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Serverless Background
• Serverless offerings are widespread today
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Amazon Lambda

Google Cloud Functions IBM Cloud Functions

Azure Functions

Apache OpenWhisk OpenFaaS fission Dispatch



Today’s serverless abstraction

• Serverless typically means Function-as-a-Service
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Benefits Shortcomings

No need to manage infrastructure Event-driven frameworks only

Simple scale-out support Stateless

Low cost Function instance bound to server

This talk: propose new serverless abstraction and overview its design

Limit types of applications 
supported by serverless {

FaaS, Lamda, OpenWhisk, … Break limitations of single server



A new serverless abstraction

• Expand serverless beyond the bounds of FaaS


• Goals of our new abstraction:


• Flexible enough to support general set of applications


• Familiar to developers, operating systems, and admins


• Easy to transition existing codebases to serverless


• Same simplicity and scale-out as FaaS
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• Flexible enough to support general set of applications


• Multiple threads, I/O via sockets, persist state, …


• Familiar to developers, operating systems, and admins


• Abstraction already used today in non-serverless


• Easy to transition existing codebases to serverless


• Pool of CPU, I/O, memory, storage: server → datacenter


• Same simplicity and scale-out as FaaS
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Challenge: map serverless process 
abstraction to underlying 

physically distributed architecture



Outline of talk
• Goal: provide seamless, scale-out process abstraction


• This talk: high-level outline of our ServerlessOS vision
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Fluid Multi-resource 
Disaggregation

Fine-grained Live 
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy 
and resource isolation

Break coupling 
between process & 
underlying physical 
server’s resources

Monitor and allocate 
resources across 

infrastructure
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Fluid multi-resource disaggregation

• Break coupling between process & underlying physical 
server resources
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Fluid multi-resource disaggregation

P

Memory Memory

Disaggregation: decouple process’s resources from single server

Expand memory 
footprint



Fluid multi-resource disaggregation

• Break coupling between process & underlying physical 
server resources

!10

Fluid multi-resource disaggregation

Memory CPU Network

Decouple memory, compute, I/O to increase flexibility



Fluid multi-resource disaggregation

• Break coupling between process & underlying physical 
server resources
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Fluid multi-resource disaggregation

P

Memory Memory

Acessing remote memory incurs much higher overhead than local memory



Fluid multi-resource disaggregation

• Break coupling between process & underlying physical 
server resources
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Fluid multi-resource disaggregation

P

Memory Memory

Fluidity: allow process to move to data when more efficient



Fluid multi-resource disaggregation

• Break coupling between process & underlying physical 
server resources
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Fluid multi-resource disaggregation

P

Memory Memory

Fluidity: enable process to exploit locality to improve performance



Fluidity over multiple resources
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Memory

CPU

Network

Already provided by prior works  
 (RamCloud, DSM, InfiniSwap, …)

Move processing to data or other  
server with more compute resources 

(Initial results show 2-3x speedup over a DSM scheme)

Decouple device that captured I/O from device that will 
process I/O. Additionally, move I/O to more bandwidth.   

(CPU fluidity can move processing with socket)
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Fine-grained live orchestration layer

• Monitor, allocate, and optimize run-time performance by 
automatically assigning, migrating, or scaling workloads
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Global decision making

Determine subset of nodes 
(and resources) available to 

process P



Fine-grained live orchestration layer

• Monitor, allocate, and optimize run-time performance by 
automatically assigning, migrating, or scaling workloads
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P

• When to expand (or contract) 
• Where to expand (or contract)

Local decision making

{ Both decisions influenced by state of 
other local nodes: 

• CPU 
• Memory 
• Network 

Backpressure algorithm avoids poor 
decisions
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Coordinated Isolation
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Data Privacy Resource Isolation

Ensure application cannot read or  
write state from another application

Bound CPU, memory, storage, and 
network usage of workloads

Linux Kernel

namespaces control groups

ServerlessOS: extend isolation across multiple servers in coordinated fashion



Coordinated Isolation
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namespaces

control groups

Extend process namespace across multiple servers

Centralize state in orchestration layer, but minimize overheads

Core 0 Core 1 Core 2

Global store of CPU shares

From single server… … to ServerlessOS

Orchestration layer

Server 0 Server 1 Server 2
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Conclusions
• New abstraction for serverless: a seamless, scale-out process


• High-level overview of ServerlessOS architecture


• Fluid multi-resource disaggregation


• Fine-grained live orchestration layer


• Coordinated isolation


• Complementary to current serverless techniques


• Next steps: refine design, build prototype, conquer the world!


• Thanks! mailto: erozner@us.ibm.com
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