentially such that the output of one layer becomes

the input of the next layer, and each layer applies a non-linear

transformation to its inputs. Each layer has a set of parameters

which are initialized randomly. By varying those parameters, the

output of the classifier changes. The goal is to find values for the

Figure 1: Illustration of a DNN classifier.

parameters such that for most of the inputs, the neural network

predicts their labels correctly, which means that the probability

corresponding to their true label should be larger than others.

In order to train this network, we want to find the set of parame-

ters that make it predict most of the inputs correctly. So, we have to

maximize the score corresponding to the true label for each input.

In general, we can say that we need to find a θ that maximizes∑K
j=0 yjFj for every input. Note that y is a vector and only one

of its elements is 1 and the others are 0. Instead of maximizing∑K
j=0 yjFj , we can minimize −∑K

j=0 yj loд(Fj ). Mathematically, we

need to solve the following optimization problem to train a model:

arдminθ
©«− 1

N

N∑
i=0

K∑
j=0

yi j loд(Fj (xi ))
ª®¬

where N is the total number of samples in our training set and K

is the total number of classes. This is called a cross-entropy loss

function, which is a function of θ . A lower value of this function

means better predictions over the training set. In order to solve this

minimization problem, a technique called gradient descent, or one

of its variants such as Adam optimization [13], is used.

2.2 Notation
In the rest of this paper we use the following notation:

• x : the legitimate (clean) input. x ∈ [0, 1]m , where m is the

number of pixels in an image.

• y: the label corresponding to the legitimate input.

• x ′: the adversarial input. x ′ ∈ [0, 1]m .

• y′: the label corresponding to the adversarial input, which
is different from its original label.

• ytarдet : the label which an adversary wants to make the

classifier output.

• F (.): the classifier which maps an image to a label. For cor-

rectly predicted inputs we have F (x) = y.
• θ : the parameters of classifier.

• Z (.): the logits, which are inputs of the softmax layer. So,

so f tmax(Z (x)) = F (x).
• δ : the perturbation which is added to a legitimate example

to make it adversarial. So, x ′ = x + δ .
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2.3 Adversarial Example
Previous works showed how to craft adversarial examples in white-

box and black-box settings [2, 6, 9, 18, 24, 26, 27, 33]. We discuss

some of them here.

2.3.1 White-box Setting. Early efforts by Szegedy et al. in [33] and

Biggio et al. in [3] showed how to craft an adversarial example. The

process for crafting a targeted adversarial example can be reduced

to a box-constrained optimization problem as follows:

arдminδ | |δ | |p s.t. (x + δ ) ∈ [0, 1]m and F (x + δ ) = ytarдet
This optimization problem means that an attacker wants to find

the minimum perturbation, so that if she adds it to the input, the

classifier would predict it as the attacker’s desired target. How-

ever, neural networks are not convex, so this optimization problem

is intractable and people use different heuristics to find a small

enough perturbation that can fool the model. There is another class

of attacks, which are known as non-targeted attacks, in which the

attacker’s goal is to make the classifier misclassify the input to any

other label (as opposed to targeted attacks which the goal is to

make the classifier output a specific label). For non-targeted attacks

the optimization problem can be formulated as follows:

arдminδ | |δ | |p s.t. (x + δ ) ∈ [0, 1]m and F (x + δ ) , y
Carlini et al. in [6] described a way to craft adversarial examples,

and we explain it here briefly as we use the same loss function in

our attack. They designed their attack by introducing a new objec-

tive function. The objective function that they used is as follows:

minimize | |δ | |p + c . f (x + δ ) s.t. x + δ ∈ [0, 1]m

in which p can be 0,2 or∞. One of their choices for function f is:

f (x ′) = (maxi,t (Z (x ′)i − Z (x ′)t )+

in which Z is the logit which are the inputs to the softmax function,

t is the target label, (e)+ is short-hand formax(e, 0), and c is a hyper
parameter that determines the trade-off between the amount of dis-

tortion and the growth of the target score. As c grows, the amount

of distortion and the success probability grows. They showed that

by using this function, they can craft adversarial examples for the

MNIST, CIFAR-10, and ImageNet datasets with less distortion com-

pared to other white-box attacks. This minimization basically says

that we want to find a δ such that its magnitude is minimal (with

respect to l0, l2 or l∞ norm) and the logit value corresponding to

the target label is larger than other logits, which makes the classifier

predict the input as the target class. This optimization problem is

solved by the help of gradient descent, which we mentioned earlier.

Carlini and Wagner also showed that they can build adversarial

examples that will make the classifier output the target label with

higher probability by slightly changing the function f as follows:

f (x ′) =max(maxi,t (Z (x ′)i ) − Z (x ′)t ,−κ)
in whichκ >= 0 and determines the confidence score. By increasing

κ, the confidence score of the target class becomes larger. This

function basically means that we keep modifying the input as long

as Z (x ′)t < maxi,t (Z (x ′)i ) + κ.
This technique is not the only way to craft adversarial examples.

For more information about crafting adversarial examples in white-

box setting we refer the reader to [2, 9, 24, 27, 33].

2.3.2 Black-box setting. Szegedy et al. in [33] also showed that,

in many cases, an adversarial example built using one classifier

can fool another classifier that has a different architecture and pa-

rameters. This property is called the transferability of adversarial

examples. By using this property, Carlini et al. in [6] showed that

they could craft adversarial examples against classifiers fortified

by defensive distillation [28], which block gradients by crafting ad-

versarial examples against a different model with high confidence.

Later, Liu et al. in [18] built on top of this idea and crafted adver-

sarial examples against multiple pre-trained models to then be able

to transfer them to the target model. It has been also shown by

Tramèr et al. in [35] that augmenting training data with adversarial

examples generated by a few fixed, pre-trained models significantly

improves the robustness of a model in the face of these types of

transferable black-box attacks.

Biggio et al. in [3] and Papernot et al. in [26] showed that an

adversary can craft adversarial examples against a model in a black-

box setting by querying the target model and training a substitute

model using the labels predicted by the target model. In this case, af-

ter training the substitute model, the adversary can craft adversarial

examples against the substitute model in order to transfer them to

the target model. Papernot et al. in [26] also showed independently

that they can evade defensive distillation by querying the target

model in a black-box setting.

Our work is built on top of this transferability property and sub-

stitute training approach and provides a better tool for evaluating

defenses by considering a more powerful attacker that has access

to the logits of the target model.

2.4 Defenses
In general, there are two different approaches for defending against

adversarial examples:

• Fortifying Defenses: These types of defenses try to make

the classifier predict adversarial examples as their correct

class. Techniques that are used include removing adversarial

perturbation by transforming the input before feeding it to

the classifier, quantization or discretization of the input, and

randomization of the input or the model.

• Detecting Defenses: For these types of defenses, the classifier

may predict an adversarial example incorrectly, but there is

an adversarial detection mechanism that makes the whole

model reject those cases. A technique used for these defenses

is to augment the classifier with another DNN (or any other

model) to classify the input as legitimate or adversarial, or

other means of detection such as using some statistics which

are assumed to be co-related with adversarial examples.

3 STOCHASTIC SUBSTITUTE TRAINING
In this section, we introduce our new gray-box approach to gener-

ating adversarial examples.

3.1 Threat Model
Before describing our approach, it is useful to clarify the threat

model. In this paper we consider two different threat models:
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Figure 2: Illustration of Stochastic Substitute Training.

• For evaluating fortifying defenses, we consider an attacker

that can send inputs to the model and see the logits. The

attacker is not aware that a defense is in place and she doesn’t

have access to the model or defense parameters.

• For evaluating the defenses that detect adversarial examples,

we consider an attacker that knows a detection mechanism

is in place. She can send inputs to the model and see logits

and the output of the detector but doesn’t have access to the

model or detector parameters.

3.2 Algorithm
In order to attack the robust classifiers with defenses that obfus-

cate gradients, we use the transferability property of adversarial

examples. In general, we add different levels of random noise to

the set of images we want to craft adversarial examples for. In the

case of our experiments, this would be the test set of MNIST and

CIFAR-10. We then feed this dataset to the robust classifier and

record the logits. After that, we train a substitute model with this

dataset and the recorded logits. Figure 2 illustrates this process.

For training this model, instead of using a default cross entropy

loss, we use the mean square error between the substitute model’s

logits and logits we got from the robust model as our loss function.

More specifically, the loss function is defined as follows:

LossSST =
1

N

N∑
i=0

K∑
j=0

1

K

(
Z robust
j (xi + ri ) − Z sub

j (xi + ri )
)
2

where ri is the noise added to the sample xi and N is the total

number of inputs in our augmented dataset. Training a substitute

model in this way makes the substitute model’s decision bound-

aries for that dataset very close to the robust model, which makes

transferability to the robust model easier. Further, since the sub-

stitute model is differentiable, we can craft adversarial examples

for it using an iterative method. Training a substitute model with

images augmented with random noise helps the substitute learn

how the robust model’s class probabilities change in the neighbor-

hood of each sample. Note that these types of random noises do not

necessarily change the prediction of the robust model, but it helps

the substitute detect in which directions the correct class score can

be decreased. Also, because we assumed that the attacker doesn’t

know the defense which is in place and how robust the model is,

we augment the dataset with different levels of random noise. This

is because if we add a low level of random noise, the model might

be very robust and the adversarial perturbations found during the

crafting procedure may not be sufficient to fool the classifier. On

the other hand, if we add a high level of random noise, the model

may not be that robust and unnecessary adversarial perturbations

would be added to the images during crafting procedure. The reason

we use logits instead of class probabilities is that the effect of low

level random noise is more obvious in logits compared to proba-

bilities. Using probabilities may not capture the impact of small

amount of random noise because of the floating point precision.

We empirically found that for complex datasets, training multiple

copies of a model with different random noises reduces the required

adversarial perturbation on average. We speculate this is because

the decision boundaries of the robust model and substitute models

are not completely matched, and each of the substitute models ap-

proximates the decision boundaries for some specific images better

than others.

After training the substitute model for multiple epochs, we craft

adversarial examples against it by using the C&W loss function

mentioned in Section 2.3 and gradient descent to minimize this

loss function iteratively. By doing so, we find a small adversarial

perturbation that fools the robust model. We minimize the loss

function by using the Adam algorithm as our optimizer. In each

iteration, we check if the current perturbation can fool the robust

model. If so, we increase the c parameter in the C&W loss function

to craft adversarial examples with a smaller amount of distortion

in subsequent iterations. We also keep decreasing the value of c in
each iteration until we fool the robust model in order to increase

the amount of perturbation and chance of transferability. If we

couldn’t find an adversarial example in the first run, we restart the

algorithm and increase κ to build adversarial examples with higher

confidence. This might increase the amount of perturbation, but

it also increases the chance of transferability to the robust model.

Algorithm 1 shows this process for crafting adversarial examples.

In this procedure F is the target classifier.

3.3 Benefit of Noisy Data Augmentation
In order to show the benefit of our stochastic substitute training

over an approach that uses a substitute model trained without data

augmentation, we first trained a model on MNIST as our target

model. Then, we trained a substitute model with and without aug-

menting data with random noises with the first 100 samples from

MNIST test set. We made 2100 replication of this set and trained

the substitute model on this dataset one epoch with lr=0.001 and

another epoch with lr=0.0001. Different levels of random noises

were added to different replicas for the one used in SST. Then with

each of the substitute models, we crafted an adversarial example

with Algorithm 1 for the first 100 samples. The average l2 norm

of adversarial examples crafted with stochastic substitute training

was 1.57. The average l2 norm for the substitute model which was

trained without data augmentation was 3.10. As it can be seen, the

average perturbation of images crafted without SST is almost 2

times larger than those which are crafted with SST.

For the sake of comparison, to measure what we are sacrificing

by limiting our approach to a gray-box setting, we also crafted

adversarial examples with the C&W attack for the target model in
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a white-box setting. The average l2 norm of adversarial examples

crafted in this way was 1.25, which can be seen as the minimum

required perturbation found by current white box techniques to

fool the target model for those images. As it can be seen, crafted

adversarial examples with C&W are only slightly better than those

crafted with SST.

Algorithm 1 Crating adversarial examples

1: procedure CraftAdvExample(x , totalRun, totalIter , F )
2: adv ← [0]m #Adversarial Example

3: for each i ∈ [0, totalRun] do
4: initialize δ randomly

5: for each j ∈ [0, totalIter ] do
6: take one step of GD using Adam

7: x ′ ← Clip(x + δ )
8: if adv == [0]m then
9: decrease c
10: end if
11: # Check detector’s prediction as well (if any)

12: if F (x ′) , y and | |x − x ′ | |2 < | |x − adv | |2 then
13: adv ← x ′

14: increase c
15: end if
16: end for
17: increase κ
18: end for
19: end procedure

4 EVALUATION OF SST AGAINST
FORTIFYING DEFENSES

In this section we evaluate the effectiveness of SST against two

fortifying defenses – random feature nullification (RFN) [36] and

thermometer encoding [4].

4.1 Random Feature Nullification
Wang et al. in [36] proposed an adversary resistant technique to

obstruct attackers from constructing impactful adversarial samples.

They called this adversarial resistant technique “random feature

nullification” and is described as follows:

For each batch of inputs denoted by X ∈ Rn×m , where n is the

number of samples andm is the feature vector size, random feature

nullification performs element-wise multiplication of X with a ran-

domly generated mask matrix Ip ∈ Rn×m , where its elements are

only 1 or 0. The result is then fed to the classifier. During training

they generate a mask matrix in a way to randomly select the num-

ber of features to nullify and also randomly select which features

to nullify. More specifically, for each row of Ip denoted by Ipi , the
number of features to be nullified are selected from the Gaussian

distribution N (µp ,σ 2

p ), and then a uniform distribution is used for

generating each row of Ip . During test-time, the nullification rate

is fixed to µp , but choosing features in each sample is still random

with uniform distribution. The randomness they introduced dur-

ing test-time prevents an adversary from computing the gradients

needed for crafting an adversarial example. In their evaluation they

showed that a classifier fortified by RFN can resist against 71.44%

of generated adversarial examples in the case where the adversary

is allowed to change the value of each pixel by 0.25.

4.1.1 Our Evaluation. Since the authors didn’t publish their code,

in order to evaluate RFN, we trained a model with the same archi-

tecture and parameters they used in their paper. More specifically,

the parameters can be found in Table 5 in the Appendix. For the

hyper parameters of RFN, we set µp to 0.5 and σ to 0.05. During test

time for each input, half of its features are nullified before feeding

to the DNN. After training the model, we got 96.63% accuracy on

the MNIST test set.

For training the substitute model, we added uniform random

noise to the test set and created a new data set with 70000 samples.

For the first 10000 samples the range of noises was in [−0.05, 0.05],
for the next 10000 samples it was in [−0.1, 0.1], and so on. We used

Adam optimizer to train the substitute model with 0.001 learning

rate for 10 epochs and then 5 epochs with 0.0001 learning rate. It

finally reached 97.91% accuracy on legitimate test samples. The

substitute model architecture can be found in Table 6 in the Appen-

dix. In this table, the convolution layer parameters are described as

M,K×K , S which refers to a convolution layer with M feature maps,

filter size K × K and stride S. The Max Pooling layer parameters

are described as K ×K , S , which refers to a Max Pooling layer with

pool size K × K and stride S.

Since RFN is a stochastic defense, feeding the same image to the

model multiple times may cause different results. So, an adversarial

example may fool the classifier in one run, but it may be predicted

correctly in the next run. In the paper, it is not discussed what

exactly should be considered as fooling the model. Here we report

the accuracy of the model on legitimate samples and the average

l2 norm that is required to fool this model in different scenarios.

First, we consider an input to be classified correctly if in 100 parallel

runs the model can predict it correctly for more than 50 cases. In

the second scenario, we change this threshold to 70, and for the

last one we change it to 90. For the evaluation of the model, we

used the first 100 samples in the test set to generate adversarial

examples using our attack. For crafting adversarial examples, we set

the learning rate to 0.001. For each sample, we chose the target label

as the second most probable class predicted by the robust model. In

Algorithm 1, we set the total run to 3 and total iterations to 300. First,

we evaluated this model with an l2 attack. The average l2 norm
for different scenarios can be found in Table 1. The success rate

in all cases was 100%. Figure 3 also shows the crafted adversarial

examples against this model when the threshold is 50.

For this defense we also generated adversarial examples with

l∞ = 0.25. We could generate adversarial examples for 94 samples

out of 100 in the first scenario. So, in this case, the resistance rate

is only 6%. In the second scenario, we could generate adversarial

examples for 92 samples. For the last scenario, we could generate

adversarial examples for 75 samples.

4.2 Thermometer Encoding
Buckman et al. in [4] introduced another defense, called thermome-

ter encoding, which makes a model more robust against adversarial

examples. It prevents an adversary from calculating the gradients

that are needed for crafting adversarial examples. Thermometer
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Threshold Accuracy L2 norm

50 97.93 2.13

70 96.46 2.43

90 92.78 2.96

Table 1: The accuracy of a model fortified with RFN and the
average l2 norm of the required perturbation across differ-
ent thresholds.

Figure 3: Adversarial examples crafted for the MNIST
dataset against a classifier fortified with RFN. They are mis-
classified for more than 50 times in 100 parallel runs.

encoding is applied to each pixel of the input before feeding it to

the classifier to discretize it. The way it works is as follows: for

each pixel p of the image the k-level thermometer-encoding τ (p) is
a k-dimensional vector where

τ (p)j =
{
1, if p ≥ j/k
0, otherwise

and τ (p)j is the j-th element of the vector. For example, for a

10-level thermometer encoding, τ (0.33) = 1110000000. Since this

function does a discrete transformation, it is not possible to back-

propagate gradients through it. Therefore, an adversary can’t craft

adversarial examples for it using traditional white-box techniques.

4.2.1 Our Evaluation. For evaluating the effectiveness of SST against

this defense, we used the model trained by Athalye et al. in [1],

which is a wide ResNet model [38] fortified by thermometer encod-

ing trained on CIFAR-10. For training this model, the adversarial

training technique introduced by Madry et al. in [20] is also used

for more robustness.

For attacking this model, we trained multiple substitute models

with different levels of random noise. The model architecture we

used as our substitute model is described in Table 7 in the Appendix.

We trained four copies of this model on the CIFAR-10 test set, which

we refer to as A, B, C and D. More specifically, we created a new

dataset by replicating the CIFAR-10 test set eight times and adding

different levels of random noises to it. We trained each substitute

model with the training procedure we described in Section 3. The

range of noises we added for training model A was [− 2

255
×i, 2

255
×i]

for i ∈ [1, 8], where i was incremented for each replica. This range

for Model B, C and D was [− 3

255
× i, 3

255
× i], [− 4

255
× i, 4

255
× i], and

[− 5

255
× i, 5

255
× i] respectively. Each of the substitute models was

trained by the Adam optimizer as follows: 6 epochs with lr=0.001,

3 epochs with lr=0.0005, 3 epochs with lr=0.0001, 3 epochs with

lr=0.00005, 3 epochs with lr=0.00001, 3 epochs with lr=0.000005,

and 3 epochs with lr=0.000001.

Substitute

Model(s)

Success

Rate

L2 Norm Time

A,B,C,D 100% 2.79 69 sec

A,B 99% 3.14 58 sec

C,D 99% 2.96 56 sec

A 96% 3.46 51 sec

B 99% 3.52 51 sec

C 97% 3.45 51 sec

D 99% 3.54 51 sec

Table 2: Results of applying our attack against thermometer
encoding.

Figure 4: Adversarial examples crafted for the CIFAR-10
dataset against a classifier fortified with thermometer en-
coding using 4 substitute models.

We finally crafted adversarial examples using these models. For

the first 100 images in the CIFAR-10 test set that were predicted

correctly by the robust model, we set the total run to 3 and total

iterations to 600. After every 100 iterations, we restarted the pertur-

bation randomly to reduce the impact of sticking in a local minimum.

Table 2 shows the success rate and average l2 norm for different

scenarios in addition to average time for crafting one adversarial

example. Figure 4 shows the adversarial examples generated using

all 4 models. The reason that we couldn’t find an adversarial exam-

ple in some cases is that our substitute models didn’t approximate

the decision boundaries of the target model well enough in those

cases. After some iterations, because of the values we chose for κ,
Z sub (x ′)t becomes greater thanmaxi,t (Z sub (x ′)i )+κ. As a result,
the loss function becomes a constant value, with a gradient 0. Thus,

newer perturbations won’t be added to the current perturbation

and the attack doesn’t progress. We speculate that this problem can

be solved by choosing a higher value for κ for those cases where

the attack fails. The cost is a higher level of perturbation.

5 EVALUATION OF SST AGAINST DETECTING
DEFENSES

In this section we evaluate the effectiveness of SST against the

SafetyNet [19] and Defense-GAN [29] detecting defenses.

5.1 SafetyNet
Metzen et al. in [22] introduced a way to detect adversarial exam-

ples by augmenting the classifier with another DNN which acts

as a detector. This detector network is trained with the outputs of

some intermediate layer of the original classifier while adversarial

examples and legitimate examples are fed into it. Later, Carlini et

al. in [5] showed that an adversary can craft adversarial examples

against this defense by changing the loss function such that an

adversarial example can be crafted by back-propagating through

both the original classifier and detector.
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But, Lu et al. in [19] introduced another mechanism for adding

a detector called SafetyNet. In SafetyNet, the detector is still con-

nected to the output of some late layer of the classifier. But they

used two techniques which make it impossible for the adversary to

get any gradient from the detector. The first technique is quanti-

zation, in which the outputs of ReLU is quantized at some specific

thresholds. The other technique is using a support vector machine

(SVM) with a radial basis function (RBF) kernel as the detector. This

provides no useful gradient to the adversary. They also observed

that “there is a trade-off between classification confidence and de-

tection easiness for adversarial examples. Adversarial examples

with high confidence in wrong classification labels tend to have

more abnormal activation patterns, so they are easier to be detected

by detectors.” As a result, the classification confidence is also con-

sidered in SafetyNet. For each input, the ratio of the second highest

classification confidence to the highest classification confidence is

calculated, and if it is bigger than a specific threshold that example

is rejected. For our experiments, we set this threshold to 0.25, as

suggested in the original paper.

5.1.1 Our Evaluation. Since the code for SafetyNet was not pub-
lished, we implemented their defense ourselves on a model trained

on MNIST. The model architecture we used for training is described

in Table 8 in the Appendix. We trained this model with the Adam

optimizer: 3 epochs with lr=0.001 and 3 epochs with lr=0.0001. The

accuracy of this model on the MNIST test set was 99.15%, and the

average confidence of correctly classified images was 99.63%.

To train the detector, we first generated non-targeted adversarial

examples for the first 5000 samples of the training set using the

C&W attack. For training the detector, we used the outputs of the

first fully connected layer (layer 4), and we quantized them into

four bins before feeding them to the SVM with the RBF kernel.

Since the SafetyNet paper does not describe how the thresholds

for quantization should be chosen, we chose them as follows: We

fed our training data to the classifier and collected the outputs of

layer 4. We sorted all the positive values from this data and found

the 1st quartile Q1, median, and 3rd quartile Q3 and used them as

thresholds for quantization. So all of the 0s, and any value less than

the 1st quartile, were converted to the middle of that bin (i.e.
(Q1−0)

2
).

Any value between the 1st quartile andmedian was converted to the

middle of the second bin (i.e.,Q1+
median−Q1

2
), and so on. Note that

our attack works regardless of the way quantization thresholds are

chosen. We decided to choose thresholds in this way as it gave us a

good accuracy for training the detector. After training the detector

in this way, it could achieve 95.15% accuracy on the MNIST test set.

In order to attack this defense, we trained two models with the

logits of the classifier in the same way we did for RFN. We also

trained another model with probability scores of the detector while

the same data set was fed into the classifier. The architecture of the

substitute classifier was same as the one we used for attacking RFN.

The architecture of the substitute detector can be found in Table 9

in the Appendix. Note that we assumed that the attacker doesn’t

know where the detector is connected or what the input to it is. So,

the substitute detector is trained on raw pixel values.

With the procedure we introduced in Algorithm 1, we crafted

adversarial examples against SafetyNet. We set the total run value

to 3 and total iterations to 300. The only difference was that in the

Figure 5: Adversarial examples crafted against SafetyNet for
the MNIST dataset.

inner loop we checked three things to make sure that the defense

is bypassed. First, we checked to make sure that the adversarial

example fools the classifier. Second, we checked that the confidence

ratio is less than 0.25, and finally we checked to make sure the

detector predicts it as a legitimate sample. We crafted adversarial

examples for the first 100 samples that are classified correctly and

predicted as legitimate samples by the detector. The average l2

norm of crafted adversarial examples was 3.37, and the success rate

was 98%. You can see a few samples in Figure 5. In this figure the ad-

versarial examples are in the first and third rows and corresponding

legitimate examples are in the second and forth rows.

5.2 Defense-GAN
Samangouei et al. in [29] introduced a defense that makes a classifier

more robust against adversarial examples. They also provided a

mechanism to detect adversarial examples in case an attacker could

fool the classifier. They called this defense, Defense-GAN as they

used a Generative Adversarial Network (GAN) as part of their

defense. A GAN consists of a generator G and a discriminator D
in which, given a random vector z the generator tries to generate

samples from a particular distribution and the discriminator tries

to discriminate between a real sample and a generated sample

by G. After training a GAN, the generator learns to generate a

sample from that distribution. It is also shown that given an image

x from that distribution, a vector z can be found such that the

reconstruction error | |G(z)−x | |2 −→ 0. So, this vector can be found

by choosing a random vector z and then minimizing | |G(z) − x | |2
with gradient descent for L steps and updating z in each step. In

their defense, a GAN is first trained on legitimate examples.

Then at test time, given an image x and a random vector z, they
first project x into the range of the generator using L steps of GD to

minimize | |G(z)−x | |2
2
, and they do it R times for R different random

vector z1, z2, ...zR . Then, they choose the vector z
∗
that has a smaller

reconstruction error and feed G(z∗) to the classifier. They argued

that by using this technique, a lot of adversarial perturbations

will be removed from an image before feeding it to the classifier.

Also, intuitively, given an image x after L iterations of GD, the

reconstruction error is small if x was a legitimate example and

large if it is otherwise. They used this property as their detection

mechanism. So, given a threshold θ if | |G(z∗) − x | |2
2
is larger than θ

it is considered as an adversarial example and otherwise legitimate.

5.2.1 Our Evaluation. In order to evaluate the effectiveness of SST

against Defense-GAN, we first trained a GAN with their published
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code for 200,000 iterations. During the test time, we set L = 200

and R = 10.

The model architecture and parameters we used for the GAN’s

generator and discriminator are the same as those that were used

in [29]. For the classifier, we used the model described in Table

11 in the Appendix. After training, the accuracy of this model on

the MNIST test set was 99.26%. The accuracy on the output of the

generator was 97.13%. Since it is not specified in the paper how

θ should be chosen, we chose it in a way such that all correctly

classified legitimate images are considered legitimate. Based on

9713 samples that were classified correctly, we set θ = 0.0536,

which is the largest reconstruction error for a correctly classified

sample.

The architecture we used for the substitute model is the same as

the one we used for attacking RFN. The dataset we used for training

the substitute model was 7 replications of the MNIST test set, where

a specific amount of random noise was added for each replication.

The range of random noise we added was [−0.15 × i, 0.15 × i] for
i ∈ [1, 7],where i was incremented for each replica. We trained four

substitute models with this dataset. Crafting adversarial examples

with this approach is very slow because querying Defense-GAN

takes a long time. This makes training substitute models very slow,

and in the process of crafting adversarial examples, we have to

query Defense-GAN again in each iteration. We decided to craft

adversarial exampleswith this approach for 15 samples. The average

time was 156 seconds and success rate was 80%, and the average

l2 norm of successful adversarial examples was 4.00. We speculate

that our attack is less successful against this defense because of

the generator. The generator removes a lot of random noise from

our augmented dataset before feeding it to the classifier. In other

words, it maps several distant inputs in our dataset to very close

points before feeding them to the classifier. This behavior results in

a smaller amount of variation in logits and makes SST less effective.

One way to reduce this impact is to query the target model for a

larger dataset, but this would result in a process that is very slow.

In our second attack, we trained a substitute model on theMNIST

test set plus random noise with a range [−0.95, 0.95] for 20 epochs,
and in each epoch we updated the random noise. We didn’t query

Defense-GAN for training this model and used the default class

labels and cross entropy loss for training. In order to make the

crafting process faster in each iteration, we first checked whether

the current adversarial example can fool a model augmented by

Defense-GAN with L = 30 and R = 1. If we could fool it, we

then checked it against the model with default parameters (L =
200 and R = 10). Since Defense-GAN has stochastic behavior for

the same input in different runs, the output might be different.

Thus, it is not clear when we should consider an attack successful.

So, we considered an attack successful if the crafted adversarial

example could fool the Defense-GAN in three consecutive runs.

The sample adversarial examples crafted against this defense can

be found in Figure 6. The samples are the result of running the

attack while setting the target class to the second, third, and forth

most probable classes, scored by the original model and choosing

the least perturbed one. The success rate for the first 100 samples in

the test set, which were classified correctly by the robust classifier,

was 100%, and the average l2 norm of perturbations was 3.23. The

maximum reconstruction error was 0.0431, which is less than θ .

Figure 6: Adversarial examples crafted against Defense-
GAN for the MNIST dataset.

Therefore, all of the crafted adversarial examples are considered as

legitimate examples by the detector. The average reconstruction

error was 0.0157. Note that this attack is even more powerful than

the first approach, as the attacker doesn’t know anything about the

attack, the detection mechanism, or the classifier’s parameters.

6 DISCUSSION OF RELATEDWORKS
In this section, we evaluate the aforementioned defenses with two

types of black-box attacks (mentioned in Section 2.3) that can also

be used to craft adversarial examples with no knowledge about a

defense and no need to be tailored towards different defenses. While

black-box attacks might be more practical than the gray-box setting

we considered, as our experiments in this section show, they are not

good for evaluating new defenses, such as those we considered in

this paper, as in many cases they can’t find an adversarial example

or the required perturbation is so high that it makes it hard even

for a human to label correctly.

6.1 Black-Box Attack with Jacobian based
Dataset Augmentation

Papernot et al. in [26] introduced a black-box attack that many

researchers have used to show the robustness of their defense

in a black-box setting. Similar to our attack, the authors in [26]

showed how to attack a model using a small synthetic dataset

without having access to the DNN’s parameters or knowing about

the defense that is in place. Their attack was of the non-targeted

attack type in that they only made the model to mis-classify the

inputs. The threat model they considered was different from what

we considered in this paper. They assumed that an attacker only

can send input to the target model and observe its predicted class,

where we assume the the attacker also has access to the logits.

To attack the target model, they trained a substitute model to

approximate the target model decision boundaries through a proce-

dure called Jacobian-based Dataset Augmentation. Theway it works

is as follows: First they collect an initial small dataset. Then, they

label this dataset using an Oracle (black box) model. Next, they train

a substitute model using this dataset. Then, for each input x in their

dataset, they evaluate the sign of the Jacobian matrix dimension cor-

responding to the label assigned to x by the oracle: sдn(JF (x)[O(x)]),
where F is the substitute model andO(x) is the label assigned to the
input by oracle. They then augment their initial dataset with new

points created as follows: xnew = x + λ.sдn(JF (x)[O(x)]), where
λ is a hyper parameter. Finally, they repeat these steps for a few
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iterations (substitute training epochs) so the substitute model can

approximate the oracle decision boundaries.

After training a substitute model, the attacker crafts adversarial

examples for the substitute model with the help of the JSMA and

FGSM approaches in order to transfer them to the black-box model.

We implemented this attack against the four defenses we considered,

and the results can be found in Table 3. In all the cases, we crafted

adversarial examples with the FGSM attack for the substitute model

and checked what percentage of them can fool the robust model.

For evaluating all defenses, we trained the substitute model for

6 substitute training epochs using CleverHans library [25] and set

the initial dataset to be the first 150 samples in the MNIST test

set for RFN, SafetyNet, and Defense-GAN and first 150 samples

in the CIFAR-10 test set for thermometer encoding. We also set

λ = 0.1. The success rate for the adversarial examples crafted

against detecting defenses (Defense-GAN and SafetyNet) shows

the ones that could fool the classifier and are not detected by the

detector. For example, for Defense-GAN, when ϵ = 0.5, 92 out of

100 samples could fool the classifier, but all of them were detected

as adversarial examples by the detector. The substitute model we

used for attacking Defense-GAN was Model 1 described in Table 11

in the Appendix. The substitute model used for attacking SafetyNet

was the same as the one we used in our attack. We evaluated RFN by

setting ϵ = 0.25. This is the same value we used for evaluating our

attack against RFN in 3 different scenarios, which are referred to as

RFN-50, RFN-70 and RFN-90. For example, for RFN-50, 47 samples

could fool the classifier more than 50 times in 100 parallel runs.

For evaluating this attack against thermometer encoding, we used

the same model as the one we used in our attack for the substitute

model. Figure 7 shows the generated adversarial examples against

this defense at different value of ϵ . The rows are for ϵ = 8

255
,

ϵ = 16

255
, ϵ = 24

255
, ϵ = 32

255
, and ϵ = 64

255
respectively. As can be

seen, it becomes hard even for human eyes to classify these images

correctly after ϵ = 32

255
. Note that for RFN with the same level of

distortion, the success rate of our approach is 2 times, 2.78 times

and 3.4 times better than this black-box attack for RFN-50, RFN-

70 and RFN-90 respectively. For thermometer encoding, with our

approach the adversary could reach 100% success rate, but when

using this black-box attack, even when ϵ = 64

255
and the images

are unrecognizable by human eyes, the adversary could only reach

69% success rate. For detecting defenses, our approach also shows

superiority and its success rate is at least 10 times better than this

attack.

6.2 Transferable Adversarial Examples
Liu et al. in [18] designed a different targeted black box attack. In

contrast to our attack, they considered a different threat model

where they don’t need to query the target model to get the outputs

for different inputs, and they don’t need to train a substitute model.

Instead of training a substitute model, they leverage an ensemble

of pre-trained models to craft adversarial examples that can be

transferred to another model with their targeted labels.

The authors showed that by generating adversarial examples

for an ensemble of pre-trained neural networks, it is more likely

to transfer them to another classifier. Formally, given k white-box

Defense Type Success Rate L2 norm eps

RFN-50 47% 5.15 0.25

RFN-70 33% 5.12 0.25

RFN-90 20% 5.11 0.25

Thermometer 1% 1.73
8

255

Thermometer 7% 3.40
16

255

Thermometer 14% 5.12
24

255

Thermometer 32% 6.83
32

255

Thermometer 69% 13.12
64

255

SafetyNet 0% NA 0.2

SafetyNet 0% NA 0.3

SafetyNet 0% NA 0.4

SafetyNet 0% NA 0.5

Defense-GAN 7% 6.25 0.3

Defense-GAN 0% NA 0.5

Table 3: Success rate of Jacobian-based Data Augmenta-
tion attack against different defenses. RFN, SafetyNet, and
Defense-GAN were evaluated on MNIST. Thermometer en-
coding was evaluated on CIFAR-10.

Figure 7: Adversarial examples crafted for CIFAR-10 to fool
a classifier fortified with thermometer encoding at different
levels of perturbation.

models with softmax outputs being F1, ..., Fk , they solve the follow-
ing optimization problem:

arдminδ − log((
∑k
i=1 αiFi (x ′)).1ytarдet ) + λd(x ,x ′)

where

∑k
i=1 αiFi (x∗) is the ensemble model, αi are the ensemble

weights, and

∑k
i=1 αi = 1. d(x ,x ′) is the distance function between

the original image and the perturbed image which can be l2 norm.

λ is a hyper parameter which controls the amount of distortion and

the success rate. Increasing λ results in a larger distortion, while

also increasing the success rate (likelihood of being able to fool the

target classifier). Solving this optimization problem basically means

that the attacker wants to maximize the score of the targeted label

in all of the classifiers while keeping the amount of distortion small.

We implemented this attack against the four defenses we con-

sidered, and the results can be found in Table 4. For attacking RFN,

SafetyNet, and DefenseGAN, we trained four substitute models

described in Tables 11, 12, 13, and 14 on the MNIST training set for
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Figure 8: Adversarial examples crafted with different Îż for
the MNIST dataset.

10 epochs each and with Adam optimizer (lr=0.001). The architec-

ture of these models can be found in the Appendix. For generating

adversarial examples, as in the original paper, we used Adam with

lr=0.001 to optimize the above objective and αi = 0.25. For gener-

ating each adversarial example, we did 300 iterations of GD. For

SafetyNet, we crafted adversarial examples by changing the λ pa-

rameters. As you can see in Table 4, when λ = 0.001 the success

rate is only 17%. However, even in this case, the amount of pertur-

bation is too high. Samples of adversarial examples generated by

this method can be found in Figure 8. For the first row λ is 0.1, for

the second one λ is 0.01, and for the last one λ is 0.001.

For applying this attack on thermometer encoding, since our

robust model was trained on CIFAR-10, we trained four other mod-

els to generate adversarial examples with them, and we trained all

of them with the CIFAR-10 training set. The models we trained

for this purpose were VGG-19 [32], wide ResNet [38], ResNet-50

[11] and NIN [17]. After training the VGG model reached to 93.41%

accuracy, the wide ResNet model reached to 92% accuracy, the NIN

model reached 90.29% accuracy, and the ResNet-50 reached 94.06%

accuracy. We trained all of these models with 4 Tesla K80 GPUs. The

training time for these models were 2, 7, 1, and 6 hours respectively.

This is a much longer training time than in our approach, in which

we trained a smaller model, and it only took a few minutes. The

robust model’s accuracy was also 88.59%. For the attack we used

the same hyper parameters as the ones we used against three other

defenses. Generating each adversarial example took 63 seconds on

average. Samples of crafted adversarial examples, with different

λ, are shown in Figure 9. Note that for RFN, in an unbounded at-

tack, our approach could reach 100% success rate. Using this attack,

amongst our experiments, the best case success rate was 93% (For

RFN-50 when λ = 0.001). The average l2 norm of adversarial ex-

amples crafted by our approach against RFN-50 was 2.13, which

is almost 3 times smaller than the average l2 norm of crafted ad-

versarial example using this approach. For thermometer encoding,

in the best case, using this attack it could reach 39% success rate.

Using our approach, we could reach 100% success rate, and the

average l2 norm of adversarial examples found by our approach

in the best case (when we used 4 substitute models) is 2.68 times

smaller than the average l2 norm of crafted adversarial examples

found by this approach. For detecting defenses, our approach is

also more successful and at least 5 times better than this attack.

7 CONCLUSION
In this paper we described a way to craft adversarial examples

against deep neural network models that leverage mechanisms to

protect themselves against adversarial examples. We evaluated our

approach against fortifying and detecting defenses. We showed that

Defense Type Success Rate L2 norm λ

RFN-50 26% 1.74 0.1

RFN-70 16% 1.74 0.1

RFN-90 1% 1.59 0.1

RFN-50 84% 3.52 0.01

RFN-70 54% 3.44 0.01

RFN-90 30% 3.27 0.01

RFN-50 93% 6.31 0.001

RFN-70 88% 6.23 0.001

RFN-90 81% 6.15 0.001

Thermometer 4% 2.01 0.1

Thermometer 25% 5.11 0.01

Thermometer 39% 7.47 0.001

SafetyNet 0% NA 0.1

SafetyNet 2% 3.83 0.01

SafetyNet 17% 5.58 0.001

SafetyNet 17% 6.26 0.0001

Defense-GAN 1% 1.62 0.1

Defense-GAN 10% 2.78 0.01

Defense-GAN 18% 6.33 0.001

Table 4: The success rate and average l2 norm of crafted ad-
versarial examples by Liu et al. work against different de-
fenses. RFN, SafetyNet, andDefense-GANwere evaluated on
MNIST. Thermometer encodingwas evaluated onCIFAR-10.

Figure 9: Adversarial examples crafted with different Îż for
the CIFAR-10 dataset.

an adversary can craft adversarial examples without any knowledge

about the type of defense used, defense parameters, model parame-

ters, or training data. The adversary only needs to query the robust

model and train one or more substitute models. We also evaluated

two black-box attacks against the aforementioned defenses, but

they performed poorly in comparison to our presented attack. We

suggest that other researchers use our approach for benchmarking

in cases where a defense prevents the attacker from calculating

useful gradients from the target model.
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APPENDIX
The model architectures and parameters we used throughout the

paper.

DNN Structure 784-784-784-784-10

Activation Relu

Optimizer SGD

Learning Rate 0.1

Dropout Rate 0.25

Batch Size 100

Epoch 25

Table 5: The model architecture and hyper parameters used
for training the model for RFN evaluation.
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Layer Type Parameters

Convolution + ReLU 64, 3 × 3, 1
Convolution + ReLU 64, 3 × 3, 1
Convolution + ReLU 64, 3 × 3, 1

Max Pooling 2 × 2, 2
Convolution + ReLU 64, 3 × 3, 1

Fully Connected + ReLU 2048

Fully Connected 10

Softmax -

Table 6: The substitutemodel architecture and hyper param-
eters used for attacking RFN.

Layer Type Parameters

Convolution + ReLU 64, 3 × 3, 1
Convolution + ReLU 64, 3 × 3, 1

Max Pooling 2 × 2, 2
Convolution + ReLU 128, 3 × 3, 1
Convolution + ReLU 64, 3 × 3, 1

Max Pooling 2 × 2, 2
Convolution + ReLU 64, 3 × 3, 1

Fully Connected + ReLU 4096

Fully Connected + ReLU 1024

Fully Connected 10

Softmax -

Table 7: The substitutemodel architecture and hyper param-
eters used for attacking Thermometer Encoding

Layer# Layer Type Parameters

1 Convolution + ReLU 64, 3 × 3, 1
2 Max Pooling 2 × 2, 2
3 Convolution + ReLU 64, 3 × 3, 1
4 Fully Connected + ReLU 2048

5 Fully Connected 10

6 Softmax -

Table 8: The model architecture used for evaluating Safe-
tyNet.

Layer# Layer Type Parameters

1 Convolution + ReLU 64, 3 × 3, 1
2 Convolution + ReLU 64, 3 × 3, 1
3 Convolution + ReLU 64, 3 × 3, 1
4 Max Pooling 2 × 2, 2
5 Convolution + ReLU 64, 3 × 3, 1
6 Fully Connected + ReLU 1024

7 Fully Connected + ReLU 512

8 Fully Connected + ReLU 512

9 Fully Connected 2

10 Softmax -

Table 9: The substitute detector architecture used for attack-
ing SafetyNet.

Layer Type Parameters

Convolution + ReLU 64, 5 × 5, 1
Convolution + ReLU 64, 5 × 5, 2

Dropout 0.25

Fully Connected + ReLU 128

Dropout 0.5

Fully Connected 10

Softmax -

Table 10: The model architecture used for evaluating
Defense-GAN.

Layer Type Parameters

Dropout 0.2

Convolution + ReLU 64, 8 × 8, 2
Convolution + ReLU 128, 6 × 6, 2
Convolution + ReLU 128, 5 × 5, 1

Dropout 0.5

Fully Connected 10

Softmax -

Table 11: The Model 1 architecture.

Layer Type Parameters

Convolution + ReLU 128, 3 × 3, 1
Convolution + ReLU 64, 3 × 3, 2
Convolution + ReLU 128, 5 × 5, 1

Dropout 0.25

Fully Connected + ReLU 128

Dropout 0.5

Fully Connected 10

Softmax -

Table 12: The Model 2 architecture.

Layer Type Parameters

Fully Connected + ReLU 200

Dropout 0.5

Fully Connected + ReLU 200

Dropout 0.5

Fully Connected 10

Softmax -

Table 13: The Model 3 architecture.

Layer Type Parameters

Fully Connected + ReLU 200

Fully Connected + ReLU 200

Fully Connected 10

Softmax -

Table 14: The Model 4 architecture.
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