Making Serverless
Computing More Serverless

Zaid Al-Ali, Sepideh Goodarzy, Ethan Hunter, Sangtae Ha, Richard Han, Eric Keller
University of Colorado Boulder

Eric Rozner
IBM Research

) IBM

University of Colorado Resea rCh

Boulder

*Views not representative of IBM policy, products, or strategies

Serverless Background

e Serverless offerings are widespread today

N

Google Cloud Functions |BM Cloud Functions < >

Amazon Lambda Azure Functions

¢ v 5

Apache OpenWhisk OpenFaaS fission Dispatch

Today’s serverless abstraction

.

Abstract—In serverless computing, developers define a func-
tion to handle an event, and the serverless framework hori-
zontally scales the application as needed. The downside of this
function-based abstraction is it limits the type of application
supported and places a bound on the function to be within
the physical resource limitations of the server the function
executes on. In this paper we propose a new abstraction

—

Low cost

¥ - -~ 8 -

“rverless Computing More Serverless

FaaS, Lamda, OpenWhisk, ...

Zaid Al-Alif, Sepideh GoodarzyT, Ethan Hunter', Sangtae Ha', Richard Han', Eric Keller', Eric Rozner*
TUniversity of Colorado Boulder; *IBM Research

through memory or storage. The challenge, of course, is
realizing a process-based serverless framework which can
map our serverless process abstraction to an underlying,
physically distributed infrastructure. To that end, we propose
a new architecture called ServerlessOS to enable our vision
and argue three key components are necessary to make our

This talk: propose new serverless abstraction and overview its design

A new serverless abstraction

e Expand serverless beyond the bounds of FaaS

e (Goals of our new abstraction:

gl':vlexible enough to support general set of applications
familiar to developers, operating systems, and admins
fasy to transition existing codebases to serverless

fame simplicity and scale-out as FaaS

4

A new serverless abstraction

flexible enough to support general set of applications / ///%

A
et
e

familiar to developers, operating systems, and admins
ﬁasy to transition existing codebases to serverless

fame simplicity and scale-out as FaaS

F

exible enough to support general set of applications
4

Multiple threads, I/O via sockets, persist state, ...

Familiar to developers, operating systems, and admins

Abstraction already used today in non-serverless

Easy to transition existing codebases to serverless

»

Pool of CPU, I/O, memory, storage: server = datacenter

g Challenge: map serverless process
Same simplicity and scale-out as FaaS abstraction to underlying

6

physically distributed architecture

Outline of talk

e (Goal: provide seamless, scale-out process abstraction

* This talk: high-level outline of our ServerlessOS vision

ServerlessOS

Fluid Multi-resource Fine-grained Live

Disaggregation Orchestration Coordinated Isolation

Break coupling .
Monitor and allocate . .
between process & Provide data privacy
resources across

underlying physical . and resource isolation
, infrastructure
Server’s resources

Outline of talk

e (Goal: provide seamless, scale-out process abstraction

* This talk: high-level outline of our ServerlessOS vision

ServerlessOS

Fluid Multi-resource
Disaggregation

Break coupling
between process &
underlying physical
Server’s resources

Fluid multi-resource disaggregation

e Break coupling between process & underlying physical
Server resources

Fluid multi-resource disaggregation

s

,v"
4
4 {
) / P—m ol
()
4
rl

Expand memory
fOOtprint Memory

Disaggregation: decouple process’s resources from single server

Fluid multi-resource disaggregation

e Break coupling between process & underlying physical
Server resources

Fluid multi-resource disaggregation

Network | 58

Decouple memory, compute, I/0O to increase flexibility

10

Fluid multi-resource disaggregation

e Break coupling between process & underlying physical
Server resources

~luid multi-resource disaggregation

Acessing remote memory incurs much higher overhead than local memory

11

Fluid multi-resource disaggregation

e Break coupling between process & underlying physical
Server resources

~luid multi-resource disaggregation

Fluidity: allow process to move to data when more efficient

12

Fluid multi-resource disaggregation

e Break coupling between process & underlying physical
Server resources

~luid multi-resource disaggregation

Fluidity: enable process to exploit locality to improve performance

13

Fluidity over multiple resources

Already provided by prior works
(RamCloud, DSM, InfiniSwap, ...)

Move processing to data or other
server with more compute resources

(Initial results show 2-3x speedup over a DSM scheme)

Decouple device that captured I/0 from device that will
process I/0. Additionally, move I/0O to more bandwidth.
(CPU fluidity can move processing with socket)

14

Outline of talk

e (Goal: provide seamless, scale-out process abstraction

* This talk: high-level outline of our ServerlessOS vision

ServerlessOS

Fine-grained Live
Orchestration

Monitor and allocate
resources across
infrastructure

15

Fine-grained live orchestration layer

e Monitor, allocate, and optimize run-time performance by
automatically assigning, migrating, or scaling workloads

Global decision making

Determine subset of nodes
(and resources) available to
process P

Fine-grained live orchestration layer

e Monitor, allocate, and optimize run-time performance by
automatically assigning, migrating, or scaling workloads

Both decisions influenced by state of
other local nodes:

e CPU
® When to expand (or contract) ® Memory
® Where to expand (or contract) ® Network

Backpressure algorithm avoids poor
decisions

17

Outline of talk

e (Goal: provide seamless, scale-out process abstraction

* This talk: high-level outline of our ServerlessOS vision

ServerlessOS

Coordinated Isolation

Provide data privacy
and resource isolation

18

Coordinated Isolation

Data Privacy Resource Isolation

Ensure application cannot read or Bound CPU, memory, storage, and
write state from another application network usage of workloads

namespaces control groups

Linux Kernel

ServerlessOS: extend isolation across multiple servers in coordinated fashion

19

Coordinated Isolation

namespaces Extend process namespace across multiple servers

control groups Centralize state in orchestration layer, but minimize overheads

Globalte of CPU shares

KCoreO Core1 Core ZJ Qervero Server 1 Servey

From single server... ... to ServerlessOS

20

Outline of talk

e (Goal: provide seamless, scale-out process abstraction

* This talk: high-level outline of our ServerlessOS vision

ServerlessOS

Fluid Multi-resource Fine-grained Live

Disaggregation Orchestration Coordinated Isolation

Break coupling .
Monitor and allocate . .
between process & Provide data privacy
resources across

underlying physical and resource isolation

, infrastructure
server’s resources o1

Conclusions

New abstraction for serverless:

High-level overview of architecture

* Fluid multi-resource disaggregation

* Fine-grained live orchestration layer

* Coordinated isolation

Complementary to current serverless techniques

Next steps: refine design, build prototype, conquer the world!

Thanks! erozner@Qus.ibm.com

22

mailto:erozner@us.ibm.com

