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Network Monitoring & Analytics

Applications 
 

- Network debugging 
- Performance analysis 
- Security

Data Collection 
 

- Netflow/IPFIX 
- Packet traces 
- P4 telemetry systems

Fine Grained Policy RoutingCompromises in Today's Systems

An Ideal Network Analytics System

Hardware Support

High-Performance Software Analytics

John Sonchack 
University of Pennsylvania

Adam J. Aviv 
U.S. Naval Academy

Eric Keller 
University of Colorado Boulder

Data Analysis 
 

- Generally post-hoc 
- Batch processing, e.g., MapReduce 
- Heavyweight deployments

AnalyticsFiltering
(e.g., only DNS)

Packet Stream

AnalyticsSampling
(e.g., every 3rd)

Packet Stream

AnalyticsAggregation
(e.g., counts per 5-tuple)

Packet Stream
3 4 2

SamplingTraffic Filtering Aggregation Limited Expressiveness

PFE

Packet Stream

filter() groupby() zip()

- Every single packet in software (no filtering, no sampling) 
- Per packet data (no aggregation) 
- In real time (processing as packets traverse the network) 
- Composable, flexible analytics applications in software 
- Analytics configurable at runtime without downtime

Collector

Analytics

Packet Stream

Packet Records for every Packet

Real-Time Results

Composable, Runtime-Configurable
Applications in SoftwareEntire Network

System Overview

Software Processor

DC Cluster
e.g., ~200M p/s

Smart NIC

~ 100M-150M p/s

Smart NIC

~ 100M-150M p/s

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

- Initial pre-processing in hardware (e.g., Smart NIC, PFE) 
	 - Different queues per target application 
	 - Batching of low-priority traffic 
- Zero-copy read into user-space (e.g., DPDK) 
- Netronome NFP-4000: 148M packet/s throughput

Large Input Buffer

Processing Stages

Parallel Processors

- Processing system based on streaming analytics paradigm 
- Processing elements organized in scalable stages 
- Run in parallel 
- Data is passed between processors through queues 
- C++ API with pre-defined elements 
- Custom elements easy to implement
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jetstream::app app;
auto source = app.add_stage<source>(1, "eth0");
auto per_src_counter = app.add_stage<pkts_per_src>(3);
auto threshold = app.add_stage<threshold>(1);
app.connect<pkt>(source, per_src_counter);
app.connect<src_count>(per_src_counter, threshold);
app();

API Example:

… …
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