
Integrating the Data Store into the Stateless Network Function Hosts

Anurag Dubey(student), Murad Kablan (student), Eric Keller
University of Colorado

(anurag.dubey, murad.kablan, eric.keller)@colorado.edu,

1 Introduction

StatelessNF System [2] proposes, a new architecture
for network functions virtualization, where it decouples
the existing design of network functions (e.g., firewalls,
NAT, load balancers) into a stateless processing com-
ponent along with a data store layer. In breaking the
tight coupling, StatelessNF allows network functions to
achieve greater elasticity and failure resiliency.

As shown in Figure 1, StatelessNF system considers
the data store as a remote node. Thus, an added la-
tency is naturally introduced: reading from remote mem-
ory versus local will always be slower. To achieve ac-
ceptable performance, StatelessNF leverages advances in
low-latency systems such as RAMCloud [4] where read
and write operations are less than 100us. However, in
applications where state needs to be updated for every
network packets (e.g., traffic counters, timers) such de-
lays can greatly affect network applications.

In this poster, we propose exploring an integration of
the data store nodes and the network function nodes, as
illustrated in Figure 2 or more generally, a rethinking
of the concept that the data store is separate from and
independent of the nodes accessing the data store. This
has two main advantages that must be considered, along
with the potential for negative impacts such as reduced
fault tolerance.

First, similar to a cache within each node, it can reduce
latency and increase bandwidth to access data. Unlike a
cache, the data store nodes’ functionality is to replicate
data for resilience, but not provide consistency across all
accessing nodes. That is, with a caching architecture,
each node accesses data and caches it locally. This, in
turn, requires mechanism to maintain cache coherency.
With an integrated data store, access to data goes to the
nodes actually storing that data (which may be replicated
among a few nodes, and coherency needs to be main-
tained between that small subset of nodes). This subtle
difference makes this more scalable.

Network
Function

Network
Function
Network 
Function

State

Network Function Host

Monitor/
Manage

Network
Function

Network
Function
Network 
Function

Network Function Host

Monitor/
Manage

Data Store

StatelessNF
Controller

RAMCloud
Coordinator

SDN Switch

Traffic to network functions

OF Rules

Figure 1: StatelessNF System Architecture with Central-
ized Data Store

State

Monitor/
Manage

Monitor/
Manage

StatelessNF
Controller

RAMCloud
Coordinator

Network 
Function

Network Function Host

State Network 
Function

Network Function Host

State

RAMCloud Operations

SDN Switch

Traffic to network functions

OF Rules

Figure 2: StatelessNF System Architecture with Dis-
tributed Data Store



Second, if we do not use replication for fault tolerance
and have a 1-1 , this effectively reproduces the architec-
tures which used migration of data from within the net-
work functions to other instances [1, 3, 5]. It does so,
however, with a general data store, moving the burden
from every network function implementation to a com-
mon data store (which, of course, would require the data
store to include the ability to control data placement).

However, such integration will not be that simple as
multiple questions will arise to identify what and where
to place data store nodes. Such questions are:

• Should there be a data store instance on every server
that hosts a network function?

• Can we efficiently replicate data in a common in-
frastructure?

• What is the performance benefit of such an ap-
proach and what is the penalty in terms of failure
resilience in such an approach?

• How do we place data to ensure optimize access
across multiple instances?

Our work will be focusing on exploring efforts to an-
swer such questions without compromising the consis-
tency of the state.

2 Initial Prototype and Future Work

We have built an initial prototype where we emulated the
entire StatelessNF system and data center infrastructure

by packaging them as software into a single box (server).
While this system may not show the overall performance
advantage of the proposed integrated data store nodes, it
does show its functionalities and performance for local
read and write operations.

As future work, we intend to fully implement and ex-
plore designs for further improving performance and an-
swering the above mentioned questions. This will be the
actual complete deployment of the StatelessNF with dis-
tributed data nodes infrastructure. It involves deploying
our software on multiple large servers that are connected
with 10Gbit switches.

References
[1] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,

J. Khalid, S. Das, and A. Akella. OpenNF: Enabling Innovation
in Network Function Control. In Proc. SIGCOMM, 2014.

[2] M. Kablan, A. Alsudais, F. Le, and E. Keller. Stateless Network
Functions: Breaking the Tight Coupling of State and Processing.
In Proc. NSDI, 2017.

[3] E. Keller, J. Rexford, and J. Van Der Merwe. Seamless BGP Mi-
gration with Router Grafting. In Proc. NSDI, 2010.

[4] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast Crash Recovery in RAMCloud. In Proc.,
2011.

[5] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/Merge: System Support for Elastic Execution in Virtual Mid-
dleboxes. In Proc. of USENIX NSDI, Lombard, IL, Apr. 2013.

2


	Introduction
	Initial Prototype and Future Work

