Trusted Click: Overcoming Security issues of NFV in the
Cloud

Michael Coughlin
University of Colorado Boulder

ABSTRACT

Network Function Virtualization has received a large amount
of research and recent efforts have been made to further
leverage the cloud to enhance NFV. However, since there
are privacy and security issues with using cloud comput-
ing, work has been done to allow for operating on encrypted
data, which introduces a large amount of overhead in both
computation and data, while only providing a limited set
of operations, since these encryption schemes are not fully
homomorphic.

We propose using trusted computing to circumvent these
limitations by having hardware enforce data privacy and
provide guaranteed computation. Prior work has shown that
Intel’s Software Guard Extensions can be used to protect
the state of network functions, but there are still questions
about the usability of SGX in arbitrary NFV applications
and the performance of SGX in these applications. We ex-
tend prior work to show how SGX can be used in network
deployments by extending the Click modular router to per-
form secure packet processing with SGX. We also present
a performance evaluation of SGX on real hardware to show
that processing inside of SGX has a negligible performance
impact, compared to performing the same processing outside
of SGX.

1. INTRODUCTION

Virtualization of network functions, or middleboxes, have
become an increasingly important avenue of research. This
field, known as Network Function Virtualization (NFV), al-
ready has a large body of work [17, 16, 8, 12, 13, 7], and
calls for running middleboxes in virtual machines to lever-
age the flexibility and programmability of virtualization. An
extension to this body of research is to move NFV applica-
tions into the cloud, as is recommended by Aplomb [18], to
also leverage the manageability, performance and cost ad-
vantages of cloud computing (shown in Figure 1).

The issue with using cloud computing is that there is a
risk of exposing private data, as the hosting infrastructure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SDN-NFV Sec’17, March 22-24 2017, Scottsdale, AZ, USA

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4908-6/17/03. .. $15.00

DOL: http://dx.doi.org/10.1145/3040992.3040994

Eric Keller
University of Colorado Boulder

Eric Wustrow
University of Colorado Boulder

Organization e
Traffic

Private Firewall
Config

Process
N -

Packets

Firewall

Organization
Network

Cloud Hosting Service Gateway

Figure 1: Example Cloud NFV Design— An organiza-
tion exports their middlebox (e.g., a Firewall) to be run in the
cloud. All of the organization’s traffic is tunneled to the cloud for
processing before reaching the internet.

is not under the control of the user of the cloud resources.
Research has already shown various side channels and other
techniques that can be used to steal private data from cloud
environments [15, 4, 21]. What is needed to address this is
some way to isolate data from the physical platform so that
side channels or a malicious or compromised cloud provider
cannot access it.

A solution to this problem would be to use fully homomor-
phic encryption to allow for the cloud to process this data
without it ever being decrypted in the cloud. However, it
is generally accepted that fully homomorphic is impractical
due to its high overhead. Alternatives to full homomor-
phism have been proposed by prior work, which use new
encryption schemes to operate over encrypted data. For ex-
ample, BlindBox [19] proposes a new encryption scheme for
HTTPS to allow for an Intrusion Detection System to oper-
ate over encrypted data and Embark [11] extends this fur-
ther to augment virtualized network functions in general to
use encryption to protect data that is processed in the cloud.
However, these systems still have a large overhead and only
support a limited number of operations. For example, the
system proposed by Embark can only support one opera-
tion per encryption mode, but has a 4.3x data overhead for
workloads that require all data to be encrypted [11].

Another alternative is to use trusted computing enforced
by hardware security, such as Intel’s Software Guard Exten-
sions, as is recommended by [20]. SGX provides isolation by
allowing a process to allocate an encrypted memory region
that is only accessible to that process, with access enforced
by the processor. This means that any data in this protected

region cannot be accessed by any other software in the sys-
tem, including other customers of the cloud service, or the
service provider itself. SGX also provides a remote attes-
tation capability, which allows for the owner of the cloud
resource to verify that software is using SGX and that the
correct code is protected before transmitting the secret data
to this software.

Using SGX with NFV presents several challenges. The
first of these is usability; SGX needs to be integrated into
existing NF'V development systems such that private NF'V
data can be secured with SGX. The second of these is per-
formance; as SGX operates in a separate encrypted mem-
ory region, passing data to SGX and operating on this data
may impose a performance penalty that needs to measured
so that NFV applications can be designed to account for
it. We make several contributions in this paper to address
these challenges. The first of these is to describe how to
modify several NFV application models to use SGX, and
present an integration of SGX into Click so that arbitrary
NFV applications can be supported. The second of these is
a performance evaluation of SGX that compares packet pro-
cessing inside and outside of SGX, to show that SGX does
not impose a significant performance penalty.

The rest of this paper is organized as follows: we further
motivate our architecture by examining the risks to NFV
of cloud computing, and attempts by prior research in Sec-
tion 2, present background information on SGX in Section 3,
present our proposed architecture in Section 4, present sev-
eral use cases of our architecture in Section 5, present our
experimental results in Section 6, and conclude in Section 7.

2. MOTIVATION

Running virtualized network functions in a remote cloud
infrastructure have been proposed by prior research, such as
the system proposed by Aplomb [18]. In this system, organi-
zations export all of their middlebox processing to a network
of virtualized network functions run in cloud hosting service
(e.g., Amazon EC2), and tunnel traffic between the cloud
and their network using a gateway. This system has many
benefits for management and reliability, but brings increased
risk of exposure of sensitive data. This is because using an
external cloud increases exposure risk, as the infrastructure
is maintained by a cloud service provider, and possibly a
separate network function service provider, that can inspect
or expose data. There is also a risk of data being accessed
from co-located tenants (other clients of the cloud hosting
service) or from security vulnerabilities in the hosting plat-
form, as neither of these risks are in the control of the owner
of the virtualized network function.

2.1 Example Private Data at Risk

These risks pose a threat to organizations that outsource
their network functions, as these functions contain sensitive
data about these organization’s networks and business inter-
ests. For example, these common network functions include
sensitive data about organizations:

e Firewalls: These devices protect an organization’s
network from external access. Sensitive information
includes allowed and blocked traffic and possible infor-
mation about the network topology.

e Intrusion Detection Systems: IDS detection rules
are sensitive, as they reveal how traffic is being moni-

tored, including what patterns are being searched for.
Such information can be useful to malicious parties
attempting to gain access to the network.

e Routers: Routing information is very sensitive, as it
reveals details of the business relationship of organi-
zations with their service providers. If revealed, this
could lead competitors to exploit this information or
to increases the operating costs of the organizations if
there are exploitable agreements.

e VPN Gateways: VPNs need to have the neccessary
cryptographic keys in order to create encrypted tun-
nels into the orgainization’s network. Therefore, ex-
posing these keys could allow for decryption of VPN
traffic or even worse attacks on VPNs.

2.2 Prior Research

Prior research has already acknowledged the risks of us-
ing NFV in cloud environments. For example the authors of
Aplomb noted the security risks to organizations that opt to
perform their middlebox processing in the cloud [18]. The
authors also note that these risks have not slowed the use
of cloud computing, and using NFV in the cloud will only
appear as a risk to organizations that do not trust cloud
computing in general. However, there has a large body
of research into information leakage via side channels and
vulnerabilities in the cloud, as the economy of scale used
in cloud computing generally necessitates the sharing of re-
sources between different customers (tenants) [15, 4, 21]. As
mentioned above, malicious tenants can make use of these
side channels to access private data from other tenants, such
as sensitive data about an organization’s network or traffic.
In addition, there are still the risks of interacting with a
malicious cloud provider.

As a response to these privacy risks, work has been done
to augment cloud applications [14] and middleboxes [19, 11]
to operate on encrypted data to reduce the amount of sen-
sitive data that the hosting cloud service has access to. By
operating on encrypted data, a virtualized middlebox run
in a cloud service would not have access to the plaintext
data that it is processing, meaning that any malicious ten-
ant or service provider would not be able to steal any of this
data. Both BlindBox [19] and Embark [11] propose encryp-
tion schemes to increase the privacy of middleboxes that
operate on untrusted infrastructure (such as a cloud ser-
vice). The main drawback to operating over encrypted data
is that there is still a large overhead (though less than fully
homomorphic encryption), and only a limited set of opera-
tions can be performed on the data (because the encryption
is not fully homomorphic).

2.3 Trusted Computing for the Cloud

To protect data in a cloud environment, there must be
some capability to operate on data without exposing it to an
untrusted cloud, including the operating system and physi-
cal infrastructure (i.e., software isolation), and an ability to
send this data without it being exposed (i.e., trusted com-
munication). Homomorphic encryption and operating on
encrypted data provide these capabilities, but do so with
high overhead and limited functionality (in the case of op-
erating on encrypted data). An alternative would be to use
trusted computing to provide these capabilities. For exam-
ple, Trusted Platform Modules (TPMs) provide limited soft-
ware isolation using remote attestation to prove that the

SGX-Enabled System Remote Verifier Intel

Provision root-of-trust at manufacture

Request attestation key

Receive attestation key

Request a remote attestation and send a DH key

Generate and sign a measurement and DH key

Send signature to be verified
_—

Return verification results
ot Va0l T

If verification successful, send DH shared secret

Use encrypted channel to send data

Figure 2: Intel Remote Attestation

software and operating system are in a secure state (the
limitation is that TPMs cannot protect against access from
hardware or side channels), and provide secure communica-
tion by allowing for secure storage of keys that can be used
to establish encrypted communication channels [9, 10]. In-
tel’s recent Software Guard Extensions (SGX) provide simi-
lar functionality to TPMs, but with increased protections, as
the software isolation mechanism provided by SGX protects
against untrusted hardware, as well as untrusted software,
and the remote attestation system can be used to establish
secure communication.

SGX is further explained in Section 3, but in summary
SGX allows for the creation of an encrypted memory region
(an enclave) to be created to execute trusted code, and for
remote attestation of the code in this enclave to be per-
formed. SGX allows for a virtualized middlebox to be de-
signed that processes all sensitive data inside of an enclave,
and to prove to the owner of the middlebox that the en-
clave was created correctly before transmitting data to into
it, as is done by [20]. This data can be encrypted to the en-
clave so that only the owner and the enclave has access to it.
Such a system would avoid the disadvantages of operating
on encrypted data while still achieving the privacy proper-
ties of concealing the sensitive data from the cloud service
and other tenants. The challenges to using SGX are design-
ing applications such that all sensitive data is protected by
SGX and integrating SGX into applications without com-
promising performance. We overcome the first challenge in
Section 4 by presenting how to design applications to use
SGX, including an integration with Click, and overcome the
second challenge in Section 6 by showing that SGX does not
impact performance in NFV applications.

3. SGX BACKGROUND

Intel’s Software Guard Extensions (SGX) provide soft-
ware isolation and remote software attestation capabilities
as CPU instructions, with the root-of-trust for this attes-
tation built into the CPU. The software isolation capabili-
ties allow for software to have private data in memory that
cannot be accessed by another process, even in the face of
a root-level exploit, as access is enforced by the processor.

The remote attestation feature allows for a remote verifier
to confirm that software is executing in one of these pro-
tected memory regions. When combined together, a remote
party can verify that certain software is running in protected
memory before transmitting private data to it, and can then
be sure that once received, the private data cannot be ac-
cessed by the rest of the remote system (even the operating
system).

3.1 SGX Software Isolation

SGX provides new instructions that allow for a process to
request an “enclave”, which is a small region of memory that
is only accessible to that process. The processor enforces
access to this memory by encrypting all memory contents
before they leave the CPU and only allowing the calling
process to call code in this memory region.

By creating this enclave, a process can protect a certain
amount of code and data from being accessed by other pro-
cesses. Since this access is enforced by the processor, even a
root-level exploit of a malicious operating system cannot ac-
cess the protected region to access data or interfere with the
code execution. This comes with several caveats however.
First, applications need to request the operating system to
allocate an enclave, which allows for a malicious operating
system to perform denial-of-service on access to enclaves.
Second, the code that runs inside of the enclave cannot be
encrypted, so any private data needs to be sent to the en-
clave from outside of the system for it to be secure. For-
tunately, the SGX remote attestation systems allows for a
remote verifier to determine if an enclave was created and
to simultaneously establish a shared secret. Finally, since
SGX also requires operating system participation, applica-
tions also must rely on the Intel SGX SDK, platform soft-
ware and driver to create enclaves and to implement the
remote attestation system (as described below, the remote
attestation flow relies on a special system enclave provided
by Intel). The SGX SDK has a number of limitations as
well, including the limitation that only static libraries can
be linked into code that runs inside of the enclave and that
the maximum memory usage of the enclave must be deter-
mined when the enclave is compiled.

3.2 SGX Remote Attestation

Remote attestation allows for a remote verifier to deter-
mine if an enclave was established on a particular SGX-
enabled system and to know what code is running in this
enclave. This is achieved using a challenge-response proto-
col to produce a measurement of the enclave that is signed
by the processor, which can be verified by interacting di-
rectly with Intel. This relies on a trust chain rooted in the
processor (and processor microcode, which must be signed
by Intel in order to be updated [5]). A diagram of the remote
attestation flow is shown in Figure 2.

In this protocol, Intel first needs to provision processors
with the needed root-of-trust. Intel provisions several root
keys at manufacture to bootstrap the root-of-trust, and these
keys are later registered with the Intel services by users to re-
trieve the needed keys to perform attestations. Using these
new attestation keys, trusted SGX enclaves provided by In-
tel can generate and sign measurements, and these signed
measurements can be transmitted to a remote party when
a remote attestation is requested. This remote party then
verifies the measurement and has Intel verify the signature.

If both checks pass then the remote party can trust the en-
clave. During this process, the remote verifier and the en-
clave can exchange Diffie-Hellman keys to establish a shared
secret ans use it to create a secure communication channel.

It should be noted that both the software isolation system
and the remote attestation system only provide protections
against the cloud service provider (e.g., Amazon EC2 and
any co-located tenants), but not against Intel, as Intel must
participate in the remote attestation process. Therefore, the
trust model of SGX always trusts Intel, but does not trust
the operator of the physical SGC infrastructure (i.e., the
cloud service provider).

4. TRUSTED CLICK ARCHITECTURE

To demonstrate that SGX is practical with NFV appli-
cations, we extended the Click modular router [13] to per-
form packet processing in an SGX enclave (i.e., a “trusted”
Click processing module). Click, in summary, is a tool to
allow for composing common network processing primitive
elements to create larger functions, such as the creation of
a IPv4 router from network interfaces, queuing elements,
IPv4 classifiers and other elements. In principle, any Click
element that receives a packet can export processing to SGX
using a single function call, meaning that the modification
or creation of Click elements is relatively simple. However,
to support this, a custom external library needs to be cre-
ated that implements the SGX code and Click must link to
this library. Inside of this library, code must exist to load
the enclave and to pass data to an enclave (in our imple-
mentation, the pointer to packet data and the packet length
is passed to the enclave). Finally, the enclave must accept
this data and perform the processing. We present a per-
formance comparison of using Click with SGX in Section 6.
When designing cloud middleboxes, we assume the use of
the Aplomb model, that includes a gateway to tunnel traffic
to the cloud middleboxes.

When using Click, packet data is passed through a graph
of Click elements (collectively, this graph implements a mid-
dlebox), starting from the packet source (e.g., a packet gen-
erator or network interface). However, since we are using
SGX to protect the packet data, all the packets will be
encrypted, meaning that each Click module protected by
SGX will need to decrypt the packets for processing and re-
encrypt before passing to the next element. To do so, the
Aplomb gateway will first need to transmit a decryption key
to the SGX-protected elements, which needs to be done over
a secure channel.

To establish a secure channel, the gateway will perform a
remote attestation of the Click element, using the protocol
shown in Figure 2, with the gateway taking the role of the
remote verifier and the Click element taking the role of the
SGX-enabled system (communication will be performed us-
ing an insecure channel, such as the transport provided by
Click to run packets through the Click graph).

The first steps for the gateway are to generate a Diffie-
Hellman (DH) key pair and transmit this key with a request
for a remote verification to the middlebox. The untrusted
portion of the midlebox will receive this and call an enclave
ecall function (an ecall is SGX SDK terminology for a func-
tion that is executed inside of an enclave that can be called
from outside of the enclave). This function will generate
a DH key pair for the enclave and request a measurement
from the trusted Intel Quoting enclave, and then transmit

Cloud Hosting Environment

i i
: :

' -
' NFV Enclave Shared Secret Quoting H
H Enclave i
' Middlebox| | Packet i
: Configuration State Data :
: :
. 1
i i
! Untrusted code Socket !
1
: :
: 1
i 1
e o o o o - .

Secure SGX Insecure
Channel Network Channel

Shared Secret Packet
Data

Aplomb Gateway

Figure 3: NFV Swith SGX Data Ownership— An NFV
application augmented with SGX running in a cloud environment.
Green segments are untrusted portions, including code not in the
enclave and the hosting environment itself. Red segments are
private data to the owner of the system, and the black segments
are the actual applications deployed by the owner. Finally, the
blue segments represent the SGX protection boundary. Note that
communication of untrusted data occurs over an untrusted net-
work channel. Using the shared secret, the gateway communicates
private data with the enclave over an overlayed secure channel.

the signed quote and DH key back to the gateway using an
call to an untrusted ocall (an ocall is SGX SDK terminology
for a function that executed outside of an enclave, but is
called from inside of an enclave), which will send the data
back over an untrusted socket.

The gateway will receive the enclave’s key and the signed
measurement and will first verify the measurement against
a pre-computed value (this value will be generated by the
SGX SDK tools when an enclave is first compiled). Then,
to verify the signature, the gateway will transmit the signa-
ture to Intel for verification. If the measurement matches
the expected value, then the enclave in the cloud is running
the expected code, and if Intel verifies the signature suc-
cessfully, then the measurement was generated by a trusted
SGX system, and so can be trusted as well. At this point,
the enclave and the gateway can compute the shared DH
key and overlay an encrypted channel over the untrusted
channel by encrypting traffic (such as packet data or config-
uration) with this key (the untrusted code can only refuse
to provide transport for this entire process, not compromise
the security of the communication). Using this secure chan-
nel, the gateway can send a decryption key to the enclave
in the Click module, which can use this key to decrypt the
encrypted packet data that needs to be processed.

S. CLOUD NFV USE CASES

Using SGX in applications have been well studied [2, 20,
1], and at a high-level, using SGX entails partitioning ap-
plications into secure and non-secure portions, as is done
by S-NFV [20] and as we describe in context of Click in
Section 4. The secure portion of the application is run in-
side of an SGX enclave and is safe to store and operate on
private data, whereas the non-secure portion has no protec-
tions from SGX. In this section, we go beyond describing
how to design programs to use SGX to describing how NFV
applications that use SGX should be incorporated into net-
works. To do this, we examine three potential use cases that

can benefit from using SGX: operating NFV applications in
a cloud environment, operating on edge devices (e.g., mo-
bile phones or customer premises equipment) and operating
external services in internal networks.

5.1 NFYV in the Cloud

For organizations that deploy NFV applications in the
cloud, we assume the model proposed by Aplomb [18]. In
this architecture, an Aplomb gateway tunnels traffic to an
organization’s network of NFV applications in the cloud,
and some (or all) of these applications use SGX to protect
and store private organization data, as in [20]. However, this
data is extended beyond middlebox state to include packet
data and middlebox configuration, as private information
about the organization can exist in this data. To secure this
data, the Aplomb gateway would be extended to transmit
it to the SGX enclaves in the NFV cloud network using an
encrypted channel, which is established using a remote at-
testation (the gateway is the remote verifier, and the middle-
box is the SGX-enabled system). Once data is transmitted
through this channel, it can be processed securely by the
SGX enclaves, and is never available in a decrypted form
outside of an enclave (the Aplomb gateway can also provide
the needed configurations for enclaves to establish secure
channels between themselves). An illustration of where se-
cure and insecure components in this design are located is
available in Figure 3.

5.2 NFYV in Edge Computing

NFV in edge computing can also benefit from SGX, as it
allows for services to verify that some computation is oc-
curring, especially given the recent trend towards edge com-
puting. By being able to perform trusted computing, useful
network services such as NAT and QoS [6], or even trusted
caching of content for various streaming services can be pro-
vided without the application provider exposing sensitive
data about the application. SGX has also been leveraged
to achieve this [3], and can be incorporated into a larger
NFV network by establishing encrypted channels between
the SGX enclaves in the edge applications with the organi-
zation’s internal or cloud hosted NFV network. The channel
establishment is performed using the same steps as the in
the cloud case, but the application takes on the role of the
remote verifier and the edge device is the SGX-enabled sys-
tem. The application needs to verify that the correct code
is running on end devices before transmitting application
configuration data to these devices, with is done using this
remote attestation process.

5.3 NFYV in Deployed Services

Finally, the usage model of SGX can be reversed to allow
for external network function services to be provided by a
service provider and hosted inside of an organization’s net-
work (i.e., on premise). In this case, the organization would
provide an SGX platform to allow for the external service to
execute their software on. However, a remote attestation can
be performed by both the external service and the hosting
organization to prove that some computation is occurring.
This allows for the external service provider to be sure that
their product is deployed correctly and for the hosting or-
ganization to sure that billing is occurring correctly. This is
because the software being attested can be proven to both
parties, so any billing for provided service can be proved,

30

28.18 [0 Libraries

I No Libraries
25

Bandwidth (GBit/s)
. ~N
o S

-
)

No-SGX Simulation HW-Debug
Experiment

HW-Prerelease

Figure 4: Pattern Match Experiment

as the service is attested to both parties. In this case, the
SGX-enabled system is provided by the organization, and
both the organization and the third party take on the role
of the verifier. However, in the organization’s case, the se-
cure channel will not be used to send any data, as the enclave
will only accept data received from the third party.

6. EXPERIMENTAL RESULTS

We performed a simple experiment to determine the over-
head of using SGX in a virtualized network function. As
described in Section 4, we extended Click to perform packet
processing in an SGX enclave. Specifically, we created cus-
tom Click elements that implemented a simple pattern search
of packets to test the memory access and CPU performance
of the enclave. These elements processed packets generated
using Click’s built-in packet generator (the InfiniteSource
element), and were benchmarked against each other in var-
ious SGX compilation configurations, as well as against a
baseline experiment where no processing occurred. Multiple
experiments are needed, as an SGX enclave can be compiled
in multiple release modes, as well as using a simulation (the
SGX SDK currently only allows for enclave to be compiled
in debug or prelease modes currently).

We ran two versions of this experiment using an imple-
mentation that uses provided libraries, and one that uses
un-optimized code without libraries, as different libraries
need to be used inside versus outside of the enclave, as de-
scribed in Section 3. This is reflected in Figure 4, with the
performance of the library code marked in orange, and the
non-optimized code marked in green. The non-SGX im-
plementation achieves a higher performance in the case of
the orange bars due to the limitations of the SGX SDK, as
code in the enclave must use libraries provided by the SDK,
which are not optimized due to its immaturity. The green
bars show that when executing the same non-optimized code
without library dependencies, SGX itself does not impose a
performance penalty, and we expect that the performance
of the SGX SDK will improve as SGX matures.

We used the Intel NUC6i7KYK system, which contains an
2.5 GHz i7-6770HQ Skylake processor (which includes SGX
instructions) and 16 GB of RAM.

Our experiment’s implementation searches each packet
passed through the element for a simple byte pattern. In
this experiment, we generated 40 KB packets using the Click
InfiniteSource element and passed these through the process-

ing element, in four different configurations- processing with-
out SGX, SGX in simulation mode, SGX in hardware debug
mode and SGX in hardware prerelease mode. These re-
sults are summarized in Figure 4, with the average through-
put achieved outside of SGX being 14.77 GBit/s without
libraries and 28.18 Gbit/s with libraries, and the best per-
formance in SGX hardware being 14.57 GBit/s in SGX pre-
release mode with libraries and 12.51 Gbit/s with libraries.
From this data, SGX appears to only impose a negligible
overhead for throughput when run without libraries, but
only 45% efficient with libraries. This appears to be caused
by optimizations that exist in the system libraries that are
not present in the SGX-provided libraries (such as compiler
or assembly optimizations).

7. CONCLUSION AND FUTURE WORK

In this paper, we present a potential architecture for using
SGX to increase privacy of NF'V applications. Compared to
solutions that operate over encrypted data, SGX provides
the same privacy guarantees without the data overhead and
limited operations. Also, we present a benchmark of SGX
being used in example middlebox processing to show that
the computational overhead of using SGX versus traditional
execution is negligible in a realistic middlebox development
scenario. So long as the middlebox developer is aware that
data is only secure when it is stored inside of an SGX enclave
and makes use of remote attestation to establish a secure
channel between the enclave and the rest of the network (i.e.,
the Aplomb gateway), any private data that the middlebox
needs to access will be protected. This means that SGX is
a valid alternative to other systems for protecting private
data in NFV applications. For future work, we intend to
implement the extensions to the Aplomb gateway to interact
with SGX-protected Click elements, investigate other NFV
applications that could benefit from SGX, and experiment
with high-speed 1/O in Click, such as using DPDK.

Acknowledgments: This work was supported in part
by NSF SaTC grant number 1406192.

8[.1 | SREFERENCES

. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. OaAZKeeffe,
M. L. Stillwell, et al. Scone: Secure linux containers with
intel sgx. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
Savannah, GA, 2016.

[2] A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with haven. ACM
Trans. Comput. Syst., 33(3):8:1-8:26, Aug. 2015.

[3] K. Bhardwaj, M.-W. Shih, P. Agarwal, A. Gavrilovska,

T. Kim, and K. Schwan. Fast, scalable and secure onloading

of edge functions using airbox. In Edge Computing (SEC),

IEEE/ACM Symposium on, pages 14-27. IEEE, 2016.

S. Bugiel, S. Niirnberger, T. Péppelmann, A.-R. Sadeghi,

and T. Schneider. Amazonia: When elasticity snaps back.

In Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS ’11, pages 389400,

New York, NY, USA, 2011. ACM.

[5] V. Costan and S. Devadas. Intel sgx explained. Technical
report, Cryptology ePrint Archive, Report 2016/086, 2016.
https://eprint. iacr. org/2016/086.

[6] C. Dixon, A. Krishnamurthy, and T. E. Anderson. An end
to the middle. In HotOS, volume 9, pages 2—2, 2009.

[7] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags. In Proceedings

[4

(8]

[9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

[17]

(18]

19]

20]

(21]

of the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, pages 533-546,
Berkeley, CA, USA, 2014. USENIX Association.

A. Gember-Jacobson, R. Viswanathan, C. Prakash,

R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:
Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, pages 163-174, New York, NY, USA, 2014.
ACM.

T. C. Group. Trusted Platform Module Main Specification
(TPM1.0). http://www.trustedcomputinggroup.org/
resources/tpm_main_specification, March 2011.

T. C. Group. Trusted Platform Module Library
Specification (TPM2.0).
http://www.trustedcomputinggroup.org/resources/tpm_
library_specification, March 2013.

C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu.
Embark: securely outsourcing middleboxes to the cloud. In
18th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 255-273, 2016.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. Clickos and the art of network
function virtualization. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’14, pages 459-473, Berkeley, CA,
USA, 2014. USENIX Association.

R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek.
The click modular router. ACM Transactions on Computer
Systems, 18:263-297, 2000.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and

H. Balakrishnan. Cryptdb: Protecting confidentiality with
encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 85100, New York, NY, USA,
2011. ACM.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: Exploring information leakage in
third-party compute clouds. In Proceedings of the 16th
ACM Conference on Computer and Communications
Security, CCS ’09, pages 199-212, New York, NY, USA,
2009. ACM.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and implementation of a consolidated middlebox
architecture. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation,
NSDI'12, pages 24-24, Berkeley, CA, USA, 2012. USENIX
Association.

V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi.
The middlebox manifesto: Enabling innovation in
middlebox deployment. In Proceedings of the 10th ACM
Workshop on Hot Topics in Networks, HotNets-X, pages
21:1-21:6, New York, NY, USA, 2011. ACM.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar. Making middleboxes someone
else’s problem: network processing as a cloud service. ACM
SIGCOMM Computer Communication Review,
42(4):13-24, 2012.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In
ACM SIGCOMM Computer Communication Review,
volume 45, pages 213-226. ACM, 2015.

M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-nfv:
Securing nfv states by using sgx. In Proceedings of the 2016
ACM International Workshop on Security in Software
Defined Networks € Network Function Virtualization,
pages 45-48. ACM, 2016.

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter.
Homealone: Co-residency detection in the cloud via
side-channel analysis. In Proceedings of the 2011 IEEE
Symposium on Security and Privacy, SP '11, pages
313-328, Washington, DC, USA, 2011. IEEE Computer
Society.

