
Making Serverless
Computing More Serverless

Zaid Al-Ali, Sepideh Goodarzy, Ethan Hunter, Sangtae Ha, Richard Han, Eric Keller 
University of Colorado Boulder 

 
Eric Rozner 

IBM Research

�1
* Views not representative of IBM policy, products, or strategies

Serverless Background
• Serverless offerings are widespread today

!2

Amazon Lambda

Google Cloud Functions IBM Cloud Functions

Azure Functions

Apache OpenWhisk OpenFaaS fission Dispatch

Today’s serverless abstraction

• Serverless typically means Function-as-a-Service

!3

Benefits Shortcomings

No need to manage infrastructure Event-driven frameworks only

Simple scale-out support Stateless

Low cost Function instance bound to server

This talk: propose new serverless abstraction and overview its design

Limit types of applications
supported by serverless {

FaaS, Lamda, OpenWhisk, … Break limitations of single server

A new serverless abstraction

• Expand serverless beyond the bounds of FaaS

• Goals of our new abstraction:

• Flexible enough to support general set of applications

• Familiar to developers, operating systems, and admins

• Easy to transition existing codebases to serverless

• Same simplicity and scale-out as FaaS

!4

A new serverless abstraction
• Flexible enough to support general set of applications

• Familiar to developers, operating systems, and admins

• Easy to transition existing codebases to serverless

• Same simplicity and scale-out as FaaS

!5

• Flexible enough to support general set of applications

• Multiple threads, I/O via sockets, persist state, …

• Familiar to developers, operating systems, and admins

• Abstraction already used today in non-serverless

• Easy to transition existing codebases to serverless

• Pool of CPU, I/O, memory, storage: server → datacenter

• Same simplicity and scale-out as FaaS
!6

Challenge: map serverless process
abstraction to underlying

physically distributed architecture

Outline of talk
• Goal: provide seamless, scale-out process abstraction

• This talk: high-level outline of our ServerlessOS vision

!7

Fluid Multi-resource
Disaggregation

Fine-grained Live
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy
and resource isolation

Break coupling
between process &
underlying physical
server’s resources

Monitor and allocate
resources across

infrastructure

Outline of talk
• Goal: provide seamless, scale-out process abstraction

• This talk: high-level outline of our ServerlessOS vision

!8

Fluid Multi-resource
Disaggregation

Fine-grained Live
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy
and resource isolation

Break coupling
between process &
underlying physical
server’s resources

Monitor and allocate
resources across

infrastructure

Fluid multi-resource disaggregation

• Break coupling between process & underlying physical
server resources

!9

Fluid multi-resource disaggregation

P

Memory Memory

Disaggregation: decouple process’s resources from single server

Expand memory
footprint

Fluid multi-resource disaggregation

• Break coupling between process & underlying physical
server resources

!10

Fluid multi-resource disaggregation

Memory CPU Network

Decouple memory, compute, I/O to increase flexibility

Fluid multi-resource disaggregation

• Break coupling between process & underlying physical
server resources

!11

Fluid multi-resource disaggregation

P

Memory Memory

Acessing remote memory incurs much higher overhead than local memory

Fluid multi-resource disaggregation

• Break coupling between process & underlying physical
server resources

!12

Fluid multi-resource disaggregation

P

Memory Memory

Fluidity: allow process to move to data when more efficient

Fluid multi-resource disaggregation

• Break coupling between process & underlying physical
server resources

!13

Fluid multi-resource disaggregation

P

Memory Memory

Fluidity: enable process to exploit locality to improve performance

Fluidity over multiple resources

!14

Memory

CPU

Network

Already provided by prior works  
 (RamCloud, DSM, InfiniSwap, …)

Move processing to data or other  
server with more compute resources

(Initial results show 2-3x speedup over a DSM scheme)

Decouple device that captured I/O from device that will
process I/O. Additionally, move I/O to more bandwidth.

(CPU fluidity can move processing with socket)

Outline of talk
• Goal: provide seamless, scale-out process abstraction

• This talk: high-level outline of our ServerlessOS vision

!15

Fluid Multi-resource
Disaggregation

Fine-grained Live
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy
and resource isolation

Break coupling
between process &
underlying physical

server resources

Monitor and allocate
resources across

infrastructure

Fine-grained live orchestration layer

• Monitor, allocate, and optimize run-time performance by
automatically assigning, migrating, or scaling workloads

!16

Global decision making

Determine subset of nodes
(and resources) available to

process P

Fine-grained live orchestration layer

• Monitor, allocate, and optimize run-time performance by
automatically assigning, migrating, or scaling workloads

!17

P

• When to expand (or contract)
• Where to expand (or contract)

Local decision making

{ Both decisions influenced by state of
other local nodes:

• CPU
• Memory
• Network

Backpressure algorithm avoids poor
decisions

Outline of talk
• Goal: provide seamless, scale-out process abstraction

• This talk: high-level outline of our ServerlessOS vision

!18

Fluid Multi-resource
Disaggregation

Fine-grained Live
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy
and resource isolation

Break coupling
between process &
underlying physical

server resources

Monitor and allocate
resources across

infrastructure

Coordinated Isolation

!19

Data Privacy Resource Isolation

Ensure application cannot read or  
write state from another application

Bound CPU, memory, storage, and
network usage of workloads

Linux Kernel

namespaces control groups

ServerlessOS: extend isolation across multiple servers in coordinated fashion

Coordinated Isolation

!20

namespaces

control groups

Extend process namespace across multiple servers

Centralize state in orchestration layer, but minimize overheads

Core 0 Core 1 Core 2

Global store of CPU shares

From single server… … to ServerlessOS

Orchestration layer

Server 0 Server 1 Server 2

Outline of talk
• Goal: provide seamless, scale-out process abstraction

• This talk: high-level outline of our ServerlessOS vision

!21

Fluid Multi-resource
Disaggregation

Fine-grained Live
Orchestration Coordinated Isolation

ServerlessOS

Provide data privacy
and resource isolation

Break coupling
between process &
underlying physical
server’s resources

Monitor and allocate
resources across

infrastructure

Conclusions
• New abstraction for serverless: a seamless, scale-out process

• High-level overview of ServerlessOS architecture

• Fluid multi-resource disaggregation

• Fine-grained live orchestration layer

• Coordinated isolation

• Complementary to current serverless techniques

• Next steps: refine design, build prototype, conquer the world!

• Thanks! mailto: erozner@us.ibm.com

!22

mailto:erozner@us.ibm.com

