
Scalable, Hardware-Accelerated 
Network Analytics
Oliver Michel 
University of Colorado Boulder

Network Monitoring & Analytics

Applications 
 

- Network debugging 
- Performance analysis 
- Security

Data Collection 
 

- Netflow/IPFIX 
- Packet traces 
- P4 telemetry systems

Fine Grained Policy RoutingCompromises in Today's Systems

An Ideal Network Analytics System

Hardware Support

High-Performance Software Analytics

John Sonchack 
University of Pennsylvania

Adam J. Aviv 
U.S. Naval Academy

Eric Keller 
University of Colorado Boulder

Data Analysis 
 

- Generally post-hoc 
- Batch processing, e.g., MapReduce 
- Heavyweight deployments

AnalyticsFiltering
(e.g., only DNS)

Packet Stream

AnalyticsSampling
(e.g., every 3rd)

Packet Stream

AnalyticsAggregation
(e.g., counts per 5-tuple)

Packet Stream
3 4 2

SamplingTraffic Filtering Aggregation Limited Expressiveness

PFE

Packet Stream

filter() groupby() zip()

- Every single packet in software (no filtering, no sampling) 
- Per packet data (no aggregation) 
- In real time (processing as packets traverse the network) 
- Composable, flexible analytics applications in software 
- Analytics configurable at runtime without downtime

Collector

Analytics

Packet Stream

Packet Records for every Packet

Real-Time Results

Composable, Runtime-Configurable
Applications in SoftwareEntire Network

System Overview

Software Processor

DC Cluster
e.g., ~200M p/s

Smart NIC

~ 100M-150M p/s

Smart NIC

~ 100M-150M p/s

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

Analytics Application
~10-20M p/s

6-10 CPU cores

- Initial pre-processing in hardware (e.g., Smart NIC, PFE) 
	 - Different queues per target application 
	 - Batching of low-priority traffic 
- Zero-copy read into user-space (e.g., DPDK) 
- Netronome NFP-4000: 148M packet/s throughput

Large Input Buffer

Processing Stages

Parallel Processors

- Processing system based on streaming analytics paradigm 
- Processing elements organized in scalable stages 
- Run in parallel 
- Data is passed between processors through queues 
- C++ API with pre-defined elements 
- Custom elements easy to implement

0

2

4

6

8

10

12

1 2 3 4 5 6

th
ro
ug
hp
ut
[M

pa
ck
et
s/
s]

replication factor (r)

packets per source
passthrough

jetstream::app app;
auto source = app.add_stage<source>(1, "eth0");
auto per_src_counter = app.add_stage<pkts_per_src>(3);
auto threshold = app.add_stage<threshold>(1);
app.connect<pkt>(source, per_src_counter);
app.connect<src_count>(per_src_counter, threshold);
app();

API Example:

… …

Results Collector

Analytics
Server

Analytics
Server

Datacenter ClusterDatacenter Cluster

Packet Records
Packet Records

Results, Alerts

Aggregation Switches

This work was supported in part by the NSF grants 1652698 (CAREER) and 
1406192 (SaTC), and by the NSF and VMWare grant 1700527 (SDI-CSCS).


