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1 Introduction
Many systems use transport layer flow records (i.e., of TCP
or UDP traffic flows) to profile, debug, secure and optimize
computer networks [4]. Flow record generators support these
systems by monitoring live traffic to produce flow records.
Today, many flow record generators are implemented as
software running on commodity servers [7]. It is expensive
and time consuming to scale these systems to large or high
speed networks because of the limited throughput and high
power consumption of commodity servers.

A more scalable approach is to do some of the monitoring
with Programmable Forwarding Engines (PFEs) [8, 3] that
can process packets at high rates according to functions de-
fined as software [2] and are cost and power effective. Com-
modity switches and line cards with PFEs are beginning to
come to market [6, 1]. Flow record generators would ideally
deploy stateful routines to these devices that gather informa-
tion about traffic flows, allowing them to scale and produce
feature rich records of high throughput traffic from many van-
tage points. Such visibility would enable novel systems for
improved network monitoring, debugging, and security [5],
and allow us to rethink the role of flow records in networking.

However, that potential can only be realized if the PFE
component of a flow record generator maps efficiently to
the complex architectures of actual hardware. PFEs are
specialized for functions that require minimal amounts of
state. As a result, there are many architectural restrictions
that have not been considered by previous work but come
to bear on highly stateful functions that collect information
about traffic flows in the PFE.

• Limited Memory Accesses: PFEs operating at line
rate only have time for a small number of memory oper-
ations per packet. A routine must limit how frequently
it modifies persistent state, such as flow information,
or it may reduce throughput or fail to compile [8].

• Parallel Memory Banks: On many PFEs, the only
way to perform multiple memory operations while
processing an individual packet is to use parallel
execution units that are wired to separate memory

banks [3, 8]. A routine must be designed so that any
persistent state can be partitioned efficiently across
these memory banks and execution units.

• Parallel Processors: Other designs use shared memory
banks that are accessed by many threads processing
different packets simultaneously [6]. A routine must
be designed so that these threads can efficiently
synchronize access to any shared persistent state.

• Code Space: PFE routines compile to instructions that
are placed into small caches or physical pipelines of
execution units. A function must be simple to fit into
these resources.

Microflow Table

Packet in 
tracked 

flow

Packet in 
untracked 

flow
Hash

Record Buffer

Append 
Evicted Entry

Replace Entry

Update Entry

DMA to 
CPU Buffer

Microflow Generatormatch

collision

Figure 1: Overview TurboFlow’s PFE function.

2 TurboFlow
In this paper, we propose TurboFlow: a flow record
generator for commodity network equipment with PFEs
that achieves high levels of performance by being designed
specifically for the constraints of real hardware.

Our insight is that we can leverage the switch CPU to
simplify and optimize the PFE component. In TurboFlow,
the PFE works closely with the switch CPU to generate
flow records, which allows us to move complex logic off of
the PFE, leaving it with a simple routine optimized for real
PFE architectures. The PFE does just enough to enable flow
record generation at very high traffic rates without overbur-
dening the switch CPU or sacrificing other design goals.

At a high level, the PFE generates microflow records,
which are similar to flow records but only account for the
most recent subset of packets to minimize the amount of
state stored on the PFE. The switch’s DMA engine transfers
microflows to the switch CPU’s main memory, where an
aggregator groups them into full flow records that can be
exported to a flow collector or network control server.
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Figure 3: PFE memory versus CPU load.
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Figure 2: Packet rate throughput on a many cored PFE [6].

Metric TurboFlow FlowRadar Baseline
Total Stateful Units 13 35 2
% RMT [3] Stages 43.7% - 3.3%

% Banzai [8] Stages 26.6% 13.3% 3.3%
% Banzai [8] Stateful Units 4.3% 11.6% 0.3%

Table 1: Processing requirements on pipeline PFEs.

The PFE component of TurboFlow associates packets
with flows using the data structure depicted in Figure 1,
which is similar to a hash table but with one important
modification. Whenever two flows collide, the PFE sends
a microflow record for the older colliding flow up to the
switch CPU and replaces it with the newer entry. This design
guarantees a small number of memory operations per packet,
minimizes the overhead of partitioning and synchronizing
PFE state, and compiles to a short PFE function. Further,
since the average microflow record summarizes multiple
packets, the switch CPU component can generate full flow
records that are accurate and contain rich feature sets, even
when packet and flow rates are high.

3 Evaluation Highlights
We implemented TurboFlow in P4 [2] and analyzed the
performance of its PFE and CPU components. We bench-
marked the PFE component on two significantly different
architectures that are representative of many existing and
proposed PFEs and compared TurboFlow to FlowRadar, the
fastest reported P4 flow record generation system [5].

Many-cored PFEs On the NFP-4000 PFE [6], which
processes packets in parallel using 200 threads that share
a large global memory bank, TurboFlow could monitor up
to 10 M packets/s regardless of flow rate, as Figure 2 shows.
This is a throughput over 75X higher than FlowRadar.
TurboFlow scales better on many cored PFEs because its

data structures are simpler to synchronize, which minimizes
contention for access to shared memory.

Staged Pipeline PFEs On the Banzai machine, which mod-
els the architectures of terabit scale PFEs that use pipelines
of processing units with independent memory banks [3, 8],
TurboFlow is compiler guaranteed to run at line rate.
TurboFlow also uses 50% fewer execution units and 40% less
PFE memory than FlowRadar, as Table 1 shows. TurboFlow
is efficient on this hardware because it minimizes the
overhead of partitioning state across stages of the pipeline.

Switch CPU Under a worst case workload, TurboFlow’s
switch CPU component can monitor up to 30M flows/s while
using 2 switch CPU cores, over 4X what FlowRadar supports
in the same scenario. TurboFlow scales at the switch CPU
level because it leverages PFE memory to reduce switch
CPU load when flow rates are high, as Figure 3 shows.
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