
Hey Network, Can You Understand Me?
Azzam Alsudais and Eric Keller

University of Colorado Boulder
Boulder, Colorado 80309

Email: {Azzam.Alsudais, Eric.Keller}@Colorado.edu

Abstract—In this paper, we introduce Natural Language Pro-
cessing to network management by leveraging the capabilities of
Natural Language Processing tools, such as speech recognition
and text parsing, to extract useful information to build network
tasks. We propose an intermediate network-agnostic layer that
acts as the medium between natural language input (spoken
or written) and different network implementations. We have
leveraged the programmability that Software Defined Networks
(SDN) offers to build a prototype tool that takes natural language
text as an input and uses it to build abstract tasks. Such tasks
are then passed to a network controller to be performed in real
time. To our knowledge, this is the first work that provides such
interface between network users (in the form of natural language)
and different network systems.

I. INTRODUCTION

Computer networks, and consequently network manage-
ment, can be as large and complex as data center networks, or
as small and simple as home networks. Despite their size and
complexity, networks need to be properly managed to ensure
that they operate and run as expected. Therefore, network
management concerns not only network administrators and en-
gineers, but also concerns application developers, employees,
and end users at their homes, when needing to configure or de-
bug their networks (e.g., port forwarding, testing connectivity,
showing logged-in devices).

Network operators spend billions of dollars every year to
manage and troubleshoot their network systems [1]. This
includes the management and troubleshooting of network
devices and end hosts. Although with the advances of network
systems such as Software Defined Networks (SDN), network
management is still a difficult task that greatly consumes the
time of network engineers and users and introduces the added
complexity of needing to write software for some tasks [1].

There is a large body of work on facilitating and making
network management and troubleshooting more effective and
feasible [2], [3], [4]. However, there is a missing link in the
interaction between networks and network users1. That is, in
order for one to manage a network, they need to learn a
specific network configuration language. Whether that is in the
form of configuring a specific SDN controller or configuring
a modem webpage for an Internet user. We argue that net-
work management should not be difficult, rather it should be
“user-friendly”, especially with the growing adoption of pro-
grammable networks and Software Defined Networks (SDN)

1In this paper, we refer to one who interacts with the network, in any
possible way, as a network user.

[5], [6] since it provides programmability that can be leveraged
to run network-wide applications.

What if instead of configuring a network, we could just talk
to it, tell it what we want, and it understood? In this paper,
we bridge the gap between network management and network
users by proposing a new layer of abstraction that resides
atop existing network management solutions. In particular,
we propose a new abstraction for common network tasks so
that a natural language input (e.g., written or spoken) can be
mapped onto a network task, and eventually passed down to
the network itself to be performed. And by leveraging the
capabilities that Natural Language Processing (NLP) offers,
we implement a tool that accepts natural text and turns it
into a network task. What we propose is different than other
general NLP applications (e.g., a web search engine or a
smartphone personal assistant). That is, we propose a general
abstraction that can be used by different implementations of
network systems; on the other hand, other NLP applications
are specific to one system. In particular, we make the following
contributions:

• We propose a novel network-agnostic abstraction for
common network management tasks in which they can
be encapsulated.

• We build a tool that parses natural language text and con-
struct abstract network tasks, which then are performed
in real time. To our knowledge, this is the first work that
enables using natural language to manage networks.

As an initial step, we make the following assumptions:
1) A high-level information about the network is assumed

available and provided to our tool (e.g., mapping be-
tween logical and network-level names). This allows
users to speak in a high-level tone (not being required
to specify IP addresses, but instead say something like
“host-1”). Of course, the user is also allowed to refer to
network-level names like IP addresses.

2) An underlying set of network tasks is assumed to be
already implemented (for a specific network implemen-
tation). Our tool only provides the abstraction layer
between the natural language and the specific network
implementation (e.g. Floodlight and Ryu).

The rest of the paper is organized as follows. Section II
introduces NLP and what it can offer to help make network
management easier. Section III describes common network
management tasks and proposes a new task abstraction. In
section IV we describe our implementation of a test tool that



translates natural text to the abstract task, and how the abstract
task is then conveyed to the network. Sections V and VI
discuss future work and conclusion, respectively.

II. WHAT NLP CAN OFFER TO NETWORK MANAGEMENT

In this section we describe what Natural Language Process-
ing can offer to network management, and how we leverage
NLP to enable a more convenient way to manage network
systems.

A. NLP Overview

NLP provides the ability for humans to interact with
machines without having to go through learning a specific
machine language. It bridges the gap between humans and
machines by processing natural human language and derive
useful information from it. Eventually, the derived information
helps a machine understand natural language, in the form of
words and sentences, and then decides the appropriate course
of action to take. As a result, NLP has made it possible to turn
smart phones into intelligent personal assistants (IPAs) [7], to
query a database using natural human text [8], and to manage
and control one’s smart home by speech or text messages [9].

The NLP Pipeline: NLP applications follow a common
processing pipeline [10]. It can be summarized into five
main stages in the following order: phonology (speech anal-
ysis), morphology (lexical analysis), syntax (parsing), seman-
tics (context awareness), and application reasoning (domain-
specific). By leveraging this pipeline, useful information can
be extracted from any form of language (written or spoken).
It is worth mentioning that following all stages of the pipeline
is not required for every single application. Rather, some
applications need information that can be extracted from the
first stage of the pipeline (e.g., dictation software). Tools
for the first four stages of the pipeline are widely available
[11] since these stages focus on the natural language aspect,
which is shared among different applications. However, the
application reasoning stage, as mentioned, is domain-specific.
For instance, if one wishes to design an NLP application for
controlling their computer, they need to write the application
specifically for that computer system. Likewise, our work in
this paper is about designing a domain-specific application for
network systems, with the abstraction of network tasks being
the domain that we focus on.

B. NLP for Network Management

We envision a system that enables its users to interact with
their networks by either spoken or written forms of natural
language. For instance, a user can say something like “Can A
talk to B?”, and the system would extract information such as:
source and destination IP addresses, and protocol (e.g., icmp,
tcp, or, udp) and encapsulates this information in an abstract
task (described in more details in section III) and sends it to the
network controller. The controller then maps the information
in the abstract task onto the appropriate function calls (e.g.,
queries its ACL or Firewall tables), and returns the answer,
which is then conveyed to the user.

Natural Language

Abstract Network 
Layer

Specific Network 
System

Coarse  
grained 
Tasks

Fig. 1. The high-level processing pipeline

We argue that introducing the capabilities of NLP can
greatly benefit network management in two ways, convenience
and speed. First, network users can “speak their minds” in
terms of what they want from the network. This makes the
process of performing a network task (e.g., debugging a
faulty link, querying network devices statistics, allowing or
blocking two hosts to communicate) much more convenient,
as compared to writing different set of commands in a specific
language or format. Second, when users interact with their own
networks using natural language in real time, we argue that
it takes less time to perform a task, as compared to the time
it takes to write in a specific format. This is different than
having pre-programmed automated tasks. We propose a fully
dynamic system that allows its users to perform tasks that
have not necessarily been encountered by the system before,
by leveraging NLP capabilities.

III. NETWORK TASK ABSTRACTION

In this section, we describe what the common network
management tasks are, and propose a new abstraction for such
tasks. We believe that what we propose is not a replacement
for existing network management systems, but rather is an
abstraction layer that resides on top of existing systems and
serves as a translation layer between natural language and such
systems. As seen in Figure-1, there will be a collection of
coarse grained network tasks and our tool will take in natural
language and configure and use one or more of these tasks.

A. Task Abstraction

First, we need to determine what these tasks are that can be
composed together to perform some network management.

1) Common Network Tasks: Common network tasks can be
collected from different sources. We gathered tens of network
tasks from different SDN controller APIs (e.g., Floodlight [12]
and Ryu [13]), network configuration manuals [14], different
papers on network debugging and management [2], [3], [4],
and from textbooks [15] to help us form an intuition of what
types of tasks concern network operators. In Table-I we show a
sample of common network tasks and what type of information
can be extracted from them. The other details of the table are
explained in the following subsection III-A2. Collecting and



# Task Abstract 
information Keyword REST API 

Type

1 is h1 connected? - end point 
- keyword connected GET

2 is h3 reachable from h2?
- end points 
- keyword reach GET

3 avoid switch-1
- end point 
- keyword avoid POST / DELETE

4 allow h4 to talk to h5 - endpoints 
- keyword reach POST / DELETE

5 rate limit h6 to 100 Mbps
- end point 
- keyword 
- extra information

rate POST / DELETE

6 route flow x through firewall
- end point 
- keyword 
- extra information

route POST / DELETE

7 assigne vlan #1 to 10.0.0.20
- end points 
- keyword assign-to-vlan POST / DELETE

TABLE I
EXAMPLES OF COMMON NETWORK TASKS

analyzing these tasks has helped us design an abstraction layer
between natural language and different network systems.

Figure-1 shows the high-level design of what we propose.
Relying on assumption-2 in section I, our work is focused on
the shaded layers of Figure-1, and we assume that the actual
implementation of the network task is already implemented.
However, as we show in section IV, we provide a proof-of-
concept implementation using Floodlight [12] to demonstrate
that our tool can be used by network developers to develop
interfaces that connect to it. This modular design helps writing
the NLP parts and the abstraction layer only once. Then
different systems can connect to and call our tool to leverage
its capabilities to convert natural language to abstract tasks.

2) Abstract Task Structure: It became clear after looking
at those common network tasks that they share a common
pattern. In particular, we make the following observations:

• Most network tasks can be encapsulated in an abstract
form that contains: one or more endpoints, a keyword,
extra information, and a task type. To put things in
perspective, here is how an abstract task structure looks
like, which is the building block of the second layer of
Figure-1:

s t r u c t t a s k
{

e n d p o i n t s [ ] ;
keyword ;
e x t r a I n f o ;
t y p e ;

}

• The endpoints mentioned above can encapsulate other
information as well, e.g. when adding a user to a group,
the user can be one endpoint and the group can be the
other endpoint, and also when assigning vlans to IP
addresses (the IP address being one endpoint and the

vlan-id being the other endpoint)

Building Abstract Tasks: Following the abstract structure
described above, now we can build tasks by extracting infor-
mation out of the natural language input (written or spoken).
The endpoints are used to carry information about where the
task should take place. For instance, the endpoint for task-1 in
Table-I is h1, and the endpoints for task-7 are the vlan-id and
the IP address 10.0.0.20. The keyword is used to distinguish
different tasks and to group similar tasks together, and is
also used to help provide better classification when processing
a sentence provided by the user. For instance, if the user
says “allow h1 to talk to h2”, then the keyword is talk. In
section IV we describe in details how we group similar tasks
together in order to provide the ability of processing as many
sentences as possible. The extra information field contains
further information about a task to help map fine-grained tasks
like the rate limiting parameter of task-5 in Table-I. In this
task, the rate (100 Mbps) is stored in the extra information
field to help provide this information to the underlying network
system. The type field refers to the task type, whether there
is an action required or it is simply a query. We borrow the
concept of Representational State Transfer (REST) [16] from
web services implementation to further help us determine what
the type of the task is. That is, the POST and DELETE types
are used to distinguish tasks that are adding or deleting some
type of network configuration, respectively. For instance, in
task-5 if the REST API type is POST, then h6 should be rate
limited to 100 Mbps. On the other hand, if the REST API is
DELETE, then h6 would not be rate limited, and so on.

B. Example Use Cases

Different Talkers to the Network: To provide a better
understanding of how our tool can be used, we list some
examples and use cases of who can talk to the network 2.
These examples are by no means inclusive. We only list them
to give a better sense of how the tool can be used. In general,
any user with a device that is connected to the network should
be able to talk to the network in one way or another. However,
determining the permissions for each group of users, in terms
of what they can and cannot do, is out of the scope of this
paper.

Network administrators who want to perform a scheduled
maintenance for a specific switch can say something like
“avoid switch x”. Then our tool shall translate this sentence to
the abstract task form by determining what the task keyword is
and then extracting the expected information from the sentence
(e.g., endpoints). After the abstract task is build, our tool
can then call the network-specific API that eventually helps
rerouting traffic around switch x (relying on assumption-2 in
section I, we assume this part is implemented by network
developers).

2Even though throughout the paper we focus on concepts related to SDN,
the abstraction we are proposing can be used to encapsulate tasks for legacy
networks as well.



Enterprise top managers can use such tool to query about
the state of their network or to even force some type of
action. For instance, let us take the following scenario. A CEO
suspects that one of his employees is engaged in suspicious
activities. He can say something like “route Chuck’s traffic
through the IPS”, and our tool would extract the information
from this sentence. In this scenario, the endpoints become
Chuck’s IP address and the IPS’s IP address, and the keyword
becomes “route”. Then the tool builds the abstract task, which
eventually is passed down to the network controller of the
enterprise.

Parents at their homes can leverage such tool to help them
manage their home networks. In particular, parental control
tasks can be encapsulated in our abstract task form. For
instance, say a parent wants to limit her son’s computer time.
She can say something like “disconnect Mike’s computer”,
and then our tool would extract the required information to
build the abstract task. In this scenario, the endpoint is Mike’s
device IP address, and the keyword is “disconnect”. The
abstract task then is sent to the home modem to eventually
execute the task through the parental control interface.

One other area that can benefit from such abstraction is the
Internet of Things (IoT). The IoT endpoints in the abstract
task can refer to the IoT devices (i.e., things). And the tool
can be modified to include keywords that are specific for the
domain of IoT. For instance, the user can say something like
“turn on my car”. The endpoint would be the user’s car, the
keyword would be “turn”, and the task type would be POST
(DELETE when the task is meant to turn the car off).

C. Putting it Together

Here we walk through each step starting from the user’s
input, going through processing the request and building
the task, and ending with actually performing the task in
the network. Figure-2 shows the detailed processing stages
involved in processing a request. We emphasize that our work
is focused on the shaded parts of the figure, while the parts
that are not shaded are assumed implemented.

1) The NLP Pipeline: In the NLP pipeline (as described
in section-II-A), the first step is to recognize speech, which
involves converting speech into text. When the input is ready
in the form of a text sentence, the Part-of-speech Tagger (POS
Tagger) comes in to tag words with the proper grammatical
tags (e.g., nouns, verbs, adjectives, etc). These tags comes in
handy when extracting the required information later. Then the
sentence is parsed to yield the parsing tree, which then is used
to determine the relationships between different words. This
relationship is useful in determining how the endpoints should
be represented.

2) The Abstract Network Layer:
Keywords: After the parser yields its tree, the tree is used

by the Information Extractor to extract information like what
the keyword and endpoints are, and based on the keyword it
determines whether to expect extra information or not. Since
the keywords are provided to the tool in advance, detecting
them is done by scanning the grammatical lemmas (i.e., words

basic forms) and looking for matching keywords. Upon finding
a keyword, the tool determines what type of information to
look for in the sentence. For instance, if the keyword is rate,
referring to a rate-limiting task, then the tool knows that it
should extract information like what the device/flow is and by
how much to limit the rate of that specific endpoint.

Endpoints: Relying on assumption-1 in section-I, a list
of mappings between logical and physical names is assumed
provided. Therefore, detecting the endpoints in a sentence
is straightforward by scanning it looking for matching end-
points. However, determining the relationships between such
endpoints (i.e., what the source and destination are) needs
to be inferred from the sentence. Such relationship can be
inferred by looking at the prepositions in the sentence (e.g.,
from, to, at, etc). These are used in determining the direction
and relationship between endpoints. For instance, task-2 in
Table-I should have h2 as the source and h3 as the destination,
even though h3 precedes h2. But when the word “between”
is encountered, the relationship between the two endpoints
should be inferred.

Extra Information: Once the task keyword is detected,
the tool determines whether it needs to look for extra infor-
mation in the sentence or not. When the tool determines that
the task needs extra information, it searches the sentence for
that information. For example, given task-6, the tool knows
that it should look for the flow information in the sentence.
Therefore, the extra information field for that task should
contain the necessary flow information, such as: source and
destination IP addresses, Port numbers, and protocol.

Task Type: Inferring the correct task type is not trivial.
That is, distinguishing between all three task types (GET,
POST, DELETE) requires processing the sentence at a deeper
level. For simplicity, when the sentence is a question, we
assign GET as the task type. However, not all GET tasks
are questions. For instance, the sentence “get me switch X’s
statistics” should be assigned GET as its type. To uncover
the complexity of this issue, we provide the tool with a
list of “query” words that refer to a GET task (e.g., get,
poll, lookup, etc). Together with the keyword of the task,
determining whether the task should be GET is possible. As
for the types POST and DELETE, inferring the correct type is
done by looking for negations in the sentence (e.g., “don’t
allow h1 to talk to h2”). Once the Information Extractor
extracts the keyword and endpoints, it looks at the grammatical
lemmas of the sentence to see if there are any negation words
like “not”, and once it finds one that is associated with the
main verb of the sentence, it assigns DELETE as the task type.
Otherwise, the task is assigned POST as its type.

The information extracted by the Information Extractor in
Figure-2 is passed down to the task builder, which has a JSON
formatted structure that it expects for every keyword. Once
the task builder makes sure that it has all the information it
needs, it constructs the task using the same structure described
above in section III-A2. Lastly, the serializer takes the abstract
task and then serializes it so that it gets sent to the network
controller (we have relaxed the design decision on this as



Speech recognizer

Tokenizer/PoS Tagger

Parser

NLP Pipeline Abstract Network
Layer

Info extractor

Task builder

Serializer

SDN 
Network

Controller-
specific 

deserializer

Fig. 2. The complete processing pipeline

to whether to use network sockets or REST API calls to
communicate with the network-specific deserializer. In our
prototype implementation we have used sockets).

Now, network developers come in where they implement
their network-specific deserializer. We believe that this step
should not take much effort. In fact, as we describe in section
IV, we have implemented a Floodlight [12] module that
receives abstract tasks and performs them.

IV. IMPLEMENTATION

In this section, we describe how we have implemented a tool
that leverages the abstraction layer we proposed in section III.
We show how our proposed abstraction can encapsulate much
more tasks than we initially thought it would, with as few lines
of code as less than 1K lines in Java.

A. Tools and Setup

For the NLP part of the implementaion, we used Stanford’s
CoreNLP framework [11] to take advantage of its NLP capa-
bilities. We also used WordNet [17] to expand our keyword
space so that it contains the synonyms for the keywords
we provide to the tool. And for the networking part of the
implementation, we used Mininet [18] with Floodlight [12] to
simulate a network of multiple hosts.

B. Implementation

We wrote a Java application that reads sentences entered by
the user, parses the sentence using CoreNLP Stanford’s parser
[11], extracts information and builds the abstract task, and
sends the task to our Floodlight controller. On the controller’s
side, we wrote a Floodlight module that listens for connections
from our tool, and then reads abstract tasks and converts them
into actual API calls provided by Floodlight.

Our Java tool3 contains three classes: AbstractTask to repre-
sent the abstract task fields, InformationExtractor whose job is
to extract information from the user’s input, and NetAssistant
that interacts with the user and calls the InformationExtractor
to help create and build an AbstractTask object, which even-
tually is sent to our Floodlight module. Next, we describe in
details how the InformationExtractor and Floodlight module
are implemented.

3We would like to note that the tool is at a proof-of-concept stage and we
are still exploring different approaches, such as using classification to provide
more flexibility in determining what task a sentence is referring to (instead
of looking for specific keywords).

We have tested the tool with many sentences to see if it
would construct the right abstract tasks for those sentences,
and we found that the tool correctly constructed 80% of the
sentences (for the 20%, the tool incorrectly assigned POST
instead of GET, mainly because the sentence did not include
any of the query words that we provided the tool with).
This can be prevented by expanding the query words list. In
addition, a validation feature could be implemented to prevent
such errors, where the user is prompted to approve/disapprove
any generated task before it is actually executed.

We include two examples of sentences that the tool suc-
cessfully processed: “can h1 talk to h2?” and “route h1’s
traffic through the firewall.”. For the first sentence, the
tool yielded this abstract task: “{“keyword”:“talk”, “end-
points”:{“src”:“10.0.0.1”, “dst”:“10.0.0.2”}, “type”:“get”}”.
And likewise, it yielded this abstract task for the second sen-
tence: “{“keyword”:“route”, “endpoints”:{“src”:“10.0.0.1”,
“dst”:“10.0.1.1”}, “type”:“post”}”. The IP addresses were
obtained from the mapping information provided to the tool
(based on assumption-1 in section-I).

1) Information Extraction: This is the building block of
the tool since its job is to determine what and how to
extract information from a sentence, which then is used to
initialize the abstract task. Currently, our tool is able to extract
keywords and endpoints from a sentence, and determines the
abstract task type. Extracting keywords, endpoints, and task
types is described in section III-C2. Here we describe the
data structures that we used to represent the the provided
lists of keywords and endpoints. To improve performance, we
used HashMaps to represent both lists. The endpoints data
structure contains the mapping between logical and physical
names, with the key being the logical name and the value
being the physical name. Likewise, the same data structure
is used to represent the list of supported keywords. However,
it is worth mentioning that a naive approach of providing a
list of supported keywords would limit the space of possible
sentences a user can say.

To overcome this, the list of keywords needs to be expanded.
But there is a trade-off between expanding the list of supported
keywords and not complicating the abstract layer. In other
words, when adding so many keywords that the abstract
layer in Figure-2 can support, this results in complicating the
deserializer processing (i.e., having to process many keywords
that potentially refer to the same task). Fortunately, this does
not have to be the case. We optimized the keywords HashMap



in order to support more keywords, and at the same time
preserve the simplicity that the abstract layer shall provide.
In particular, we leveraged the capabilities of WordNet [17]
to lookup synonyms of keywords, and had them refer to the
same keyword in the data structure. For instance, the words
“let”, “permit”, and “allow” all refer to the same keyword
“allow”. Following this approach has reduced the space of
possible keywords by 70%.

2) The Deserializer: Although in this paper we assume that
implementing the deserializer is left for network developers,
here we show that implementing the deserializer is not meant
to be a burden, since it is written only once. Our deserializer
is a Floodlight module, which currently supports 13 distinct
keywords, and receives abstract tasks in JSON format from
our Java tool, described in the previous subsection. Upon
receiving a task, the module parses the JSON file and extracts
the information from the abstract task fields. Then it uses the
appropriate API calls to perform the task. After the task is
performed, a text feedback is returned to the user. For instance,
if the received abstract task contains the following information:
{“keyword”:“allow”, “endpoints”: {“src”: “10.0.0.1”, “dst”:
“10.0.0.2”},“type”:“post”}, the module would call its ACL
service to add a new ACL rule that allows the connection
from 10.0.0.1 to 10.0.0.2.

V. DISCUSSION AND FUTURE WORK

The strength of the abstraction layer depends on its ability to
support and encapsulate as many tasks as possible, while pre-
serving the abstraction simplicity of representing such tasks.
We plan on further investigating the impact of adding and
supporting more network tasks and more complex composition
of tasks, and analyze their effect on the abstraction layer
(whether modifications are needed or not). One example of
such tasks is cloud management tasks, even though that a good
portion of them can still be encapsulated in our abstract task.
Adding new tasks mainly results in adding new keywords;
however, the challenge is in determining whether new tasks
can be encapsulated in existing keywords.

In our prototype, we implemented a tool that accepts text
from the user. To provide more convenience, a more natural
approach would be to accept voice commands from the user,
like the use of IPAs in smartphones. We plan on leveraging
speech recognition tools to support such feature. In addition,
we are planning on implementing the tool in different systems,
including developing a mobile agent that runs on smartphones
to do the same job of our prototype tool. Furthermore, in
order to improve convenience, a context-aware direction is
worth pursuing. That is, when processing a sentence, the
tool should be aware of the context of that sentence. For
example, a user can say something like “is my computer
connected to the Internet?”, and the tool should determine
what endpoint the user is talking about. This involves using
and developing learning techniques that allows such feature to
be implemented.

Of course, collaboration is a key aspect in improving any
work. Therefore, open sourcing our tool is our goal once it is

fully implemented and tested. We hope by making the code
publicly available that the community contributes to it and
takes it to a more advanced stage.

VI. CONCLUSION

In this paper, we proposed an abstract network layer that
acts as an intermediate layer between natural language and
different network management systems. By collecting and
analyzing common network management tasks, we proposed
an abstract structure in which such tasks can be encapsulated.
In addition, we implemented a tool that accepts natural lan-
guage input, as a written text, and extracts information needed
to build the abstract network task. We argued that network
management should be more convenient by leveraging the
capabilities that Natural Language Processing (NLP) offers.

We note that we are not proposing a replacement to existing
network management systems, but rather we are proposing an
abstraction layer that resides atop existing network manage-
ment systems to enable the encapsulation of natural language
input in an abstract form of network tasks. To our knowledge,
this is the first paper that proposes the use of natural language
to manage computer networks.

REFERENCES

[1] C. Bureau, “Network operators to spend over $1.8 bn in 2016,” 2016.
[2] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,

L. Yuan, M. Zhang, B. Y. Zhao, et al., “Packet-level telemetry in large
datacenter networks,” in ACM SIGCOMM Computer Communication
Review, vol. 45, pp. 479–491, ACM, 2015.

[3] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in Proceedings of the 8th international conference
on Emerging networking experiments and technologies (CoNEXT 12),
pp. 241–252, ACM, 2012.

[4] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Presented as part of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
12), pp. 113–126, 2012.

[5] S. Brown, “Ninth annual state of the network global study,” 2016.
[6] M. Shirer, B. Casemore, and R. Mehra, “Sdn market to experience strong

growth over next several years,” 2016.
[7] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-

rana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, et al., “Sirius: An
open end-to-end voice and vision personal assistant and its implications
for future warehouse scale computers,” in ACM SIGPLAN Notices,
vol. 50, pp. 223–238, ACM, 2015.

[8] “Quepy: Transform natural language to database queries.”
http://quepy.machinalis.com, 2016.

[9] M. Zuckerberg, “Building jarvis.” https://www.facebook.com/notes/mark-
zuckerberg/building-jarvis/10154361492931634/, 2016.

[10] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python. ” O’Reilly Media, Inc.”, 2009.

[11] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit.,” in ACL (System Demonstrations), pp. 55–60, 2014.

[12] “Project floodlight.” http://www.projectfloodlight.org.
[13] “Ryu the networking operating system.” http://ryu.readthedocs.io.
[14] C. Systems, Network Management Configuration Guide, Cisco IOS

Release 15.1S. Cisco Systems, Inc, 2011.
[15] M. Subramanian, Network management: principles and practice. Pear-

son Education India, 2010.
[16] R. Fielding, “Representational state transfer,” Architectural Styles and

the Design of Netowork-based Software Architecture, pp. 76–85, 2000.
[17] C. Fellbaum, WordNet. Wiley Online Library, 1998.
[18] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid

prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, p. 19, ACM,
2010.


