
Timing-based Reconnaissance and Defense in
Software-defined Networks

John Sonchack
University of Pennsylvania

jsonch@cis.upenn.edu

Anurag Dubey
University of Colorado Boulder
anurag.dubey@colorado.edu

Adam J. Aviv
United States Naval Academy

aviv@usna.edu

Jonathan M. Smith
University of Pennsylvania

jms@cis.upenn.edu

Eric Keller
University of Colorado Boulder

eric.keller@colorado.edu

ABSTRACT
Software-defined Networking (SDN) enables advanced network ap-
plications by separating a network into a data plane that forwards
packets and a control plane that computes and installs forwarding
rules into the data plane. Many SDN applications rely on dynamic
rule installation, where the control plane processes the first few
packets of each traffic flow and then installs a dynamically com-
puted rule into the data plane to forward the remaining packets.
Control plane processing adds delay, as the switch must forward
each packet and meta-information to a (often centralized) control
server and wait for a response specifying how to handle the packet.
The amount of delay the control plane imposes depends on its load,
and the applications and protocols it runs. In this work, we de-
velop a non- intrusive timing attack that exploits this property to
learn about a SDN network’s configuration. The attack analyzes
the amount of delay added to timing pings that are specially crafted
to invoke the control plane, while transmitting other packets that
may invoke the control plane, depending on the network’s config-
uration. We show, in a testbed with physical OpenFlow switches
and controllers, that an attacker can probe the network at a low rate
for short periods of time to learn a bevy of sensitive information
about networks with > 99% accuracy, including host communica-
tion patterns, ACL entries, and network monitoring settings. We
also implement and test a practical defense: a timeout proxy, which
normalizes control plane delay by providing configurable default
responses to control plane requests that take too long. The proxy
can be deployed on unmodified OpenFlow switches. It reduced the
attack accuracy to below 50% in experiments, and can be config-
ured to have minimal impact on non-attack traffic.

1. INTRODUCTION
Motivation. Software-defined Networking (SDN), a paradigm for
programmable networks, has become increasingly popular. Orga-
nizations including Facebook [7], Google [20], and the NSA [2]

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ACSAC ’16, December 05 - 09, 2016, Los Angeles, CA, USA
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4771-6/16/12. . . $15.00
DOI: http://dx.doi.org/10.1145/2991079.2991081

have deployed large scale SDN networks with many other organi-
zations planning future deployments. SDN’s popularity stems from
its ability to serve as a platform for innovative network applications
that provide many benefits such as cost reduction [20], energy sav-
ings [18], and improved security [12].

SDN radically changes network design, replacing fixed function-
ality elements (e.g. switches, routers, firewalls, address translators)
with generic network elements (i.e. the data plane) that forward
packets at high speeds by matching them against simple forwarding
rules. A centralized control server (the control plane) manages and
updates the rules on switches based on the functionality required
by the network.

Controllers, in particular, may perform more advanced packet
processing as needed, especially when packets arrive at a switch
that does not have a matching rule installed. In those situations,
the packet information is forwarded from the data plane switch to
the control plane controller for further processing. The controller
makes a forwarding decision for the packet and optionally assigns
new rules to the switch to handle further packets of the same pedi-
gree based on specific source-destination-port information or on
pattern matching, such as on sub-net information.

While this design clearly offers tremendous benefits and flexi-
bility to network operators, it also comes with new security chal-
lenges. One important challenge, the focus of this paper, is en-
suring that the elements of an SDN do not leak sensitive network
configuration or usage information.

Previous work has demonstrated that SDN networks have timing
side channels based on the difference in the amount of time it takes
two hosts to establish a connection, that is, if the connection time
for a flow is high, the first packets of that flow likely invoked the
control plane. These side channels may reveal if a network runs
OpenFlow [33], the size of switches’ forwarding tables [29], as
well as whether links contain aggregate flows [23].

Here, we extend this type of attack so that it both reveals more
sensitive network information and is stealthier. Further, we present
a deployable and effective defense to this style of timing attack.

Our work. In this paper, we develop a more sophisticated timing-
based side channel attack that can be launched by an adversary
with access to only a single machine on the target network. Us-
ing the attack, the adversary can learn many more details about a
network configuration than reported in prior work, without initiat-
ing connections to other hosts in a network. Much of the revealed
information would be considered highly sensitive, including host
communication records, network access control configurations, and

89

network monitoring policies.
At a high level, the attack works by estimating a control plane’s

load by injecting timing pings into the controlled network. These
pings are specially crafted such that the switch must invoke the con-
trol plane to forward them. At the same time, the attacker sends a
second stream of test packets into the network. By comparing the
turnaround time of the pings to previously collected baseline sam-
ples, the attacker can deduce whether the test packets were pro-
cessed by the controller or simply forwarded by the data plane, and
further, determine whether the controller installed new rules in re-
sponse to the test packets.

With a few trials using different test streams, an attacker can
learn which flow rules are installed in the data plane and which
sequences of packets cause the control plane to install new rules.
Depending on the SDN application, this attack may also reveal se-
curity sensitive details about the network, such as:

(i) the host communication graph of which devices in the net-
work communicate with each other (if the network is running
a common layer 2 MAC learning application);

(ii) the access control lists of the switch specifying which traf-
fic flows the switch is configured to drop (if the network is
running an access control application);

(iii) and the usage of monitoring and packet counting rules to
collect flow records on the switch (if the network is running a
monitoring application).

Evaluation. To concretely evaluate the feasibility of these attacks,
we experimented using a physical OpenFlow testbed with real SDN
hardware and background traffic (prior work [33, 29, 23] used vir-
tual network environments and virtual machines).

We find that the attacker can determine which role the controller
plays in processing test packets with extremely high accuracy (>
99%), even with very low rates (10 timing pings and 500 test pack-
ets per second) and short trials (< 5 seconds). We determine that
bottlenecks in the control plane are the root cause of the attack’s
effectiveness, as they add statistically significant delays to the tim-
ing pings (p < 0.005 using a t-test) that vary depending on how
the control plane processes test packets. We show the attack can re-
veal sensitive information about more complex control applications
with nearly perfect fidelity (such as ACL or flow counting).

Defense. To defend against this new attack, we propose the use
of a timeout proxy that sends a default forwarding instruction to the
data plane if the control plane fails to respond within a fixed time
period. We implemented this defense as a software application that
can run on the switch itself (i.e. below any control plane bottle-
necks), as part of an existing OpenFlow environment. Experiment-
ing with the proxy in our testbed, the differences in control plane
load measurements became unobservable to the timing attack, and
reduced its accuracy to < 50%. The proposed proxy is extremely
robust and can handle up to approximately 10, 000 requests per
second, and if deployed on a machine dedicated to defense (not a
switch), it could easily handle considerably higher rates of attack.

Contributions. To summarize, this paper’s contributions are:

(i) A novel SDN timing attack that can induce a side channel for
learning about OpenFlow networks and reveals more infor-
mation than previous methods.

(ii) A detailed experimental analysis of this timing attack on a
testbed with physical OpenFlow hardware and real background

OpenFlow Control Server

OpenFlow Control Platform

OpenFlow Switch
OpenFlow Agent

MAC
Learner

Forwarding
Engine

Access
Controller

Flow
Monitor

Counting
Table

ACL
Table

Forwarding
Table

Control
Plane
Data
Plane

Figure 1: OpenFlow divides a network into a data plane, that
forwards packets quickly using simple tables, and a control
plane, that manages the data plane using more complex actions.

traffic, the first evaluation of SDN timing attacks on physical
hardware.

(iii) An effective software based defense against the timing side
channel that can be deployed either directly to physical Open-
Flow switches, or to dedicated middlebox servers, the first
implemented and tested defense against timing side channels
on OpenFlow networks.

2. RELATED WORK
Side channel attacks. There is a large body of work on using
side-channels to leak secret information from computer systems,
most prominently for recovering secret cryptographic keys [24, 22,
37]. Many side-channel attacks are based on timing; an adversary
analyzes the timing of execution [25] or caches [37] to learn details
about the code that is executing and what data it is operating on.
Our timing-based side channel attack is similar to previous work
that times execution, although execution timing has not previously
been applied to the SDN domain.

Previous work has demonstrated that timing-based side channel
attacks can be used remotely [11], to recover details about a host’s
operating system [26], expose private web pages [9], and to recover
cryptographic keys [10] across local and wide area networks. Our
attack is designed to work across a local network, though based
on these previous studies and our tests, it seems likely that with
more advanced techniques, future SDN timing attacks could also
be effective against wide area SDN deployments, as they become
more widespread. [20, 17].

OpenFlow side channel attacks. A SDN network is topologically
similar to a traditional computer network, but behaviorally much
more complex, with many different components that could be tar-
geted with a side channel attack. OpenFlow [30] is the de-facto
standard for SDN: it defines a packet processing model, API, and
remote management protocol for switches. Figure 1 summarizes
the architecture of an OpenFlow Network, which can be divided
into a data plane and a control plane. The data plane processes
most of the packets that a switch forwards by matching packet
headers against rules in flow tables that define simple actions (the
green line in Figure 1). The control plane processes packets that the
switch does not know how to handle, and can install new flow rules
into the data plane for future packets (the red line in Figure 1). The
data plane is implemented as a highly optimized forwarding engine
in the switch. For physical switches, this is implemented with spe-
cialized hardware. For virtual switches [32], the forwarding engine
is often a kernel module. Forwarding engines do not directly im-

90

OpenFlow
Controller

Adversary
Host

Responding
Host

Test Packet
Stream

OpenFlow
Data Plane

Timing
Probes

Figure 2: Summary of our control plane timing attack: an ad-
versary times the control plane’s execution while sending test
packets into the network. If the test packets put load on the
control plane, the attacker will observe longer response times
with the timing probes.

plement the OpenFlow API. Instead, an OpenFlow Agent, which
runs as software on the switch (even physical switches), translates
OpenFlow messages from the control server into a lower level for-
warding engine API. The control server implements more complex
logic, such as MAC learning when a new device is connected to the
network, managing the access control policies of all switches in the
network, or configuring flow monitoring rules on switches.

There has been little research into applying timing-based side
channel attacks to Software-defined networking. To our knowl-
edge, there have only been three previous works in this area. Kloti
et al. [23] developed a simple attack which measures the set up time
of sequential TCP connections to determine if an SDN is using for-
warding rules that aggregate TCP connections. Shin and Gu [33]
proposed a SDN scanner that measures the response time of pings
to determine whether or not a network is using SDN. More recently,
Leng et al. [29] designed an attack that measures the response time
of requests to determine the approximate capacity of an OpenFlow
switch’s forwarding table (i.e. how many flow rules it can store).
All of these attacks can be viewed as cache-timing attacks, where
the switch’s flow table is the cache and the goal is to determine if
a legitimate request is processed by the cache or not. In contrast,
our attack times control plane execution, where the goal is to deter-
mine if arbitrary packets crafted by the attacker get processed by
the control plane. Our approach reveals additional, more security
sensitive information about an OpenFlow network.

Additionally, the existing literature on SDN timing attacks uses
software based networks, in the Mininet environment [28] with vir-
tual switches [32]. In practice, hardware based OpenFlow switches
manufactured by vendors such as Broadcom, Cisco, Juniper, Bro-
cade, and others are widely deployed. These physical devices have
vastly different architectures and performance characteristics com-
pared to virtual OpenFlow switches: latencies and packet forward-
ing rates are orders of magnitude better [6]; but flow installation
rate and flow table capacity are orders of magnitude worse [8]. In
this work, we perform extensive testing with physical OpenFlow
switches, and provide a first look at the effectiveness of timing at-
tacks with a new degree of experimental realism.

attacks. Kloti et al. [23] speculate that there are likely to be de-
tection or randomization based defenses against SDN timing at-
tacks and Leng. et al. [29] briefly suggests further research into
attack detection and automated flow table maintenance. We have
taken the next step by designing a defense against the timing at-
tack, implementing it as software that runs on a physical OpenFlow
switch, and experimentally demonstrating its effectiveness.

3. CONTROL PLANE TIMING ATTACK

Figure 2 summarizes our control plane timing attack. The at-
tacker learns about the network by performing trials in which they
send a stream of timing probes and a stream of testing packets into
the target network, and then comparing the timing probe RTTs to
a previously collected baseline sample to learn some details about
the network’s configuration. We assume that the attacker has con-
trol of a single host on the network and can inject packets into the
network at will, but does not want to disrupt network performance
in an end-user detectable way.

An attacker performs a series of trials. In a trial, an attacker:
(1) collects a baseline round-trip- time (RTT) measurement while
transmitting a stream that has a known impact on the control plane;
(2) transmits a test stream to get a sample RTT measurement; and
then, (3) compares the two RTT measurements. Based on the com-
parison (using a simple t-test) of the two distributions of RTT mea-
surements, the attacker then attempts to deduce whether the control
plane installs new flow rules into the data plane in response to the
test packets or if other control level actions were taken.

The timing probes are request packets to hosts or devices on
the network that cannot be forwarded without invoking the con-
trol plane. Timing probes essentially act as control plane pings,
and their RTT value informs the attacker of how long the controller
takes to process packets at particular points in time.

The test packets are spoofed packets that all have the same value
for one or more packet header fields to control for the kind of infer-
ence the attacker wishes to perform. Depending on how the timing
probe RTT changes when transmitting a testing stream, the attacker
can infer the role that the control plane plays in handling packets
with those header values. By performing repeated trials with differ-
ent test packet streams, the adversary can discover more and more
information about the network configuration.

3.1 Threat Model
The threat model assumes the adversary has control of a host in

the network, and seeks to learn about the network without need-
ing to compromise any of the network infrastructure or other hosts.
This threat model matches two real world scenarios where an at-
tacker may wish to learn information about the network configura-
tion.

First, an intelligent adversary performing a complex, multi-staged
attack who has just gained access to one host in the target net-
work through malware or social engineering and now wishes to
plan subsequent stages. For example, consider the recent Target
data breach [21], where attackers installed malware on point of sale
terminals to collect credit card numbers; or the more recent breach
at Juniper [19], where adversaries installed back doors into source
code stored deep within Juniper’s network. In scenarios like these,
the ability to learn sensitive information about the network in a re-
connaissance could greatly benefit attackers.

A second scenario that fits this model is a malicious user of a
shared network (such as at a data center or cloud provider) that
may wish to learn about other users of the network via the network
configuration settings of the switch. As we will show, the timing
attack is able to deduce host communication pairs as well as collect
information about SDN monitoring applications.

3.2 Timing Probes
Timing probes are specially crafted request packets that the ad-

versary sends into the network to learn how long the control plane
takes to process packets at specific points in time. Timing probes
must have three properties: first, they must evoke a response from
a device in the network, so that the adversary can compute a RTT
for each timing probe; second, they network must not be able to

91

Adversary
Host

Responder
Host

Controller

Figure 3: Timing the control plane with
spoofed ARP requests to a one host.

Adversary
Host

Responder
Host 1

Responder
Host 2

Controller

Responder
Host N

...

Figure 4: Timing the control plane with le-
gitimate ARP requests to multiple hosts.

Adversary
Host

Controller

Router

Figure 5: Timing the control plane with
low TTL IP packets.

forward the packet without invoking the control plane, so that con-
troller processing time is a factor in the RTTs of the timing probes.

Many types of requests can potentially act as timing probes, de-
pending on the configuration of the targeted network. For example,
in a naive network that sends all packets to the control plane, a TCP
syn packet to any legitimate host in the network would be a timing
probe.

Below, we describe three types of timing probes: two timing
probes that can be used on a Layer 2 network (i.e., where switches
forward based on MAC address), and one that can be used on a
Layer 3 network (i.e., where switches forward based on IP address).

Layer 2 Timing Probe: Spoofed ARP Requests Layer 2 net-
works, both traditional and SDN, typically forward packets using
MAC learning, a simple algorithm to associate MAC addresses
with physical ports on a switch. Whenever a switch receives a
packet from a device with a MAC address that is not present in
its forwarding table, the switch sends the packet to the controller,
which saves the (input port, MAC address) pair. When the con-
troller receives a subsequent packet destined for that device, it in-
structs the switch to forward the packet out of the port where the
device was observed, and installs a corresponding rule into the
switch’s forwarding engine. Traditional networking equipment used
flow rules that mapped a destination address to an output port on
the switch. Most OpenFlow implementations use finer grained flow
rules that specify both the source and destination address because it
provides the controller with greater visibility and allows additional
path optimization techniques 1.

In networks that use MAC learning, an adversary can use ARP
requests as timing probes. ARP is widely used protocol for map-
ping IP addresses to MAC addresses. The adversary selects a host
on the network that uses ARP, then sends it ARP requests with
spoofed source MAC addresses. Figure 3 depicts what will happen
when the adversary sends the ARP request packets into the net-
work. The ARP requests themselves will not invoke the control,
since ARP requests are broadcast, which a forwarding engine can
do without invoking the control plane. However, the ARP reply,
which will have the randomly generated address as its destination
MAC, will need to invoke the control plane because the switch’s
forwarding engine will not have a rule mapping the randomly gen-
erated address to a port.

It is important to not overload the network with spoofed MAC
addresses as this might be noticeable (and detectable) to a net-
work monitor. It may also degrade the performance of the network,
something the attacker wishes to avoid as it may affect the ability to
infer information from the network. Fortunately, timing probes are

1In a traditional, pre SDN network, the switch’s CPU runs the con-
troller level MAC learning logic.

useful even at extremely low rates, because each probe provides a
useful measurement and just a few is sufficient to notice variations
in RTT rates when a testing stream is introduced. For example, in
all of our experiments in Section 4 a timing probe at a rate of 10 per
second was ample for inferring sensitive information. On a large
network with many Layer 2 connected devices (as in a data center),
there should be a reasonable amount of ARP traffic such that tim-
ing probes will cause minimal interference with normal network
activity.

Layer 2 Timing Probe: Legitimate ARP Requests In some layer
2 networks, it is not possible to send packets into the network with
random MAC source addresses due to network access control sys-
tems that either drop packets from MAC addresses that do not be-
long to pre-authorized devices or limit the number of devices that
can be connected to each physical port on a switch or router [13].

Figure 4 illustrates a technique to generate ARP based timing
probes that works around this defense by taking advantage of for-
warding rule timeouts: switch forwarding tables have limited mem-
ory and, as a result, are usually programmed to delete forwarding
rules if they have not been used for more than a threshold period
of time. To use this approach, the attacker selects a set of N hosts
to act as ARP responders and sends them each one legitimate ARP
request, in sequence. Assuming all the rules that forward packets
from the ARP responders to the attacker have timed out, each of
the ARP replies will need to be processed by the control plane so it
can re-install the forwarding rules.

An adversary would not need a large number of responder hosts
to use this approach because, as our evaluation demonstrates in Sec-
tion 4, timing probes only need to be sent at a very low rate and for
only a short amount of time (i.e., 10 per second for approximately
5 seconds).

Layer 3 Timing Probe: Low TTL Packets SDNs can also be
configured to forward at the IP level (e.g., programming Open-
Flow switches to act as routers [5]). This allows an adversary to
use IP packets with low TTL values as timing probes. OpenFlow
switch cannot generate ICMP packets in their forwarding engines
and must send packets with expiring TTL values to the controller
so that it can generate the correct response. As Figure 5 depicts,
when an adversary sends IP packets with TTL=0 into the network,
the first network element configured to act as a router will send the
packet to the controller, which will generate the appropriate ICMP
response and send it back to the adversary’s host.

3.3 Test Packet Streams
A test packet stream is a sequence of packets with a small in-

variant that the attacker sends into the network at a constant rate
to determine if the data plane needs to invoke the control plane for

92

the given invariant. If the control plane is invoked that provides in-
formation for some configuration of the network. We define a test
packet stream with a template for an invariant selection that spec-
ifies either a constant or randomly selected value for the Ethernet,
IP, and TCP/UDP header fields of each packet.

The attacker can determine the role that the controller plays in
forwarding the test packets by analyzing the RTTs of timing probes
that are ongoing during the testing stream. Based on the measure-
ments from the RTT the following deductions could be made:

(i) If the data plane contains a rule that matches the packets in
the test stream, it will place no additional load on the con-
troller, and the timing probe RTTs will be low during the test
stream.

(ii) If the data plane does not contain a rule that matches packets
in the test stream, the packet will be forwarded to the con-
troller placing a moderate load on the control plane, and in-
troducing some delay to the timing probes.

(iii) If the data plane does not contain a rule that matches the for-
warding packets in the test stream, and the control plane in-
stalls new forwarding rules into the data plane in response to
each packet in a test stream, there will be a heavy load placed
on the control plane as flow rule installation is an expensive
operation2, adding much more latency to the timing probes
than the previous scenario.

3.4 Detecting RTT changes
An attacker could learn what effect a test stream has on the net-

work by comparing the distribution of probe RTTs observed while
transmitting the stream with a sample of baseline RTTs represent-
ing a known effect. A simple method for this that we found ef-
fective is a straightforward application of the Student’s t-test [36],
a statistical test that compares if two samples are drawn from the
same distribution. A t-test produces a t-statistic that measures the
size of the difference between the samples relative to variation in
the sampled data. A t-statistic can be converted into a p-value,
which speaks to the likelihood that the two samples share the same
distribution. Typically, a p value less than 0.05 is considered an
indicator of statistically significant difference between the samples
in that they are truly measuring different distributions.

One baseline stream is simply a list of Ethernet packets with
source and destination addresses that are chosen at random, without
repetition. The controller will process each packet in this stream,
to perform MAC learning, but will not install a rule since it will
never receive a packet destined for that address. By using a t-test
to compare the RTTs observed while transmitting a test stream to
the RTTs observed while transmitting this baseline stream, an at-
tacker can conclude:

(i) If the p-value is high, the timing probe RTTs likely share the
same distribution as the baseline sample, so like the base-
line stream, the test stream is likely processed by the control
plane, but does not cause additional flow rule installations.

(ii) If the p-value is low and the t-statistic is negative, then the
timing probe RTTs likely have a different distribution than the
baseline samples and a much lower mean, so the test stream
packets are likely not processed by the control plane.

(iii) If the p-value is low and the t-statistic is positive, then the
timing probe RTTs likely have a different distribution than the
baseline samples and a much higher mean, so the test stream
packets likely caused additional flow rule installations.

2Many OpenFlow devices only support a flow installation rate of
<100 per second [8].

Adversary
Host

Web Server

Database
Server

Web ServerWeb Server

1

2 3 4

5

Figure 6: An example application of the timing attack: an ad-
versary can learn which devices communicate with a back-end
database server that the adversary cannot directly connect to,
due to firewalling.

Priority Source IP Destination IP Policy
10 1.1.1.2 1.1.1.5 ALLOW
10 1.1.1.3 1.1.1.5 ALLOW
10 1.1.1.4 1.1.1.5 ALLOW
1 * 1.1.1.5 DROP

DEFAULT * * ALLOW

Table 1: An example ACL policy installed into the switch in
Figure 6, which blocks connections to the database from all
hosts besides the web servers.

3.5 Example Attack Scenarios
Learning host communication patterns. An attacker can learn
if two devices (A and B) have recently communicated with each
other by performing a trial that tests the presence of a forwarding
rule that handles traffic between A and B. To do so is a straight-
forward application of the procedures described previously: the at-
tacker records a baseline RTT and then measures the RTT after
injecting a test stream with spoofed host address for A with desti-
nation B. If there is not a significant change in timing information,
then controller must not be involved in forwarding, and there is
likely a rule installed.

Learning host communication pairs may reveal broader informa-
tion about the network that is especially useful in a multi-staged
attack. It can help the adversary understand the purpose of devices
that cannot be directly probed (e.g. due to firewalling).

Consider the scenario depicted in Figure 6. The adversary’s goal
is to deduce which device is the database server for the networks
web server. The adversary can collect the MAC addresses of all
devices on the network by monitoring ARP requests, and open TCP
connections with the web servers (#’s 2 through 4 in Figure 6) in
the network. However, the adversary cannot open TCP connections
with the database server (#5 in Figure 6) because the switch drops
all TCP packets destined for the database unless they come from
a web server. The adversary can determine that server 5 may be
a database server by using our timing attack to learn that there are
rules installed on the switch that forward traffic from each of the
web servers to server 5.

Learning ACL entries. One common application of OpenFlow
is to provide access control, similar to a traditional firewall. This
is generally implemented by configuring a switch to sequentially
match packets against two tables: first, an access control table that
can drop packets by matching them against entries specifying Layer
2 through 4 headers; second, a forwarding table that uses a stan-
dard algorithm, such as MAC learning, to select which port to send
packets out of.

For example, the ACL policy depicted in Table 1 could be used

93

in the example scenario in Figure 6 to block connections to the
database server unless they originate from one of the network’s web
servers. An adversary can learn that these entries exist in the ACL
by performing trials of the attack with test packet flows that use
spoofed addresses, as follows:

1. First, the adversary chooses a MAC and IP source and des-
tination addresses that do not exist in the network and per-
forms an attack trial using test packets with those addresses.
The packets will not match any entries in the ACL or for-
warding table, and the switch will send them to the control
plane for a forwarding decision, causing a measurable high
RTT skew.

2. Next, the adversary performs trials with the same MAC ad-
dresses but different IP address pairs. If the IP address pair is
blocked by the ACL, the adversary will observe a measurably
low RTT in that trial (compared to the previous) because the
ACL table will drop the packets before they reach the MAC
table.
If the IP address pair is blocked by the ACL, the adversary
will continue to observe the high RTT values from the first
trial, as the packets will pass through the ACL to the MAC
learning table that sends them to the controller.

Learning about monitoring controllers. OpenFlow networks
are capable of running security monitoring applications alongside
their forwarding logic, as proposed in [34], [35] and [16]. These
applications are generally implemented with a counting table that
simply counts the number of packets and bytes from each IP ad-
dress or flow. When a packet matches a flow in the counting table,
the flow’s counter is incremented and the packet is sent to the next
table in the forwarding engine’s pipeline (e.g. the forwarding able).
When a packet does not match an entry in the forwarding table, the
data plane sends the packet up to the controller which installs the
appropriate counting rule. Periodically, the controller polls the for-
warding engines for statistics about all of the flows in the counting
table and performs analysis on the aggregated data.

An adversary can learn at least two important details about an
OpenFlow monitoring application using our timing attack: whether
the network is monitoring at the host or flow level and how fre-
quently the controller receives updates from the switch.

To determine if a network is monitoring at the host or flow level,
an adversary can build an all pairs test stream by generating a list
of N random IP addresses then adding one packet to the test stream
for each pair of IP addresses (i.e. N2 packets). The adversary runs
an attack trial with this test stream. If the network is not monitoring,
the timing probe RTT will not shift when the all pairs test stream is
transmitted because the control plane will not install any new rules
due in response to the test stream. If the network is monitoring
at the per host level, the probe RTTs will shift proportionally to

N
test_stream_rate because the controller will install a counting rule
for each new IP address. Finally, if the network is running a per
flow monitoring application, the probe RTTs will shift proportion-
ally to N2

test_stream_rate , the number of unique flows the adversary
sent into the network per second, because the controller will install
a counting rule for each new IP flow.

To determine how frequently the controller polls the switch for
updates, the adversary can simply measure the timing probe RTTs
over a longer period of time after running the trial described above.
Whenever the controller polls the switch for statistics about the
counting flows, it will place load on both the switch and controller,
temporarily increasing the probe RTT.

OpenFlow
Controller

Adversary
Host (h1)

OpenFlow
Switch

ARP
Target

Server (h2)

Tra c
Generator

(h3)

Figure 7: A diagram of our testbed network.

4. ATTACK EVALUATION
To evaluate the effectiveness of the timing attack, we performed

experiments on a physical OpenFlow testbed with real OpenFlow
equipment and background traffic. The evaluation is divided into
three parts. First, we measured the accuracy of our attack at infer-
ring changes in the network performance rates. Next, we performed
benchmarks to understand the low level details of our attack: the ef-
fects of different attack rates, the impacts of background traffic, and
determine bottlenecks in the control plane. Finally, we tested the
techniques described in Section 3 as they are used to learn security
sensitive details about a network.

4.1 Testbed and Background Traffic
The testbed. Figure 7 illustrates our testbed network. It con-
tains: a hardware OpenFlow switch, a Pica8 3290 with a Broadcom
Firebolt-3 forwarding engine that processes packets in hardware ac-
cording to OpenFlow rules, a 825 Mhz PowerPC CPU, and 512MB
of memory, and runs Debian 7; a control server, a quad- core Intel
i7 machine with 4GB of RAM, running Ubuntu 14.04 server LTS
and the Ryu OpenFlow controller [4]. We connected three hosts
to the switch: h1, the adversary controlled host; h2, the host that
the timing probe sends ARP requests to; and h3, a host that re-
plays background traffic into the testbed. Each host has a dual-core
Intel Core-2-Duo machines with 2GB RAM. All network connec-
tions (i.e. switch to controller and switch to host) were via gigabit
ethernet.

Background traffic. To model real network conditions, we re-
played a background trace from NCCDC 2015 [1], a three day
cyber-defense competition in which 10 teams compete by defend-
ing networks composed of real devices against human adversaries.
Each team’s network contained 8 servers and 6 workstations run-
ning a mix of Windows, Linux, and BSD, 1 VoIP phone, 1 Juniper
EX2200 switch, and 1 Juniper SRX210 gateway. The 10 teams
were all connected to a core switch, also a Juniper EX2200. The
Juniper switches are an equivalent class of hardware as our Pica 8
3290 switch, but do not use OpenFlow. The trace contains all the
full, unanonymized packets that passed through the core switch. On
average, the trace had a throughput of approximately 80Mbps and
10,000 packets per second. The traces are publicly available [3].

Attack parameters. Unless otherwise noted, we used the spoofed
ARP timing probes described in Section 3.2 with a rate of 10 probes
per second, a test stream rate of 500 packets per second, and a test
stream duration of 5 seconds.

4.2 Attack Effectiveness
To measure the accuracy of the attack in trials we used the t-test

technique described in Section 3 to determine whether a test stream
was processed by the dataplane, processed by the control plane, or
caused new flow installations. The experiment was executed over
300 trials in which each scenario was equally represented by test
streams and compared against a baseline sample of RTTs collected

94

Figure 8: Attacker accuracy in predicting the control plane’s
role as p-value threshold varies.

while transmitting a test stream that caused control plane process-
ing, collected prior to the trials.

Figure 8 shows the attack’s accuracy in these trials, as we vary
the p-value threshold used to distinguish between statistically sig-
nificant RTT samples. At a test flow rate of 500 packets per second,
the attack correctly classified all test streams with > 99% accuracy
for a large range of thresholds ranging from .1 to .000001. At a
much lower test flow rate of 50 packets per second, the attack had
difficulty distinguishing between data plane processing and control
plane processing.

However, due to the high load that flow installation places on
the control plane, it was still possible to correctly identify whether
or not a test stream caused new flow installations with a p-value
threshold in the .1 to .000001 range. This suggests that if an at-
tacker wishes to minimize their impact on the network, they can
first send a test stream into the network at a low rate, to determine
if it causes flow installations, and then when they are confident that
it does not, send test streams at a higher rate to learn if it is pro-
cessed by the control plane or passes through the data plane without
controller interaction.

Given this wide range of thresholds, it would likely be straight-
forward for an adversary to calibrate the attack to a target network.
A common p-value to indicate significance in many domains is .05,
which was well within the range of thresholds that had very high
accuracy in our trials. An adversary could also estimate a range of
thresholds that yield high accuracy by measuring the difference, in
terms of p-value, between RTT samples taken while transmitting a
test stream known to be processed by the data plane vs. RTT sam-
ples taken while transmitting a test stream known to be processed
by the control plane.

4.3 Attack Fundamentals
In this Section, we study at the attack at a lower level to better

understand the factors that make it work.

Test stream rate. Figure 9 shows probe RTTs as the rate of the test
stream varied in trials where the controller was configured to make
a forwarding decision for each test stream packet. Figure 10 shows
RTTs in trials where the controller also installed a rule in response
to each packet in the test stream. Figure 11 shows an alternate view,
empirical distributions of timing probe RTTs in different scenarios
for test stream rates of 50 (left) and 500 (right) packets per second.

Both control plane operations had a significant effect on the dis-
tribution of timing probe RTT. However, flow installation had a
much larger impact. When the controller processed 500 packets
per second, the RTT approximately doubled. When the control
plane installed a flow rule for each packet, the RTTs doubled at
approximately 50 packets per second.

Figure 9: Timing probe RTT as test stream packet rate varies,
for test streams that are processed by the control plane.

Figure 10: Timing Probe RTT as test stream packet rate varies,
for a test stream where each packet invokes a rule installation.

We also observed that the distribution of RTTs changed very
quickly when transmitting test flows that placed load on the con-
trol plane, with average RTTs increasing in under 1 second.

Control plane bottlenecks. In both experiments, we observed
a significant nonlinear jump: from <10ms to >500ms when the
stream rate went above approximately 550 packets per second, in
the forwarding decision trials; and from <10ms to >1000ms when
the stream rate went above approximately 50 packets per second
in the flow installation trials. We measured the resource usage of
the physical components of the control plane in trials with 5 sec-
ond long test flows, shown in Table 2, and concluded that the bot-
tleneck was the switch CPU, in agreement with previous bench-
marks [14, 35]. We found that the low level software interconnect-
ing the forwarding engine to OpenFlow agent running on the switch
was unoptimized and put extremely high load on the switch’s CPU:
the forwarding engine driver did not support packet coalescing or
polling, as a result each time a packet needed to travel between
the forwarding engine and controller, there were many expensive
context switch and copy operations.

The impact of background traffic. To measure the effect of
background traffic on the timing attack, we ran trials of the tim-
ing attack while replaying our background trace at different rates.

95

Packet Processing Flow Installations
Rate 10 30 50 70 90 200 10 30 50 70 90 200

Switch CPU Usage 11.0% 15.7% 25.0% 26.0% 32.0% 65.0% 5.9% 16.7% 28.7% 60.0% 87.0% 99.0%
Controller CPU Usage 2.6% 6.0% 11.8% 15.0% 19.0% 38.0% 3.3% 10.0% 10.0% 13.0% 10.0% 10.0%
Switch Memory Usage 8.5% 8.5% 8.5% 8.5% 8.5% 8.5% 9.5% 9.7% 9.7% 9.9% 10.0% 10.4%

Controller Memory Usage 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%
Switch to Controller Bandwidth 0.20% 0.65% 1.05% 1.55% 1.85% 4.20% 0.17% 0.70% 0.72% 1.03% 1.40% 0.35%

Table 2: Resource usage of control plane components for packet processing and flow installation at different rates. The switch’s CPU
is the primary bottleneck, especially for flow installation.

Figure 11: Empirical Timing Probe RTT distributions while
sending test streams at 50 and 500 packets per second.

Figure 12: Probe RTT
distributions as back-
ground traffic varies, for
test streams that cause the
controller to process 500
packets per second.

Figure 13: Probe RTT
distributions as back-
ground traffic varies, for
test streams that cause the
controller to install 50 flow
rules per second.

As Figures 12 and 13 show, higher rates of background traffic did
not weaken the effectiveness of our attack. Conversely, higher
background traffic rates actually amplified the effect of the test
streams on timing probe RTT – the difference between the RTT
distributions during dataplane and control plane processing of test
streams increased with background traffic rate, making it easier for
an adversary to figure out whether the control plane was processing
test packets. This effect occurred because timing probes RTTs in-
creased non- linearly with control plane load, and the background
traffic placed a small baseline load on it.

We also observed that when the background traffic put a heavier
load on the switch, the switch began to drop a large fraction of flow
installation requests, causing the reduction in probe RTT depicted
in Figure 13 when moving from a 5X to 10X background traffic
replay rate. Even in these scenarios, transmitting a test flow still
caused a statistically significant shift to timing probe RTTs.

4.4 Attack Implications
As we described in Section 3, the timing attack can reveal many

security sensitive details about a network. Here, we evaluate the
example attacks from that section.

Figure 14: P-values of tests to determine if rules corresponding
to edges in the network’s communication graph were installed
on the switch.

Source IP Destination IP Avg Probe RTT
1.1.1.1 1.1.1.5 3.41 ms
1.1.1.2 1.1.1.5 8.08 ms
1.1.1.3 1.1.1.5 8.65 ms
1.1.1.4 1.1.1.5 6.68 ms
1.1.1.6 1.1.1.5 3.70 ms
1.1.1.7 1.1.1.5 3.67 ms
1.1.1.1 1.1.1.6 6.52 ms

Table 3: Inferring the ACL in Table 1. Low RTTs signal to the
attacker that the packets were dropped by the switch’s ACL
table before they reached its MAC learning table, which would
forward the packets to the controller, increasing RTT.

Learning host communication patterns. We used the timing
attack to build a communication graph of the hosts active during a
portion of our background trace. Nodes in this graph correspond
to hosts, and edges exist between hosts that communicate. There
were approximately 150 hosts, each of which communicated with
an average of 3.1 other hosts.

Passive monitoring provides knowledge of which hosts exist on
the network because of broadcast ARP traffic. However, in a layer 2
or 3 network, passive monitoring cannot inform an adversary about
which pairs of hosts communicate. We used our attack to infer the
complete host communication graph (i.e., a graph with a node for
each host and an edge between each pair of hosts that communi-
cated) in under an hour. We performed one attack trial to check for
the existence of a forwarding rule that corresponded to each edge
of the graph. Each trial took 1 second and sent 500 test packets and
10 timing probes into the network. We compared the RTTs of the
10 timing probes with a baseline sample of RTTs, using a t-test.
If the p value was lower than 0.05, we considered the distributions
different, which indicated that the rule did not exist. Otherwise,
we considered the distributions statistically equivalent, which indi-
cated that the rule existed. We observed no false positives or nega-
tives with these parameters, because the p-values in tests where no
flow existed were orders of magnitude lower, as Figure 14 shows.

Learning ACL entries. To test ACL rule inference, we installed
the ACL rules in Table 1 onto the switch. The ACL table matched

96

Figure 15: ECDFs of probe RTTs while sending test packets to
detect OpenFlow based monitoring.

Figure 16: Timing probe RTTs for a control application that
polls the switch for statistics updates about 1000 flow rules ev-
ery 5 second.

packets before the forwarding table. The measurements of the RTT
in the attack trials is summarized by Table 3.

The trials that correspond to IP address pairs that are allowed by
the ACL reach the MAC learning table, which forward it to the con-
troller and increases the timing probe RTTs. The trials that corre-
spond to IP address pairs that are blocked by the ACL do not reach
the MAC learning table, lowering the timing probe RTT to base-
line values. These observations would enable an attack to learn the
entirety of the ACL table.

Learning about monitoring controllers. We implemented two
simple monitoring applications on our Ryu controller: a host mon-
itor that counts the number of bytes sent by each host; and a flow
monitor that counts the number of bytes in each flow. Both applica-
tions counted by installing per host or per flow rules into a counting
table that matched packets before the main forwarding table.

Figure 15 shows the distributions of timing probe RTTs in tri-
als where we sent the all pairs test stream with 32 different IP
addresses, as defined in Section 3. We sent the test streams at a
rate of 70 packets per second. The timing probe RTTs remained
at baseline levels when the controller did not run either monitoring
application. When the controller ran the flow monitoring applica-
tion, we observed a distribution that corresponded to approximately
70 new flow rule installations per second according to Figure 10,
which correctly indicated that the control plane was installing ap-
proximately 1 rule per test stream packet. When the controller ran
the host monitoring application, the timing probe RTT shifted to a
distribution that corresponded to approximately 70

32 new flow rule
installations per second, which correctly indicated that the control
plane was installing approximately 1 rule every 32 packets, or 1
rule per unique test stream IP address.

Figure 16 shows the probe RTTs that we observed during the 30
seconds that followed our trial with the flow monitor control appli-
cations, which polled the switch for flow updates every 5 seconds.
The probe RTT spikes clearly indicate this polling interval.

OpenFlow
Controller

Adversary
Host

Responding
Host

Test Packet
Stream

OpenFlow
Data Plane

Timing
Probes

Timeout Proxy

Figure 17: The timeout proxy sends a default packet forward-
ing instruction to the switch if the controller doesn’t respond
within a threshold period of time, normalizing the RTT of any
potential adversary timing probes.

4.5 Attack Evaluation Summary
In summary, our results demonstrated that the control plane tim-

ing attack was highly effective in a testbed with physical OpenFlow
equipment and realistic background traffic:

• The attack is highly effective. In trials with test flows with
rates of 500 packets per second, we were able to correctly
predict what role the control plane played in processing the
test flow with > 99% accuracy.

• Control plane load has a high impact on timing probe RTT:
processing only 500 packets per second in the control plane
more than doubled timing probe RTT, on average; flow rule
installation had approximately 10X greater of an effect. The
primary bottlenecks were inefficient software and hardware
between the switch’s forwarding engine and its OpenFlow
software agent that connects to the control server.

• Increased background traffic load increased the difference
between RTTs observed when the control plane played dif-
ferent roles, benefiting the attack.

• With repeated attack trials, adversaries could learn which
pairs of devices communicated, infer the entries in a switch’s
ACL, and uncover the monitoring behavior of a controller
with nearly perfect accuracy.

5. DEFENDING THE CONTROL PLANE
To the best of our knowledge, there has been no implementation

and testing of timing attack defenses for OpenFlow networks. The
attack proposed in this paper is challenging to defend against be-
cause of its generality: existing defenses can only protect against
specific instantiations of the attack because they do not address the
underlying issue of correlation between control plane load and con-
trol plane processing time. For example, deploying a MAC based
access control system [13] to drops packets from MAC addresses
that are not pre-authorized can stop the attack if an adversary uses
spoofed ARP timing probes. However, it does not stop adversaries
that use other types of timing probes.

In this section, we describe a robust and general software based
defense to control plane timing attacks that can run on existing
physical OpenFlow switches and evaluate it on our testbed.

5.1 An OpenFlow Timeout Proxy
The core idea of our defense, depicted in Figure 17, is to nor-

malize the RTT of attack timing probes to prevent the adversary
from learning about control plane load. We implemented this solu-
tion using a timeout proxy that is interposed between the switch’s
forwarding engine and the control server.

97

OpenFlow Controller

Linux

OpenFlow
Switch

Control Application

Forwarding Engine

Timeout
ProxyOpenFlow Agent

Linux

M
anagem

ent
N

IC
 2

Management
NIC 1

Firmware

Driver
PCI bus

Controller
NIC

Figure 18: The timeout proxy avoids the standard bottlenecks
between the data and control planes, and quickly sends default
instructions to the switch when control requests time out.

Figure 19: Probe RTTs while sending test packets that are pro-
cessed by the control plane, with and without the timeout proxy
defense, for trials with test packet rates of 400, 600, 800, and
1000 packets per second.

The timeout proxy tracks each packet that the forwarding engine
sends to the controller. If the controller does not respond within
a threshold period of time, the proxy makes a forwarding decision
for a packet by matching it against a table containing default flow
rules and sends it to the forwarding engine.

Later, if the controller sends a forwarding instruction for the
packet, the proxy drops it to avoid duplicate packets. On the other
hand, if the controller responds too soon, (i.e. before the threshold
period of time has passed), the proxy queues the response until the
threshold amount of time has elapsed. The proxy does not interfere
with any of the other OpenFlow interactions between the switch
and the controller, such as flow installation or polling.

The controller installs the default flow rules to the proxy, and sets
the timeout threshold that determines how long the proxy waits be-
fore considering a request timed-out. Increasing the interval gives
the control plane longer to respond, and decreases the number of
timeouts that will occur. However, it also increases the round trip
time of all packets processed by the control plane. Since the con-
trol plane is usually only invoked at flow set up, the threshold can
be set quite high without causing a user-noticeable impact. In our
experiments, we used a threshold of 11 ms, approximately 3 times
the average control plane RTT.

Implementation. Figure 18 shows how the timeout proxy in-
terconnects with the standard components of an OpenFlow switch.
The forwarding engine sends a copy of each controller-bound packet
to the proxy via the switch’s second management interface. This
connection avoids all of the standard bottlenecks between the con-
troller and the switch that we discussed in Section 4. The proxy
also monitors each packet transmitted between the switch and the
controller to determine which requests the controller has responded
to. Our implementation encodes forwarding instructions as IP-ToS
tags. It maps each possible default action to a unique tag. To send
an instruction to the switch for a packet, it places the appropriate tag
onto the packet and then sends it to the forwarding engine, where
it is matched against a special proxy managed table that takes the

Figure 20: Probe RTTs while sending test packets that cause
the control plane to install new rules onto the switch, with and
without the timeout proxy defense, for trials with test packet
rates of 400, 600, 800, and 1000 packets per second.

Figure 21: Attack accuracy while running the proxy.

appropriate action based on the ToS tag.
This switch behavior conforms to all OpenFlow specifications,

as OpenFlow switches do not guarantee that they will always re-
spect the controller’s forwarding instructions. The proxy is imple-
mented as an efficient C++ application with two threads: a proxy
thread that forwards packets between the switch and controller, and
maintains a list of outstanding requests to the control plane; and a
timeout thread that checks the list for requests that have timed out.

5.2 Defense Evaluation
We evaluated our timeout proxy implementation in the Open-

Flow testbed described in Section 4. The timeout proxy ran directly
on our Pica 8 3290 switch, configured to send controller responses
to the switch within 10 - 11 ms of the original request. We fo-
cused on answering three questions: (1) what effect does the time-
out proxy have on timing probe RTTs; (2) does the timeout proxy
impact an adversary’s ability to accurately predict what actions the
control plane is taking in response to test packet streams; and (3)
what are the upper limits of the timeout proxy, with respect to how
many packets per second it can handle?

Timing probe RTT. Figure 19 shows the effect of the timeout
proxy on timing probe RTTs while an adversary sends test packets
into the network that require control plane processing. Without the
proxy, latency was low (3ms) during the pre-attack period when
control plane load was low, but drastically increased when the ad-
versary host sent a test stream that increased control plane load.
The timeout proxy normalized the control plane delay: during the
period of light load, before the test stream was sent, it queued con-
trol plane responses for 7ms; during the period of higher load,
while the test stream was transmitting, it sent a default action to the
switch whenever the control plane did not respond within 11 ms.

Figure 20 plots timing probe RTTs while the adversary host sent
test packets into the network that caused the control plane to install
a new flow rule for each test stream packet. Each flow installation
puts significant load on the control plane, thus without the timeout
proxy there was a large increase to probe RTT when the adversary
transmitted the test stream. The timeout proxy again normalized
the amount of delay added to the probe RTTs, even in extreme load
scenarios that would have added >1000 ms of latency to the timing
probes.
Impact on timing accuracy. Figure 21 shows our attack’s accu-

98

Figure 22: Probe RTT distributions for test streams that in-
voked the control plane.

Rate 100 500 1000 5000 10000
Without Timeout Proxy
25th percentile RTT 2.83 3.84 18.78 4276.2 –
50th percentile RTT 2.94 4.56 22.38 4460.1 –
75th percentile RTT 3.25 5.22 29.38 4637.8 –
With Timeout Proxy
25th percentile RTT 10.83 10.63 10.55 10.84 11.97
50th percentile RTT 11.08 10.86 10.85 11.16 15.05
75th percentile RTT 11.27 11.12 11.17 13.35 20.46

Table 4: timing probe RTT statistics as attack rate changes.

racy in 300 trials where we used the t-test technique described in
Section 3 to predict whether a test stream transmitted at a rate of
500 packets per second was processed by the dataplane, processed
by the control plane, or caused new flow installations.

While using the proxy, there was no p-value threshold that re-
sulted in a high accuracy. This is in contrast to the identical trials
that we did without the proxy, where we saw that there was a wide
range of p-values that yielded perfect accuracy (Figure 8). The
proxy had this impact on the timing attack’s accuracy because it
kept the distribution of the timing probe RTTs nearly identical, re-
gardless of what role the controller played in processing the test
stream packets, as Figure 22, a plot of the average ECDFs of each
class of test flow with and without the proxy, shows. The similar-
ity between these timing probe RTT distributions suggests that the
proxy would be effective against any statistical or machine learn-
ing based approach to learn the control plane’s role by analyzing
timing probe RTT differences.

Upper limits. In our testbed, the current implementation of the
timeout proxy was effective against test streams with rates of up to
approximately 10, 000 packets per second. Table 5.2 summarizes
statistics for probe RTTs while transmitting test streams that caused
the control plane to process packets. When using the timeout proxy,
a test stream of 5, 000 packets per second shifted the timing probe
RTT distribution less than a test stream of 100 packets per second
did on an undefended network. The timeout proxy performed even
better in trials where test streams caused the control plane to install
rules. On an undefended network, we found that a test stream that
caused 10 flow rule installation requests per second had as much
of an impact on probe RTTs as test streams that caused 5, 000 flow
rule installation requests when the timeout proxy was in use.

Test streams with rates above 10, 000 packets per second were a
significant strain on several components of our testbed, even with
the timing proxy, including both the switch’s and controller’s CPU.
Two simple improvements would provide protection against attacks
with much higher rates: moving the timeout proxy application off
the switch, to a dedicated server with a stronger CPU; replacing
Ryu, the Python based control platform we used in our testbed,
with a control platform designed for performance, such as [27, 15,
31].

5.3 Minimizing Network Impact
In this section, we argue that the timeout proxy would not have

a large impact on non-attack network traffic and discuss ways that
a concerned network operator could configure the proxy to further
optimize network performance while still gaining the benefits of
increased defense against control plane timing attacks.

Forwarding correctness. Controllers almost always rely on a
default action to handle packets that they are unsure of how to
forward. These forwarding actions must be correct, in that they
cannot break the network (e.g. cause packet storms or lose pack-
ets), but may not be optimal (e.g. they may use more bandwidth
than necessary). For example, many MAC learners flood pack-
ets with unknown destination addresses, or broadcast them across
a pre-computed minimum spanning tree of the network. By con-
figuring the timeout proxy to use the same default actions as the
controller, it can provide a similar guarantee that timeout decisions
are correct but possibly non-optimal.

Limiting timeouts. The timeout proxy will only processes a small
fraction of traffic, since the control plane is generally only invoked
for flow set up, and since most control plane requests will not time
out. To further reduce the fraction of these packets that timeout
actions are applied to, a network operator can apply filtering, and
only allow the timeout proxy to send a default response for classes
of packets that may be timing probes. For example, in our example
attacks we used ARP replies as timing probes; a network opera-
tor could configure the proxy to only send default responses for
ARP replies, guaranteeing that it would have no impact on all other
classes of network traffic.

Passive timing attack detection. The timeout proxy also serves
as an ideal platform for a detection-based defense against control
plane timing attacks. A network operator could configure the time-
out proxy so that it never sends a timeout response to the switch,
and simply collects logs of all the attempted switch to controller re-
quests. This log could then be analyzed using statistical or heuristic
based approaches to detect hosts in the network potentially running
the timing attack. In this mode of operation, the timeout proxy
would not only provide security benefits, but also likely improve
the performance of the network, as it actually increases the capacity
of the channel between the data and the control plane by avoiding
common bottlenecks, as Figure 18 depicts.

6. CONCLUSION
Control plane timing attacks allow adversaries to learn about

Software-defined networks without needing to compromise their
infrastructures. We developed a more refined timing attack that
reveals new kinds of sensitive information about an OpenFlow net-
work and demonstrated that it has high accuracy against real Open-
Flow hardware. We also proposed and evaluated a robust software
based defense, capable of running on existing physical OpenFlow
switches. As SDN adoption grows and networks deploy increas-
ingly more advanced control plane applications, it is likely that
timing attacks will be observed in the wild. Our work provides a
comprehensive first look at their potential, and offers a deployable
and effective defense.

Acknowledgements We wish to thank the anonymous reviewers
for their input on this paper. This research was partially supported
by NSF SaTC grant numbers 1406192, 1406225, and 1406177,
DARPA grants numbers HR0011-16-C-0061 and PO-0004103, and
ONR grant number N00014-15-1-2006.

99

7. REFERENCES
[1] National collegiate cyber defense competition.

http://www.nationalccdc.org.
[2] Nsa uses openflow for tracking... its network.

http://www.networkworld.com/article/2937787/sdn/nsa-
uses-openflow-for-tracking-its-network.html.

[3] Protected repository for the defense of infrastructure against
cyber threats. http://predict.org.

[4] Ryu. http://osrg.github.io/ryu/.
[5] Ryu 1.0 documentation: Router.

https://osrg.github.io/ryu-book/en/html/rest_router.html.
[6] P. 8. Pica 8 3290 datasheet. http://www.pica8.com/

documents/pica8-datasheet-48x1gbe-p3290-p3295.pdf.
[7] A. Andreyev. Introducing data center fabric, the

next-generation facebook data center network.
https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/, 2014.

[8] M. Appelman. Performance analysis of openflow hardware.
2012.

[9] A. Bortz and D. Boneh. Exposing private information by
timing web applications. In Proceedings of the 16th
international conference on World Wide Web, pages
621–628. ACM, 2007.

[10] B. B. Brumley and N. Tuveri. Remote timing attacks are still
practical. In Computer Security–ESORICS 2011, pages
355–371. Springer, 2011.

[11] D. Brumley and D. Boneh. Remote timing attacks are
practical. Computer Networks, 48(5):701–716, 2005.

[12] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise.
ACM SIGCOMM Computer Communication Review,
37(4):1–12, 2007.

[13] Cisco. Configuring port security. http:
//www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/
ios/12-2SX/configuration/guide/book/port_sec.pdf.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: scaling flow
management for high-performance networks. In ACM
SIGCOMM Computer Communication Review, volume 41,
pages 254–265. ACM, 2011.

[15] D. Erickson. The beacon openflow controller. In Proceedings
of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 13–18. ACM, 2013.

[16] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. In ACM SIGPLAN Notices,
volume 46, pages 279–291. ACM, 2011.

[17] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker, R. Clark,
and E. Katz-Bassett. Sdx: A software defined internet
exchange. In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 551–562. ACM, 2014.

[18] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. Elastictree:
Saving energy in data center networks. In NSDI, volume 10,
pages 249–264, 2010.

[19] W. Hurd. The data breach you haven’t heard about.
http://www.wsj.com/articles/the-data-breach-you-havent-
heard-about-1453853742, 2016.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.

B4: Experience with a globally-deployed software defined
wan. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, pages 3–14. ACM, 2013.

[21] K. Jarvis, J. Milletary, and T. Intelligence. Inside a targeted
point-of-sale data breach, 2014.

[22] M. Joye, P. Paillier, and B. Schoenmakers. On second-order
differential power analysis. In Cryptographic Hardware and
Embedded Systems–CHES 2005, pages 293–308. Springer,
2005.

[23] R. Kloti, V. Kotronis, and P. Smith. Openflow: A security
analysis. In Network Protocols (ICNP), 2013 21st IEEE
International Conference on, pages 1–6. IEEE, 2013.

[24] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
Advances in Cryptology—CRYPTO’99, pages 388–397.
Springer, 1999.

[25] P. C. Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In Advances in
Cryptology—CRYPTO’96, pages 104–113. Springer, 1996.

[26] T. Kohno, A. Broido, and K. Claffy. Remote physical device
fingerprinting. Computing, 2:2, 2005.

[27] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al.
Onix: A distributed control platform for large-scale
production networks. In OSDI, volume 10, pages 1–6, 2010.

[28] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, page 19. ACM, 2010.

[29] J. Leng, Y. Zhou, J. Zhang, and C. Hu. An inference attack
model for flow table capacity and usage: Exploiting the
vulnerability of flow table overflow in software-defined
network. arXiv preprint arXiv:1504.03095, 2015.

[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[31] B. S. Networks. Project floodlight.
http://www.projectfloodlight.org/floodlight/.

[32] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, et al.
The design and implementation of open vswitch. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 117–130, 2015.

[33] S. Shin and G. Gu. Attacking software-defined networks: A
first feasibility study. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined
networking, pages 165–166. ACM, 2013.

[34] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu,
and M. Tyson. Fresco: Modular composable security
services for software-defined networks. In NDSS, 2013.

[35] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith. Enabling
practical software-defined networking security applications
with ofx. In Proceedings of the 2016 Network and
Distributed System Security Symposium (NDSS), 2016.

[36] Wikipedia. Student’s t-test — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=
Student’s%20t-test&oldid=723048300.

[37] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-vm side channels and their use to extract private keys.
In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 305–316. ACM, 2012.

100

