
Making Serverless Computing More Serverless

Zaid Al-Ali†, Sepideh Goodarzy†, Ethan Hunter†, Sangtae Ha†, Richard Han†, Eric Keller†, Eric Rozner?
†University of Colorado Boulder; ?IBM Research

Abstract—In serverless computing, developers define a func-
tion to handle an event, and the serverless framework hori-
zontally scales the application as needed. The downside of this
function-based abstraction is it limits the type of application
supported and places a bound on the function to be within
the physical resource limitations of the server the function
executes on. In this paper we propose a new abstraction
for serverless computing: a developer supplies a process and
the serverless framework seamlessly scales out the process’s
resource usage across the datacenter. This abstraction enables
processing to not only be more general purpose, but also
allows a process to break out of the limitations of a single
server – making serverless computing more serverless. To
realize this abstraction, we propose ServerlessOS, comprised
of three key components: (i) a new disaggregation model,
which leverages disaggregation for abstraction, but enables
resources to move fluidly between servers for performance;
(ii) a cloud orchestration layer which manages fine-grained
resource allocation and placement throughout the application’s
lifetime via local and global decision making; and (iii) an
isolation capability that enforces data and resource isolation
across disaggregation, effectively extending Linux cgroup func-
tionality to span servers.

I. INTRODUCTION

Serverless computing is currently a limited abstraction:
the main abstraction is an event-driven system. Developers
write functions that serve as event handlers to process a
given event and possibly return a response to whatever trig-
gered the event. The serverless framework ensures enough
server resources are allocated to handle whatever events
occur (at any frequency). In order for the frameworks to
scale, the scope of execution is limited to a single function
that is assumed to be stateless. Developers can’t assume
execution on the same server or even the same process
among any collection of requests. Any data to persist must
be stored through some data store (e.g., Amazon S3). The
downside is that not every application is able to be built in
such a way, and many times, even highly request-response
based applications have a complimentary, more traditional,
cloud application coupled with the serverless component.

In this paper, we propose a more general serverless ab-
straction. Our goal is to present a serverless abstraction that
enables the seamless, scale-out features provided by current
serverless architectures, while supporting a wide variety of
application types in a model that programmers are familiar
with – namely, a process, the same abstraction an operating
system gives today. Processes can have multiple threads of
execution, can access I/O through sockets, and persist state

through memory or storage. The challenge, of course, is
realizing a process-based serverless framework which can
map our serverless process abstraction to an underlying,
physically distributed infrastructure. To that end, we propose
a new architecture called ServerlessOS to enable our vision
and argue three key components are necessary to make our
vision a reality:
Fluid Multi-resource Disaggregation: In order to support
an abstraction of a process that transparently spans multi-
ple physical servers, we need to break the tight coupling
between a process and the underlying physical server re-
sources. That is, we need some form of disaggregation
of resources. This has been demonstrated with OS sup-
port through works such as distributed shared memory
(DSM [11]), which enabled a shared memory address across
servers, but was plagued by inefficiencies that resulted
in complex cache coherence, which ultimately proved un-
scalable. More recent work leveraged high-speed networks
to separate resources, such as memory from computation,
whether transparently through swap space (e.g., nswap [10]
or Infiniswap [6]), or explicitly exposed within applica-
tions (e.g., RAMCloud [12]). While separation allows for
abstraction (and logically decouples a process from any
given physical server), it can incur performance overhead
when non-local resources are utilized. With ServerlessOS,
we argue both disaggregation (to realize the seamless, scale-
out process abstraction) and tight coupling (to improve
performance) are required in practice. Specifically, Server-
lessOS utilizes OS support to make disaggregation work in
a practical manner across server resources, and importantly,
allows movement (i.e., fluidity) between physical resources
to enhance proximity and thus performance.
Fine-grained Live Orchestration: Cloud orchestration to-
day generally focuses on management of virtual machines
and containers. APIs can launch virtual instances upon a
creation request. Afterward, orchestration is responsible for
monitoring and optimizing run-time performance by auto-
matically migrating or scaling workloads. To support Server-
lessOS, which has finer-grained management requirements
due to disaggregation, orchestration needs to expand to
manage the individual resources across the infrastructure.
Such management requires the allocation of resources as
well as orchestrating the fluidity at run-time on a global
level.
Coordinated Isolation: Isolation is a critical component
of modern, shared cloud infrastructures that enables appli-



Server H/W

Orchestration & Management

OS

Tenant 2

Tenant 1

CPU Memory I/O

Process

Mem

I/O

Cloud

Network

Application

CPU Memory I/OCPU Memory I/O

Process

I/O

Threads
Sockets/fdsMem

Tenant 1

Mem

I/O

Process

Process

I/O

Threads
Sockets/fdsMem

Tenant 2

Server 1 Server 2 Server 3

Figure 1. High-level overview of ServerlessOS.

cations from different tenants to co-exist. Isolation allows
administrators to ensure quality of service and allocate
resources efficiently. Current technology isolates within a
single physical machine, consisting of two main capabilities:
data privacy (achieved through namespaces) and isolation of
resource use (achieved through defining allowable resource
consumption via virtual machines or containers). In Server-
lessOS, isolation needs to be extended across physical
resources (as the process spans across multiple servers),
which is more complex than isolating a single function
execution replicated across servers (as in today’s serverless
frameworks).

The rest of this paper outlines the high-level components
that integrate to form ServerlessOS.

II. SERVERLESSOS

We propose moving serverless computing beyond the
current limited scope of an event driven framework to
support a wider range of programming paradigms. Below,
we overview ServerlessOS while also listing its benefits.

Overview. We propose the serverless abstraction should
be a process, as illustrated in Figure 1. At a high-level a
process consists of an address space, threads of execution,
and mechanisms for I/O (whether to the network, via sockets
and the OS network stack, or disk, via the file descriptors
and OS file system/storage abstractions). Below the process
abstraction lies the physical infrastructure abstracted by the
serverless framework. The process can actually be running
across multiple servers – e.g., process 1 (for tenant 1) is
shown across physical servers 1 and 2. To achieve our
abstraction through OS level support, three main components
are needed to build ServerlessOS. We elaborate each in the
following subsection.

Benefits of ServerlessOS. The main benefit of Server-
lessOS is it supports general, rather than only event-driven,
compute. ServerlessOS provides support for generalized
compute by maintaining the same process abstraction de-
velopers are familiar with today. This has many positive
side effects. For example, with ServerlessOS, developers can
immediately redeploy legacy or existing code in serverless
environments without having to significantly refactor their
application. As the serverless ecosystem is rapidly evolving
with many different customized solutions, a process-based
serverless model can more easily allow customers to avoid
vendor lock-in. As process resource usage grows, Server-
lessOS can utilize its fluid multi-resource disaggregation
properties to satisfy growing demands, instead of relying on
large resource reservations that can decrease workload densi-
ties. In other words, a key advantage is ServerlessOS allows
cloud providers to treat the datacenter just like application
developers treat it: a pool of CPU, I/O, and memory. Fi-
nally, note that a process-based serverless model is actually
complementary to many current serverless schemes: Server-
lessOS can be used to scale resources required by individual
functions invoked by serverless handlers.

A. Fluid Multi-resource Disaggregation

Disaggregation is a concept where the tight coupling
between different resources traditionally associated with
computing (i.e., memory, CPU, and I/O) is broken. Breaking
this tight coupling enables greater flexibility – e.g., disag-
gregating memory [6], [10], [12] has been shown to enable a
process to scale the amount of memory beyond the practical
limits of a physical server. This is a key component to
ServerlessOS as logically the abstraction of a process can
be realized across a collection of physical servers. How-
ever, disaggregation can cause performance issues without a
careful design. To make ServerlessOS practical, we need to
retain the performance of tight coupling while gaining the
flexibility of disaggregation. We call this fluid multi-resource
disaggregation, as we can fall back on disaggregation as
needed, but can also move resources around (fluidly) to
enhance proximity (e.g., co-locate a thread of execution with
the portion of data it accesses). Technology such as virtual
machine [4] or process [8] migration is a step toward fluidity,
but these designs support whole processes or machines, and
not disaggregated resources. As such, in this section we
discuss fluid disaggregation of each of the resources, and
provide insight as to why this is practical in ServerlessOS.

Memory. Memory disaggregation allows a process’s actual
memory content to not be tied to a physical machine. Mem-
ory disaggregation has been demonstrated previously, where
execution is pinned to a machine, but the memory of the
program is accessed across some network. This model has
been demonstrated implicitly at the virtual memory abstrac-
tion through the swap interface [6], [10], transparently at the



physical memory level via hotplug and userspace page fault
handling [5], and explicitly at the application layer via an
explicit API to access remote memory [12]. For performance
reasons, it is advantageous to move memory (e.g., a page)
to be co-resident with the process currently accessing it.
While the disaggregated abstraction implies a rigid physical
separation, in each of the above works, fluidity is already
present. Their implementations dictate that when a thread’s
execution accesses some memory that is not co-resident, it
pulls (whether implicitly or explicitly) the memory to the
thread’s machine, where the thread then works on it locally,
before putting it back into remote memory.

CPU. CPU disaggregation allows processing to become
decoupled from a physical processor. With this, a thread of
execution can transition between physical machines. Doing
so can improve performance by exploiting locality [7].
Rather than pulling data to the processing, processing can
move to where the data is. This tradeoff is dependent on
the application: if there is a lot of memory to be pulled in,
it makes sense for the processing to jump to that machine
rather than pull it all onto the machine where the processing
currently is.

There are some initial signs that achieving CPU disaggre-
gation is practical. With multi-core systems where the OS
scheduler can schedule a thread on any core, steps toward
CPU disaggregation have already been taken. Further, prior
work can create a shell of a process on a separate machine
(i.e., where the data structures are created in the OS) and
can then transfer execution between machines [1]. This work
leverages memory disaggregation so transferring execution
effectively only requires notifying the receiving machine
where the current execution is in the process. This work
showed 2-3x speedups over memory disaggregation only,
and jumping latency on the order of less than a millisecond
(which could probably be improved to 10-30 microseconds
based on technologies that optimize inter-server communi-
cation [12]).

I/O. I/O disaggregation allows the device which physically
captures an I/O event to become decoupled from the physical
machine that will service or originate the I/O. For example,
with network I/O the network interface card (NIC) might re-
side on one machine, and the processing of a received packet
can reside on a different machine. Network disaggregation
can be achieved through proxying (where a device driver
on the NIC’s machine serves as a proxy and sends to the
machine which will process it), or by leveraging memory
disaggregation (where the packet is placed in memory and
will be pulled to another machine to be processed). In each
case, I/O disaggregation only works when the inter-server
communication is orders of magnitude faster than the I/O
itself (e.g., via a rack backplane). This constraint can be
lessened because CPU disaggregation can move processing
to the I/O.

I/O disaggregation also includes the case where the I/O
occurs on one machine and the processing resides on a set
of machines (effectively splitting the I/O). This is what load
balancers do today, but for the ServerlessOS framework,
we need the abstraction as seen by a process (not by an
application designed as a distributed system). That is, we
need to be able to dynamically split and merge network
sockets (or other I/O channels). Finally, we need to handle
the case of being able to move I/O. This might occur if
bandwidth needs increase to the point where the physical
machine currently performing the I/O can’t handle it. In this
case, we can move the I/O (move the socket) to a different
machine with a higher performing interface by extending
socket migration [3] and software-defined networking [9]
techniques. Additionally, CPU disaggregation can move pro-
cessing with a socket.

B. Fine-grained Live Orchestration

We envision an orchestration and management layer will
be needed to dynamically apportion resources to disaggre-
gated processes that are distributed across multiple hosts in
the datacenter. The structure of such a layer would involve
both global and local decision making in terms of which
resources (e.g., memory, CPU, I/O, and storage) are devoted
to which distributed processes. A global policy maker would
determine which subset of nodes and their resources are
available to a process for expansion or contraction. The
datacenter will need a mechanism for dynamic resource
discovery as nodes advertise their availability in terms of
how much much memory, CPU and networking they are
willing to provide to the serverless infrastructure.

Once the scope of nodes has been defined to which a
process may expand or contract, then local decision-making
policies will determine when and under what conditions to
expand/contract processes. We believe the local decision-
making should take into account the state of the local
machine and the potential expansion nodes. For example,
if a process is under local memory pressure, it may not
be beneficial to expand to a remote machine that is also
under memory pressure or suffers from overloaded network
or CPU because expanding may hurt performance. The state
of the remote machine plays as important a role as the state
of the local machine on the decision to expand a process.

The decision to move computation between nodes also
depends on both local and remote state. For example, if a
thread is pulling too much data from a remote machine, then
we can move the processing to the node the data resides
on. However, if the remote node’s CPU is oversubscribed,
or its networking is congested, then the decision to move
computation may have to be deferred. Similarly, if the local
networking cards are congested, then the decision may be to
move the computation to a remote machine with available
network bandwidth. However, if the remote machine is



under memory pressure, then again the decision to move
computation may have to be deferred.

In this sense, remote machines provide backpressure on
the jumping/migration algorithm that balances the repulsion
due to local oversubscription. These two forces contend
with each other, but must resolve so that a clear decision
is made about where to execute each thread of a process.
This balancing act should be stable on a per-thread basis
such that we don’t get flapping or oscillatory behavior for
any thread.

C. Coordinated Isolation

Serverless is often run in multi-tenant environments, and
hence administrators need tools to provide isolation between
workloads. Here, we briefly overview how two key elements
of isolation, data privacy and resource management, can be
supported in ServerlessOS.

Data privacy. Serverless providers need to ensure a server-
less application cannot read or write state from another
application. Current serverless architectures utilize container
namespaces to ensure isolation amongst tenants, but pro-
vide no built-in mechanism for functions to access state
across machines. Because ServerlessOS uses disaggregated
resources, container namespaces must be supported over
multiple servers. Extending a common namespace over all
of a thread’s distributed execution environment enables data
privacy in a seamless way.

Resource management. In multi-tenant environments, ap-
plication developers as well as administrators require mech-
anisms to control the amount of resources an application
consumes. Specifically, it must be easy to place bounds
on CPU, memory, storage, and network usage in order to
ensure scale-out serverless workloads do not consume an
inappropriate amount of datacenter resources. In current sin-
gle machine environments, Linux control groups (cgroups)
already provide necessary bounds on resource usage. With
ServerlessOS, the concept of cgroup needs to be extended
over multiple machines to support fluid disaggregation.
Scaling vertically within a machine can easily be handled
by previous techniques [2]. Scaling horizontally poses a
new challenge. This challenge, however, is lessened to
a certain degree because current cgroup implementations
already scale to multiple cores within a single machine. For
example, the cgroup CPU scheduler keeps the amount of
allowable remaining runtime as global state. To decrease
overhead, local cores obtain chunks of processing time from
the global allowance and track processing locally [13]. In
ServerlessOS, machines servicing an application can simi-
larly acquire chunks of processing time from an orchestra-
tion layer. This allows the orchestration layer to coordinate
cgroup functionality across disaggregated resources, which
ensures aggregated resource limits are adhered to, while

providing fluidity in the distribution of resource usage over
disaggregated environments.

Last, the cgroup framework needs to become more flexible
in ServerlessOS. For example, just as default cgroups can pin
a container to a specific set of cores, cgroups in ServerlessOS
should be able to pin an application running in a container to
a specific set of the disaggregated resources. Such mecha-
nisms can be utilized by the orchestration layer to ensure
ACLs, SLAs, or other policies are upheld, or to simply
limit the fluidity of a certain application. In ServerlessOS,
the configuration of cgroups can be extended to explicitly
support the notion of disaggregated resources.

III. CONCLUSIONS

This paper presents our vision for serverless computing
that provides an abstraction of a process, instead of a
function, to enable a broader class of applications to benefit
from the simplicity enabled by serverless architectures. Our
ServerlessOS design introduces three key components: a
mechanism to disaggregate and move process resources
across the physical infrastructure, a run-time orchestration
layer, and a distributed isolation technique.

REFERENCES

[1] E. N. Ababneh. Automatic Scaling of Cloud Applications via Transpar-
ently Elasticizing Virtual Memory. PhD thesis, University of Colorado
Boulder, 2017.

[2] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle. Autonomic
vertical elasticity of docker containers with elasticdocker. In 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), pages
472–479, June 2017.

[3] M. Bernaschi, F. Casadei, and P. Tassotti. Sockmi: a solution for
migrating tcp/ip connections. In Parallel, Distributed and Network-
Based Processing, 2007. PDP’07. 15th EUROMICRO International
Conference on, pages 221–228. IEEE, 2007.

[4] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-
area migration of virtual machines including local persistent state. In
Proceedings of the 3rd international conference on Virtual execution
environments, pages 169–179. ACM, 2007.

[5] B. Caldwell, Y. Im, S. Ha, R. Han, and E. Keller. Fluidmem: Memory
as a service for the datacenter. arXiv preprint arXiv:1707.07780, 2017.

[6] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient
memory disaggregation with infiniswap. In NSDI, pages 649–667,
2017.

[7] A. Gupta, E. Ababneh, R. Han, and E. Keller. Towards elastic operating
systems. In HotOS, 2013.

[8] Kerrighed. Kerrighed. http://www.kerrighed.org/wiki/index.php/Main
Page/. [Online; accessed 6-Feb-2018].

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[10] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel. Nswap: A network
swapping module for linux clusters. In European Conference on
Parallel Processing, pages 1160–1169. Springer, 2003.

[11] B. Nitzberg and V. Lo. Distributed shared memory: A survey of issues
and algorithms. Computer, 24(8):52–60, 1991.

[12] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum. Fast crash recovery in ramcloud. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pages 29–41.
ACM, 2011.

[13] P. Turner, B. B. Rao, and N. Rao. Cpu bandwidth control for cfs. In
Proceedings of the Linux Symposium, pages 245–254, 2010.

http://www.kerrighed.org/wiki/index.php/Main_Page/
http://www.kerrighed.org/wiki/index.php/Main_Page/

