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• Security issues 

• Performance issues 

• Equipment failure 

• Misconfiguration
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Switch
+

Telemetry

Analytics Platform

Network monitoring is important



Network traffic and security threats grow rapidly
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[Cisco Visual Networking 
Index 2017]
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Traffic is commonly encrypted
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Network monitoring systems must match challenges
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Existing systems make compromises

record of every
single packet full programmability

An ideal network monitoring system

DC scale 
performance
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AnalyticsFiltering
(e.g., only DNS)

Packet Stream

Filtering limits possible applications
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AnalyticsSampling
(e.g., every 3rd)

Packet Stream

Sampling can easily miss important packets
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AnalyticsAggregation
(e.g., counts per 5-tuple)

Packet Stream
3 4 2

Aggregation limits information granularity 
and thus applications
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PFE

Packet Stream

filter() groupby() zip()

Fixed hardware pipelines hinder expressiveness

Efficient Expressive Concurrent Dynamic
Netflow 3 7 3 3

Software 7 3 3 3
PFE Queries 3 3 7 7

*Flow 3 3 3 3

Table 1: Practical requirements for PFE supported net-
work queries.

2 Background
In this section, we motivate the main design goals for
*Flow and describe types of prior monitoring systems
with respect to them.

2.1 Design Goals
*Flow is designed to meet four design goals that are im-
portant for practical deployment of a PFE accelerated
monitoring system.
Efficient. We focus on efficiency with respect to two
types of resources. First, computational resources, or the
number of processing servers required for monitoring.
Second, network resources, or the volume of additional
data the network must carry for the monitoring system.
Efficiency is important because it determines the cost of
the monitoring infrastructure, which directly impacts the
total cost of the network, in terms of dollars and power
consumption.
Expressive. The expressive power of a monitoring sys-
tem describes the variety and quantity of metrics that the
system can report. Expressiveness determines how many
problems a monitoring system can help solve and how
easy it is for operators and developers to use.

We break expressiveness into three dimensions, corre-
sponding to the three fundamental components of a traf-
fic statistics query: selection, grouping, and aggregation.
Selection expressiveness is the quantity and variety of
packet header and processing metadata fields, e.g., queue
lengths, that the monitoring system exposes. Grouping

expressiveness is the flexibility to specify the classes that
packets are grouped into, e.g., TCP flows based on IP

5-tuple, and the timescales over which the metrics are
computed, e.g., for complete flows, flowlets, or individ-
ual packets. Aggregation expressiveness is the capability
to support metrics with custom and potentially complex
aggregation function, e.g, that require advanced mathe-
matical operations or iterating over features from each
packet multiple times.
Concurrent. Concurrency is the capability to support
many traffic statistic queries at the same time. Concur-
rency is important because there are many applications
that benefit from monitoring the network. For example,
consider a scenario where an operator is debugging an in-
cast [22], and a network-wide security system is auditing
for compromised hosts [37]. These applications are best
served by different traffic queries. The operator would

Figure 1: Minimum downtime observed in 50 trials of
reloading a Tofino PFE.

benefit from measuring the number of simultaneously ac-
tive TCP flows in the queue over small epochs, while the
security application analyzes host-to- host communica-
tion records.

Dynamic. Dynamic queries enable an interactive usage
model in which network operators run queries to help
answer ad-hoc questions about network performance or
problems, e.g., why is this queue dropping packets? This
usage model is one of the main draws of expressive net-
work queries [39], but is not practical if the monitor-
ing system must recompile the data plane with each new
query as this will disrupt traffic. Futher, dynamic queries
are critical in a system with multiple concurrent users
that are independently performing queries.

2.2 Prior Monitoring Systems
Prior monitoring systems meet some, but not all, of
*Flow’s design goals, as summarized in Table 1. We
group prior monitoring systems based on where they im-
plement the logic to select packet features, group packets
into flows, and apply aggregation functions.

NetFlow Hardware. Many switches integrate hard-
ware to generate NetFlow records [12] that summarize
TCP flows, i.e., packets grouped at the granularity of IP
5-tuple. The main benefit of NetFlow monitoring is ef-
ficiency. NetFlow records are compact, and contain the
fully-computed aggregate statistics that summarize the
flow. ASICs [44, 6] in the switch data path do all the
work of generating the records, so the bandwidth over-
head is minimal and the network infrastructure does not
require additional servers to compute flow statistics. Net-
Flow monitoring is also dynamic. The ASICs typically
pull from counters in the forwarding path, so a user can
select different statistics for inclusion into the records
without pausing forwarding.

However, NetFlow hardware sacrifices expressive-
ness. Flow records have a fixed granularity and users
choose features from a fixed list. Newer NetFlow
ASICs [6] offer more statistics, but cannot support cus-
tom user-defined statistics or different granularities.

Software Processing. A more flexible approach to
traffic monitoring is to mirror packets (or packet ‘post-
cards’ [2]) to commodity servers that compute traffic

3

Minimum downtime observed in 50 
trials of reloading a Tofino PFE
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Loss of information Loss of capability



Why are these compromises made?
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Case Study: Cisco Tetration for FB Data Center 

Cisco Tetration-V: 
• up to 200K flow events/s 
• per instance requirements for Tetration-V ESXi: 128 

CPU cores, 2TB RAM, 18TB storage 
• 5 such servers for flow monitoring

Facebook web cluster (176 servers): 827K flows/s [roy. et. al. inside  
the social networks datacenter network 2015] 



Is it possible to perform network analytics on cloud-scale 
infrastructures without compromises?



Two goals
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Lossless telemetry
at high rates Flexible processing

x86 / general purpose 
programming language 

runtime configurability 

~ 10M pps per core

~ 3 Tbit/s — 150M pps 

per-packet information

*flow jetstream



• Record format 

• Hardware-assisted record 
generation
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Lossless telemetry
at high rates

~ 3 Tbit/s — 150M pps 

per-packet information

*flow



• per-packet header fields 
• meta data: e.g., queue depth, ingress/egress timestamps

Grouped Packet Vectors (GPV)
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GPV 22.4.24.9 118.24.1.7 6 34323 22

1.0239, 1.7865, 2.3239

34, 12, 45

[SYN], [SYN,ACK], [FIN]

22.4.24.9 118.24.1.7 6 34323 221.0239 34 …

22.4.24.9 118.24.1.7 6 34323 221.7865 12 …

22.4.24.9 118.24.1.7 6 34323 222.3239 45 …

Packet 
Records

22.4.24.9 118.24.1.7 6 34323 221.0239 1.1000 3 91
Flow 
Records



• GPVs provide high compression while maintaining 
information richness

Grouped Packet Vectors (GPV)
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• Problem: GPVs have variable length, space is constrained 

• Custom 2-level cache data structure 
1. Tall cache with narrow slots (many short flows) 
2. Small cache of wide slots (few long flows)

Generating GPVs at line rate
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Figure 5: The PFE cache dynamically allocates a small
number of large memory blocks to cache slots tracking
highly active flows.

use a hierarchical structure. The first level is a tall cache
with narrow slots that supports handling lots of flows.
The second is a small pool of wide slots to support grow-
ing vectors for those flows that need it. The third level
is in software, to stitch together partial records which
occur when a DFR grows beyond the size of the wider
slots, which virtually extends the size of the cache, both
in height and width. In this section, we detail how this
data structure can be efficiently realized in PFEs.

5.1 PFE Restrictions
To ensure line rate operation while meeting chip-space
requirements, PFEs significantly restrict stateful opera-
tions, i.e., to global variables in SRAM that persist across
packets. There are three restrictions that make imple-
menting a cache, especially with dynamic memory man-
agement, a challenge. First, atomic updates: a global
variable’s update logic (i.e., read and write operations),
must be grouped into a small block of code that can com-
pile to a single atom i.e., a stateful ALU. Second, single

update position: a global array can only be updated at
one position per packet. Third, pairwise updates: the
value written to a global variable can only depend on one
other global variable.

5.2 Dynamic Slot Resizing in the PFE
Figure 5 illustrates the slot resizing logic of the DFR
cache. The PFE stores the features of the first few pack-
ets of each tracked flow in a static key-value cache with
fixed sized slots. This cache determines the eviction pol-
icy, using heuristics from prior work [39]. The PFE
dynamically allocates extension blocks to the slots, as
needed. There are fewer extension blocks than cache
slots. The PFE manages their allocation with a stack.
When a cache slot needs more space for its current en-
try, the PFE checks a stack of pointers to free extension
blocks. If the stack is not empty, the PFE pops the top
pointer from the stack and stores it in the cache slot’s cur-
rent entry. If the stack is empty, the PFE evicts the cur-
rent entry. The pointer gives the cache slot unique access
to the extension block until its current entry is evicted.
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Alloc. fail

Generate DFR 
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Stage 1
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Stage 6

Static cache
Indexed with 

hash of 
packet key
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Figure 6: Logical layout of the *Flow cache.

When the PFE evicts an entry from a cache slot with
an extension block, it pushes the extension block pointer
back to the stack. This frees the block for other cache
slots to claim.

5.3 PFE Layout
Figure 6 shows the logical layout of the *Flow PFE
cache with dynamic value resizing in a PFE pipeline.
The stack management stages, 3 and 4, each map to 1
physical stage. The other logical stages can be parti-
tioned across multiple stages depending on the size of
the values that they store and the memory bus width of
the PFE.

The static cache in stage 2 stores the key and packet
count of the flow it is currently tracking, along with a
small fixed number of packet records for that flow. The
extension blocks in stage 5 store packet records for long
flows, and stages 3 and 4 store the state for memory op-
erations.

There are three important aspects to this layout, which
we describe below.

Load On Update. When a stage accesses any global
variables, i.e., the data stored in the cache, stack, or ex-
tension block, it loads a copy into a packet metadata field.
This allows a stage to make decisions based on the global
variables in previous stages, and simplifies the overall
logic by allowing us to move the stage that ultimately
emits a mDFR to the end of the pipeline.

Early Stack Decision. The PFE uses data it loaded
into packet metadata while updating the static cache to
determine what type of stack operation it will need to
do, if any. An allocate operation, i.e., attempted stack
pop, only happens for the first packet record that does not
fit into the static cache. This corresponds to the packet
count in the cache slot being equal to the maximum num-

6



Resource usage
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Figure 6: Min/avg./max of packet and
GPV rates with *Flow for Tofino.
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Figure 8: GPV buffer length vs evic-
tion ratio.

# Cores Agent Profiler Classifier Debugger

1 0.60M 1.51M 1.18M 0.16M
2 1.12M 3.02M 2.27M 0.29M
4 1.85M 5.12M 4.62M 0.55M
8 3.07M 8.64M 7.98M 1.06M
16 3.95M 10.06M 11.43M 1.37M

Table 3: Average throughput, in GPVs per second, for
*Flow agent and applications.

way LRU, but without requiring new hardware.
Figure 8 shows eviction rates as the maximum buffer

length varied. Longer buffers required more pipeline
stages, but significantly reduced eviction ratio when dy-
namic memory allocation was enabled.

7.2 *Flow Agent and Applications

We benchmarked the *Flow agent and monitoring ap-
plications, described in Section 6.2, to measure their
throughput and quantify the flexibility of GPVs.

Experimental Setup. Our test server contained a In-
tel Xeon E5-2683 v4 CPU (16 cores) and 128 GB of
RAM. We benchmarked maximum throughput by pre-
populating buffers with GPVs generated by the *Flow
cache. We configured the *Flow agent to read from
these buffers and measured its throughput for reassem-
bling the GPVs and writing them to a placeholder appli-
cation queue. We then measured the throughput of each
application individually, driven by a process that filled
its input queue from a pre-populated buffer of reassem-
bled GPVs. To benchmark multiple cores, we divided
the GPVs across multiple buffers, one per core, that was
each serviced by separate instances of the applications.

Throughput. Table 7.2 shows the average through-
put of the *Flow agent and monitoring applications, in
units of reassembled GPVs processed per second. For
perspective, the average reassembled GPV rates for the
2015 10 Gbit/s Internet router traces, which are equal to
their flow rates, are under 20 thousand per second [11].

Figure 9: Recall of *Flow and baseline classifiers.

The high throughput makes it practical for a single server
to scale to terabit rate monitoring. A server using 10
cores, for example, can scale to cover over 100 such 10
Gb/s links by dedicating 8 cores to the *Flow agent and
2 cores to the profiler or classifier.

Throughput was highest for the profiler and classifier.
Both applications scaled to over 10 M reassembled GPVs
per second, each of which contained an average of 33
packet feature tuples. This corresponds to a process-
ing rate of over 300 M packet tuples per second, around
750X the average packet rate of an individual 10 Gb/s
Internet router link.

Throughput for the *Flow agent and debugging ap-
plication was lower, bottlenecked by associative opera-
tions. The bottleneck in the *Flow agent was the C++
std::unordered map that it used to map each GPV to a
reassembled GPV. The reassembly was expensive, but al-
lowed the profiler and classifier to operate without simi-
lar bottlenecks, contributing to their high throughput.

In the debugger, the bottleneck was the C++ std::map

it used to globally order packet tuples. In our bench-
marks, we intentionally stressed the debugger by setting
the high queue length flag in every packet feature tu-
ple, forcing it to apply the global ordering function fre-
quently. In practice, throughput would be much higher
because high queue lengths only occur when there are
problems in the network.

PFE memory vs. eviction rate

0 1000 2000 3000
Time (Seconds)

0

200

400

600

800

R
at

e
(T

ho
us

an
ds

)

Packets GPVs

Figure 6: Min/avg./max of packet and
GPV rates with *Flow for Tofino.

Figure 7: PFE memory vs eviction ra-
tio.

Figure 8: GPV buffer length vs evic-
tion ratio.

# Cores Agent Profiler Classifier Debugger

1 0.60M 1.51M 1.18M 0.16M
2 1.12M 3.02M 2.27M 0.29M
4 1.85M 5.12M 4.62M 0.55M
8 3.07M 8.64M 7.98M 1.06M
16 3.95M 10.06M 11.43M 1.37M

Table 3: Average throughput, in GPVs per second, for
*Flow agent and applications.

way LRU, but without requiring new hardware.
Figure 8 shows eviction rates as the maximum buffer

length varied. Longer buffers required more pipeline
stages, but significantly reduced eviction ratio when dy-
namic memory allocation was enabled.

7.2 *Flow Agent and Applications

We benchmarked the *Flow agent and monitoring ap-
plications, described in Section 6.2, to measure their
throughput and quantify the flexibility of GPVs.

Experimental Setup. Our test server contained a In-
tel Xeon E5-2683 v4 CPU (16 cores) and 128 GB of
RAM. We benchmarked maximum throughput by pre-
populating buffers with GPVs generated by the *Flow
cache. We configured the *Flow agent to read from
these buffers and measured its throughput for reassem-
bling the GPVs and writing them to a placeholder appli-
cation queue. We then measured the throughput of each
application individually, driven by a process that filled
its input queue from a pre-populated buffer of reassem-
bled GPVs. To benchmark multiple cores, we divided
the GPVs across multiple buffers, one per core, that was
each serviced by separate instances of the applications.

Throughput. Table 7.2 shows the average through-
put of the *Flow agent and monitoring applications, in
units of reassembled GPVs processed per second. For
perspective, the average reassembled GPV rates for the
2015 10 Gbit/s Internet router traces, which are equal to
their flow rates, are under 20 thousand per second [11].

Figure 9: Recall of *Flow and baseline classifiers.

The high throughput makes it practical for a single server
to scale to terabit rate monitoring. A server using 10
cores, for example, can scale to cover over 100 such 10
Gb/s links by dedicating 8 cores to the *Flow agent and
2 cores to the profiler or classifier.

Throughput was highest for the profiler and classifier.
Both applications scaled to over 10 M reassembled GPVs
per second, each of which contained an average of 33
packet feature tuples. This corresponds to a process-
ing rate of over 300 M packet tuples per second, around
750X the average packet rate of an individual 10 Gb/s
Internet router link.

Throughput for the *Flow agent and debugging ap-
plication was lower, bottlenecked by associative opera-
tions. The bottleneck in the *Flow agent was the C++
std::unordered map that it used to map each GPV to a
reassembled GPV. The reassembly was expensive, but al-
lowed the profiler and classifier to operate without simi-
lar bottlenecks, contributing to their high throughput.

In the debugger, the bottleneck was the C++ std::map

it used to globally order packet tuples. In our bench-
marks, we intentionally stressed the debugger by setting
the high queue length flag in every packet feature tu-
ple, forcing it to apply the global ordering function fre-
quently. In practice, throughput would be much higher
because high queue lengths only occur when there are
problems in the network.

GPV eviction vs. packet rate



• Scalability 

• Optimizations for packet 
record workloads 

• Programming API
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Flexible processing

x86 / general purpose 
programming language 

runtime configurability 

~ 10M pps per core

jetstream



Leveraging parallel computation
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source sink

parallel operators



Jetstream architecture
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NIC
Backend

(e.g., time 
series DB)

input stage

processing 
stages

aggregation 
stage



Jetstream architecture
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NIC
Backend

(e.g., time 
series DB)

NUMA awareness
pipeline 1→ CPU socket 1 

pipeline 2→ CPU socket 2 



• Network attached input 

• Partitionability 

• Small, simple, well-formed records 

• Aggregation

Characteristics of packet record workloads
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Can we use properties of packet analytics 
workloads to our advantage?



40G/100G NIC

Network attached input
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Switch/PFE

queue

queue

queue

NIC DMA

NIC DMA

NIC DMA

jetstream
pipeline

jetstream
pipeline

jetstream
pipeline

~ 131 M packet records/s 
~ 41.9 Gbit/s 
Barefoot Tofino PFE



• Array vs. linked list 

• Lock-free design 

• Wait-free design 

• Zero-copy operations

Many small records

 25Packet-Level Analytics without Compromises — Oliver Michel

1  bool enqueue(const T& element_)
2
3  while (!q.enqueue(e)) { }
4
5  if (!q.enqueue(e))
6     std::this_thread::yield();

0
0.2
0.4
0.6
0.8
1

0 5 10 15 20 25

C
D
F

throughput [M records/s]
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cameron314
lock-free, array



Programming abstraction
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1  int main(int argc, char** argv)
2  {
3    
4
5
6
7
8     return 0;
9  }

auto source = app.add_stage<source>(1, “enp6s0f0”);
auto sink   = app.add_stage<sink>(1, std::cout);
app.connect<jetstream::pkt_t>(source, sink);
app();

jetstream::app app;

source sink

port port

ring buffer

Application definition



Programming abstraction
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 1   explicit source(const std::string& iface_name_) : proc() {
 2 add_out_port<jetstream::pkt_t>(0);
 3     […]
 4   }

 1   class source : public jetstream::proc {
 2     […]
 3   };

 1   jetstream::signal operator()() override {
 2       out_port<pkt_t>(0)->enqueue(read_from_nic(_pkt),     
                                   jetstream::signal::continue);
 3   return jetstream::signal::continue;
 4   }

Processor definition



Performance
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• 2.9M packets/core: 32/64 
cores for 4/8 racks 

• StreamBox: 5096/10192 
cores (163x) 

• Single server: 1/176 ≅ 0.5% 
of cluster

Evaluation

 29Packet-Level Analytics without Compromises — Oliver Michel

[Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. 2015. Inside the Social 
Network's (Datacenter) Network. SIGCOMM Comput. Commun. Rev. 45, 4 (August 2015), 123-137]]

~352 Gb/s

~88 Gb/s — 91M p/s

jetstream
32 cores

Facebook cluster study



Conclusion
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jetstream high-performance, software 
network analytics platform

*flow high-performance, hardware-
accelerated network telemetry system
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BACKUP SLIDES
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[Apache Flink] [StreamBox Miao ‘18]



Stream Processing
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Filter
only TCP

Packet Packet
TCP 

Packet
TCP 

Packet

Parallelize
group by IP Destination

ip_dst % 2 == 1

ip_dst % 2 == 0

Bin
by time (e.g,, 10sec)

Filter
> n Bytes per 10 sec

Alert



Reducing copy operations
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Packet Buffer

Pointer
Passing

queue<pkt*> queue<pkt*>



Reducing copy operations
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1  packet p;
2  p.ip_proto = 6;
3  q.enqueue(p);

1  auto p = q.enqueue();
2  p->ip_proto = 6;

queue<pkt>

pointer directly
into queue Pointer

Passing



Technologies

 38

• Programmable switches and PISA: Protocol Independent Switch 
Architecture 
• Reconfigurable match-action tables in hardware 
• multiple stages with TCAM/ALU pair, fixed processing time, 

guarantees line rate


