
CommunityGuard: A Crowdsourced Home Cyber-Security
System

Chase E. Stewart
University of Colorado Boulder
chst9148@colorado.edu

Anne Maria Vasu
University of Colorado Boulder
anva7676@colorado.edu

Eric Keller
University of Colorado Boulder
eric.keller@colorado.edu

ABSTRACT
In this paper, we propose and implement CommunityGuard, a sys-
tem which comprises of intelligent Guardian Nodes that learn and
prevent malicious traffic from coming into and going out of a user’s
personal area network. In the CommunityGuard model, each Guardian
Node tells others about emerging threats, blocking these threats for
all users as soon as they begin. Furthermore, Guardian Nodes reg-
ularly update themselves with latest threat models to provide ef-
fective security against new and emerging threats. Our evaluation
proves that CommunityGuard provides immunity against a range
of incoming and outgoing attacks at all points of time with an ac-
ceptable impact on network performance. Oftentimes, the sources
of DDoS attack traffic are personal devices that have been compro-
mised without the owner’s knowledge. We have modeled Commu-
nityGuard to prevent such outgoing DDoS traffic on a wide scale
which can hamstring the otherwise very frightening prospects of
crippling DDoS attacks.

1. INTRODUCTION
As the Internet continues to control and define more aspects

of the physical world, the consequences of Internet attacks also
continue to scale. Network attacks, once an annoyance or has-
sle, can now translate into a loss of money, a source of physi-
cal harm, or even widespread chaos. In the past few years alone,
we have seen network attacks destroy nuclear reactor development
[11], hold hospitals ransom [18], and even control moving vehicles
[2].

An area increasingly targeted by attackers is the Internet of Things.
It is hard to imagine the influence of computer networks and the
prevalence of the Internet ever waning. Therefore, creating per-
manently secure and stable networks is a major technical problem
that must be solved before the Internet of Things firmly takes hold.
A significant challenge is that a significant segment of the IoT de-
ployments target home deployments. Whereas enterprises have the
resources and IT staff to manage security (and still get attacked),
home users do not have such resources. We propose that users
in the cyber world need the digital equivalent of a physical Home
Security System – such as provided by ADT [1], which monitors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’17, March 22-24 2017, Scottsdale, AZ, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4908-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3040992.3040997

Figure 1: CommunityGuard architecture.

physical aspects (e.g., door open) of the home and automatically
defends against intrusions.

In this paper we present CommunityGuard (illustrated in Fig-
ure 1), a system which automatically protects home users from ex-
ternal attacks (much like a home security system), helps prevent
home users from unwittingly being used to launch attacks on oth-
ers, and provides a means for home users to look out for each other
(similar to neighborhood watches where people can report suspi-
cious activity to help their neighbors). This is all possible with the
combination of network functions virtualization to launch monitor-
ing and defenses where needed, and software defined networking to
remotely manage the configuration. In essence, CommunityGuard
is (in one deployment model) simply a device that resides between
a home router and the cable modem, which connects to a cloud sys-
tem that automatically monitors for suspicious activity and deploys
the appropriate response. Through relying on the collaborative as-
pects of this network of devices, CommunityGuard has wide visi-
bility that enables it to catch ever-more complicated malware and
threats, and ultimately block malicious traffic from ever reaching
its intended destinations.

As a demonstration of the power of CommunityGuard, we fo-
cus on Distributed Denial of Service (DDoS) attacks, which are
poised to grow dramatically in damage and scale. DDoS is a com-
mon network attack in which a user attempts to make an extremely
high number of resource requests in a short time in order to prevent
others from accessing the resource. The strength of a DDoS at-
tack is proportional to the number of resources an attack can lever-
age against its opponent and the time for which they can sustain
their requests. For this reason, the Internet of Things looming on
the horizon (which promises as much as 400 zettabytes of data by

http://dx.doi.org/10.1145/3040992.3040997

2018 [5]) has already given attackers a huge advantage in sustain-
ing record-breaking DNS attacks against increasingly worrying tar-
gets. In events such as the attack on Dyn [10], a moderate amount
of traffic passed from an unprecedented number of unique devices
(mainly IoT cameras) to create an overwhelming force. In this
paper, we demonstrate the use of CommunityGuard for defeating
these potentially-enormous DDoS attacks by stopping the traffic at
the weaker end of its path – the source subnet (home networks).

2. COMMUNITYGUARD ARCHITECTURE
Shown in Figure 1 is a high-level overview of the Community-

Guard architecture. There are two key components:
First, the Guardian Node is capable of serving as a device which

all traffic between a given home’s devices (computers and IoT de-
vices) and the Internet passes through. This node is capable of hav-
ing network functions deployed onto it and remotely configured.
For the purposes of this paper, we use a BeagleBone Black device
as a prototype, and elaborate in Sections 3.1.1 and 3.1.2.

Second, the Community Outpost is a central manager running on
a cloud server which interfaces with each of the Guardian Nodes.
The Community Outpost will monitor this traffic for any security
concerns and deploy defenses as needed. For our initial prototype,
we focus on the deployment of the Snort IPS system and automatic
management of its configuration, elaborated in Section 3.2.

Together, these components provide crowdsourced monitoring
and remotely managed security. Each Guardian Node is capable
of monitoring and sending information to the Community Outpost
server (the central security manager). In doing so, we get multiple
vantage points and an ability to detect something in one location to
help protect another. The Community Outpost will perform analy-
sis (using all information), and deploy the defenses as needed (the
snort configuration).

3. SYSTEM PROTOTYPE
Shown in Figure2 is a diagram illustrating our initial prototype

of CommunityGuard, where we focus on running an intrusion pre-
vention system (Snort) as the example network function (which can
do both monitoring and protection, but our architecture is not solely
tied to Snort).

The keystone of the proposed architecture is the Guardian Node
which must be placed in a position where it can view the entire
network traffic flowing into and out of a user’s network, and block
all suspicious traffic. The addition of the device must be as non-
intrusive as possible, requiring no modification in Modem or Router
configuration. Based on these factors, we chose to place the Guardian
Node between a Modem and Router. For networks using a Modem
and a Router on the same device, we foresee that a production scale
implementation would place the Guardian Node within the same
box as the Modem and the Router, therefore maintaining the same
architecture as shown in Figure 1. Such Guardian Nodes placed
at the entry point of home networks can create a solid net of pro-
tection that can communicate threats as soon as they emerge. It
must be noted that the capability of CommunityGuard in deterring
threats (and especially its ability to stop DDoS attacks) is propor-
tional to the amount of subnets that use it – ideally there would be
a Guardian Node within every household and business subnet.

The code that we wrote in implementing and evaluating Com-
munityGuard is available on Bitbucket at
https://bitbucket.org/ChaseEStewart/advnetsysfinal/ [6].

Figure 2: Prototype Overview.

3.1 Guardian Node

3.1.1 Hardware Design
The BeagleBone Black [3] , a reasonably powerful embedded

device, was chosen to prototype Guardian Node since it satisfied
the minimum requirements to implement the envisioned end prod-
uct. The on-board 10/100 Mbps Ethernet port provided one net-
work interface, while another interface was added using an USB to
10/100 Mbps Ethernet adapter. This prototype is deemed sufficient
to display the core mechanics of the Guardian Node.

3.1.2 Software Design
The software design of a Guardian Node is depicted in Figure 2.

The device has a DHCP server configured so that a Router can be
added behind it. It passes all traffic from one network interface to
the other. The Guardian Node runs Snort [17], a powerful Intru-
sion Detection/Prevention tool, to monitor traffic at both interfaces.
A set of Snort rules are configured to block any suspicious traffic
that satisfies any of the rules. Snort can perform protocol analysis,
content searching/matching, and can be used to detect a variety of
attacks and probes, such as buffer overflow, stealth port scans, CGI
attacks, SMB probes, OS fingerprinting attempts, and many more.
It also provides a black-list and white-list functionality that can be
used to conditionally block and unblock malicious IP addresses.
Snort was chosen as the IPS due to its large amount of documenta-
tion, open source software and up-to-date rule-lists, and its high re-
gard in security communities. Communication of malware alerts is
a key aspect of CommunityGuard. This communication is done on
a periodic basis by a set of three cron jobs running on the Guardian
Node. These cron jobs do the following:

• Keep Snort’s general rules up-to-date by pulling rules and
IPs from rule repositories.

• Push this particular guardian node’s suspicious traffic to the

Figure 3: Outbound DDoS prevention Algorithm

Figure 4: Community Outpost push and pull.

Community Outpost and also to pull new rules and blocked
IPs from the Community Outpost.

• Check for DDoS server beacons and generate new anti-DDoS
rules if necessary.

The first cron job runs periodically and reads a log created by
Snort that contains IP address of sources that have sent bad traffic.
It then parses the source IP addresses present in the log, and updates
the same to the database on the Community Outpost (described in
the following section).

A second cron job runs periodically to fetch information from a
DDoS watch list available on the Community Outpost described be-
low as part of the Outgoing DDoS prevention mechanism (server-
side is described in Section 3.2.3). If the database provides new
IP addresses (for which rules do not exist on the Guardian Node
yet) that are currently being DDoSed, the cron job creates and adds
Snort rules to drop all such outgoing DDoS traffic, thus clipping
off the attack at the compromised source itself. This algorithm is
depicted in Figure 3; Such a mechanism, when repeated over all
Guardian Nodes, can prevent a DDoS attack at the source.

Finally, the third cron job runs once every day at a random time
and fetches the latest bad IP list from the Community Outpost and
adds it to the Snort IP Blacklist. It also fetches Snort rules from
Emerging Threats [9] to defend against new and emerging at-
tack patterns. These three cron jobs, along with Snort running on
all Guardian Nodes, together establish a system of protection that
learns, communicates, and has capacity to prevent most malware
attacks.

3.2 Community Outpost
The Community Outpost is the source of intelligence for the

Guardian Nodes that it services. This server runs a database and
a couple of cron job timed events to process the information within
its database. This server uses its database tables to aggregate threats

presented by all collected guardian nodes, process them to deter-
mine valid threats, and then present them for individual guardian
nodes to read and process. As this server is an obvious target for
one who would wish to halt the CommunityGuard service, it is
foreseen that the server will be elastically-scaling and secure in a
production level implementation.

3.2.1 Attack Models
Although the Guardian Node can be fortified from external at-

tacks through a hardened OS image and security best practices, we
assume that a malicious user will eventually be able to compromise
the device. This leaves a malicious user two possible vectors of at-
tack for causing harm to a particular user- either attempting to get
harmful traffic through the Guardian Node despite having both a
Guardian Node and Community Outpost in place, or else reverse-
engineering the Guardian Node to attack the Community Outpost.
Therefore, Guardian Nodes are by design untrusted devices, and
Community Outpost servers utilize crowd consensus about mali-
cious IP addresses to help defeat compromised Guardian Nodes.
We designed the functionality of the Community Outpost while
keeping the following attack models in mind:

A malicious user may attempt to:

1. add useful IPs to the blacklist to block them for users

2. remove blacklisted IPs from the blacklist

3. read user data from the list

3.2.2 Server Blacklist architecture
When any guardian node is created, a SHA256 hash of the node’s

MAC address and a cryptographic salt value stored on the Guardian
Node’s memory is entered into the mac_addr_registry table, as shown
in Figure 4. This hash value will serve as a key for writes, to ensure
that writes can only be initiated from a valid Guardian Node.

The Guardian Node is only allowed write permission to the IPv4_-
input table and read permission from the IPv4_output table and
DDoS_output table. This policy prevents attack models 1, 2, and 3
and ensures that even if a malicious user were to reverse-engineer
the device to discover a means to contact the Community Outpost
directly, the amount of access they could gain is minimal. When a
Guardian Node is scheduled to push suspicious traffic to the Com-
munity Outpost, it is allowed to write only into the IPv4_input ta-
ble. It will write the following pair to the input table:

{ipsuspicious, SHA256(int(MACaddr), salt)}

The Community Outpost will process the input table to recalcu-
late new threats at a certain frequency, and then drop the current
input table. For each entry in the input table, the server first checks
the SHA256 passed by the Guardian Node to ensure that this key
is already within the mac_addr_registry. The entries that do not
have a valid SHA256 hash are dropped, leaving only the valid re-
quests. For all valid requests, a second SHA256 hash is computed,
this time a hash of both the previous SHA256 result and now also
the IP address declared as suspicious

SHA256({ipsuspicious, SHA256(int(MACaddr), salt)})

. The Community Outpost checks whether this hash is already in
the IPv4_master_list server, which is a list of the SHA256, IP com-
binations that have previously been entered- if this is a new suspi-
cious IP, or it is a known suspicious IP being reported by a new and
valid Guardian Node, it will be pushed to the IPv4_output table.
This second hash function ensures that a given Community Out-
post instance receives only one vote towards a given IP address, as
a means to prevent against attack model 1.

If this IP is a new entry, it will be entered into the table with
a count of 1; if it already exists within the table, its count will
be incremented. Once the count tallied against an IP reaches a
sufficiently high number proportional to the number of reported
threats, the IP will be pushed out to requesting Guardian Nodes, and
blocked automatically by all Guardian Nodes. Relying on a count
before pushing a suspicious IP also helps prevent attack model 1
from occurring.

3.2.3 Server Outgoing DDoS prevention
As mentioned above in Section 3.1.2, the Community Outpost

also provides a method to prevent outgoing DDoS traffic from a
Guardian Node’s subnet out to a DDoS target. In this case, the
DDoS victim list (IPv4 DDoS table) will be edited by either Com-
munityGuard administrators or some intelligent monitoring soft-
ware that communicates through a secure channel, and only read-
ing will be allowed for all Guardian Nodes. CommunityGuard
will confirm the existence of a DDoS attack through an alternate
channel, possibly a third party DDoS prevention service [8] work-
ing with CommunityGuard, and then add the relevant IPs or CIDR
ranges to the IPv4_ddos table. Guardian Nodes will use the cron
described in Figure 3 to add and remove rules to prevent outgoing
DDoS attacks.

4. EVALUATION AND PERFORMANCE
We evaluated CommunityGuard by both the effectiveness of its

intended operation 4.1 as well as by network performance while
the system was running in-line 4.2.

4.1 Operation
To test the effectiveness of the system, we evaluated two core

capabilities of CommunityGuard which are described below. Our
Test Setup includes two Guardian Nodes (in this case two config-
ured BeagleBone Black devices each between a modem and router)
present on different networks, which were used to test the system
to check if blacklisted IP addresses updated by one Guardian Node
was communicated to the other. Both Guardian Nodes connected
to the Community Outpost server with the same periodicity.

4.1.1 Prevent and log incoming malicious traffic
Snort rules were configured to block IP traffic that contained ma-

licious content. There are thousands of open-source snort rules
available that can alert and drop malicious traffic like worms, il-
legal attempts at accessing FTP or telnet, and a range of attacks
[17]. However, we did not wish to receive actual malicious traffic
in testing due to infrastructure and resource restrictions. Instead,
the team wrote a few snort rules to treat some arbitrary safe traffic
as malicious and configured rules to drop such traffic. The cron
job (discussed in 3.1.2) parsed the log and updated the DB about
the source from where possible malicious traffic was originating.
Depending on a majority of votes (this majority was artificially ele-
vated in our test case since only two Guardian Nodes were present),
the Community Outpost proceeded to conditionally add the mali-
cious source IP to the blocked list. Newly confirmed bad IP ad-
dresses are fetched when the cron job responsible for adding black-
listed IP addresses next runs on the Guardian Nodes.

4.1.2 Prevent outbound DDoS attacks
This was tested by adding fake IP addresses to the DDoS watch

list on the Community Outpost. The DDoSed IP addresses were
friendly machines in another network. In a real world implemen-
tation, we assume that a third party DDoS protection service [8] or
monitoring service would update the DDoSed IP addresses to the

CommunityGuard administrators. The team added the DDoSed IP
addresses manually in order to test this functionality. A TCP SYN
DoS attack was simulated with hping3 [14] [12]. The cron job that
was checking for new updates from the database fetched this IP ta-
ble from the Community Outpost every minute and checked for a
match in the existing IP DDoS table maintained at each Guardian
Node. Snort drop rules were created for new IP addresses if a match
was not found. The new rules prevent all outbound DDoS traffic to
the IP addresses fetched from the DDoS watch list.

An important point to note here is that the network was still al-
lowed to send legitimate traffic to these attacked IP addresses be-
cause Snort rules were configured to monitor the pattern of a DDoS
attack before dropping that traffic. One such Snort rule is shown in
Figure 6 which detects an outgoing SYN flood attack from the
home network to an external network. Figure 6 also shows the log
created by Snort when it detects and drops an outgoing DDoS at-
tack as soon as the cron job fetches the DDoS watch list from the
Community Outpost. The Snort rule detects TCP-SYN DDoS at-
tack patterns and drops all such outgoing traffic. However, benign
TCP traffic is still allowed to pass through. This was tested using
the netcat tool [16] to communicate between the attacking system
and the attacked system via TCP while Snort was actively blocking
all outgoing TCP-SYN DDoS attacks to the target IP.

4.2 Performance

4.2.1 Load test
The Guardian Node is designed to be inserted in-line somewhere

before the Router, which implies that the Guardian Node could be
introducing a bottleneck and stalling traffic coming into and going
out of the personal network. Therefore, it was necessary to verify
the performance of the Guardian Node while it was fully functional.
Speed tests were taken at intervals of 5 minutes under light, aver-
age and heavy load conditions to conform performance compliance
using difference 50 minute intervals for the baseline and test case.
Light load was simulated by opening 1-3 video Live streams, a few
browsers with medium flash content, one active upload and few So-
cial media pages over 6 different devices ranging from desktops to
tablets and mobile phones. Average load was simulated by opening
3-5 live streams, 4-6 pages with high flash content and 2-3 active
uploads distributed over the same set of devices. Heavy load was
simulated by increasing to 6-8 live streams, 8-10 pages with high
flash content and 4-5 active uploads distributed over the same set
of devices. Figure 7 shows the performance represented as a linear
plot. As one can see, the performance data is very similar between
the baseline and the test case. On an average the test case appears to
be slightly lower than the baseline case which can be significantly
attributed to the following hardware deficiencies. Points where the
test case appears higher than the baseline case are likely due to net-
work load fluctuations.

• USB to 10/100 Mbps Ethernet adapter – The Guardian Node
hardware, which in this case was a BeagleBone Black, has
only one on-board 10/100 Mbps Ethernet port. An USB to
10/100 Mbps Ethernet adapter was added since the Guardian
Node required two network interfaces. Speed of transfer was
therefore severely limited by the speed of conversion.

• Slow SD card writes – The Guardian Node was running a
Linux Operating System that was mounted on a SD card.
Transfer speeds were also affected by comparatively slow SD
card write times.

4.2.2 Performance vs. number of Snort rules
Snort provides the freedom to configure as few rules or as many

rules as required. The Load Test mentioned in Section 4.2.1 was
done with approximately 7000 Snort rules configured and function-
ing. Speed tests were also conducted for a number of rules ranging
between 100 to 10000. It was seen that the number of rules did
not affect speed test results as much as one would expect. Speed
measurements indicated similar values to those shown in Figure 7.
This was attributed to the fact that Snort processes utilized around
150 to 200 MB of RAM in all cases ranging between 100 to 10000
rules. Figure 5 shows the RAM utilization without Snort running,
Snort running with 156 rules and Snort running with 9863 rules.

The CommunityGuard team feels that the set of running Snort
rules can be further optimized for better processor and RAM uti-
lization. Optimization of Snort rules will be pursued as future
work. It is to be noted that increasing traffic from 100 Mbps to
400 Mbps will increase the RAM requirement to almost 1GB for
100-10000 rules. The implementation of Snort on the Guardian
Node was using much less RAM since network traffic was lim-
ited to 100 Mbps by the Ethernet card. Dealing with higher traffic
speeds would require specialized hardware. In an ideal implemen-
tation, the Guardian Node would have a network card with perfor-
mance specifications equivalent to it’s router’s network card.

5. RELATED WORK
Collaborative Network Security is not a new topic, and some

previous work has been done in this domain. Chen, Dong et al. [4]
describe a collaborative security for multi-tenant data centers using
a security center. Mu, Chen, et al. [15] propose a collaborative se-
curity management system for Metropolitan Area Networks using
a P2P network. Both papers do not address security for a com-
mon user’s local network or large scale vulnerabilities introduced
by personal devices that have weak security such as IoT devices.
Also, both papers do not address situations where a malicious user
might try to block valid traffic for all peers by sending bad data to
the central security system, nor do they deal with preventing an out-
bound DDoS attack. These are aspects we have dealt with in our
paper. Mirkovic, Prier et al. [13] have talked about preventing a
DDoS attack at the source by monitoring 2-way traffic periodically
and at all points of time. They do not talk about cloud-sourcing
this information to prevent similar outbound DDoS attacks on all
networks and mostly focus on detecting DDoS attacks based on the
pattern. As far as DDoS attacks are concerned, we mostly focus
on running up-to-date EmergingThreats rules, as well as the cloud
sourcing aspect of preventing a large scale DDoS attack.

6. CONCLUSIONS AND FUTURE WORK
As network security will only become more crucial over time, we

aspire to a future where users’ personal networks and devices de-
fend themselves and each other from emerging threats. To this end,
we introduced the design, prototype, and evaluation of Communi-

Figure 5: RAM Utilization on the Guardian Node

Figure 6: Sample Snort DDoS prevention rule and log

tyGuard, an in-line home cyber-security system where a Guardian
Node in each home shares new threats with nodes in other homes.
This provides a sort of herd immunity against new attacks. As soon
as an attack claims a victim, the victim’s peers will be informed,
and will repel the same attack against their own subnets.

As this is only a first step toward our overall vision, we envi-
sion much future work. This includes large-scale testing (deploy-
ing in many homes), exploration of alternate hardware platforms,
integration into routers, expanding on the correlation across anoma-
lies seen in various Guardian Nodes, mathematically determining
optimal thresholds for IP blacklisting, securing communication be-
tween the Outpost and Guardian Nodes by encrypting data between
sender and receiver, and exploring monitoring and defense mech-
anisms beyond Snort, such as deploying specific DDoS scrubbing
network functions (as was done in Bohatei [7] for ISP networks).

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF SaTC grant number

1406192.

8. REFERENCES
[1] ADT. Adt security services, 2017.
[2] M. Anderson. Black hat 2014: Hacking the smart car, 2014.
[3] Beagleboard. Beaglebone black, 2017.
[4] Z. Chen, W. Dong, H. Li, P. Zhang, X. Chen, and J. Cao.

Collaborative network security in multi-tenant data center for
cloud computing. Tsinghua Science and Technology,
19(1):82–94, Feb 2014.

[5] I. Cisco Systems. Cisco global cloud index: Forecast and
methodology, 2015-2020, 2016.

[6] C.Stewart and A. Vasu. Avant-guard source code, 2016.
[7] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei:

Flexible and Elastic DDoS Defense. In 24th USENIX
Security Symposium (USENIX Security), Aug. 2015.

[8] J. Grady. Worldwide ddos prevention products and services,
2013.

[9] T. Green. Emerging threats faq, 2016.
[10] S. Hilton. Dyn analysis summary of friday october 21 attack,

2016.
[11] M. Holloway. Stuxnet worm attack on iranian nuclear

facilities, 2015.
[12] Hping. Hping active network security tool, 2017.
[13] J. Mirkovic, G. Prier, and P. Reiher. Attacking ddos at the

source. In 10th IEEE International Conference on Network
Protocols, 2002. Proceedings., pages 312–321, Nov 2002.

[14] R. Moyers, P. Dunning, C. Marchany, and G. Tront. Effects
of wi-fi and bluetooth battery exhaustion attacks on mobile
devices, 2010.

[15] B. Mu, X. Chen, and Z. Chen. A collaborative network
security management system in metropolitan area network.

Figure 7: Results of Snort throughput tests: test=CommunityGuard, baseline=no CommunityGuard

In 2011 Third International Conference on Communications
and Mobile Computing, pages 45–50, April 2011.

[16] netcat. Netcat 1.10, 2017.

[17] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th USENIX Conference on
System Administration, LISA ’99, pages 229–238, Berkeley,
CA, USA, 1999. USENIX Association.

[18] Symantec. Ransomware and businesses, 2016.

	Introduction
	CommunityGuard Architecture
	System Prototype
	Guardian Node
	Hardware Design
	Software Design

	Community Outpost
	Attack Models
	Server Blacklist architecture
	Server Outgoing DDoS prevention

	Evaluation and Performance
	Operation
	Prevent and log incoming malicious traffic
	Prevent outbound DDoS attacks

	Performance
	Load test
	Performance vs. number of Snort rules

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

