
Policy Routing using Process-Level Identifiers
Oliver Michel, Eric Keller

University of Colorado Boulder
{oliver.michel, eric.keller}@colorado.edu

Abstract—Enforcing and routing based on network-wide poli-
cies remains a crucial challenge in the operation of large-scale
enterprise and datacenter networks. As current dataplane devices
solely rely on layer 2 – layer 4 identifiers to make forwarding
decisions, there is no notion of the exact origin of a packet in
terms of the sending user or process. In this paper we ask
the question: Can we go beyond the MAC? That is, can fine-
grained process-level information like user ids, process ids or
a cryptographic hash of the sending executable be semantically
used to make forwarding decisions within the network? Toward
this goal, we present a system enabling such capabilities without
the need for modification in applications or the operating system’s
networking stack. We implemented an early prototype leveraging
the P4 technology for protocol-independent packet processing
and forwarding in conjunction with on-board tools of the Linux
operating system. We finally evaluate our system with regards
to practicability and discuss the performance-behavior of our
implementation.

I. INTRODUCTION

The introduction of software-defined networking (SDN) led
to a significant shift in the way today’s computer networks are
managed and operated [7], [10]. The SDN paradigm proposes
a network architecture in which the control and forwarding
planes are decoupled, offering logically centralized, flexible,
and programmable network control. Using open interfaces to
forwarding devices such as switches, the centralized control
plane communicates to the forwarding functions.

One of the first practical instantiations of SDN was
Ethane [5], an architecture allowing the enforcement of
enterprise-wide security policies using a centralized policy
store and forwarding devices implementing these policies in
the data plane. While the research community subsequently
presented more sophisticated models for enforcing policies us-
ing SDN architectures [13], [14], [16], most of these technolo-
gies are primarily network-oriented in the sense that the finest
level of identifying a flow’s origin is typically a combination of
its MAC or IP source address together with information about
the protocols (potentially incorrectly) inferred from TCP/UDP
port numbers.

As these identifiers can easily be changed and in fact do
not uniquely identify a communicating user or service pair, we
believe that using more detailed and more accurate information
about a particular flow is crucial for the task of implementing
security policies in today’s computer networks.

In this paper we ask: Can we go beyond the MAC? That
is, can we identify network traffic not just based on network
headers, but by all of the information that an operating system
uses to distinguish running applications.

Instead of identifying a user or service solely by information
available to forwarding devices within the network (i.e., L2 -
L4 header information), we propose an architecture where
available process-level identifiers such as user ids, process ids,
or host firewall marks (that all remain unused today) can be
used to steer or block traffic within the network.

In this work we present PRPL1, an architecture and sys-
tem which allows making network routing and forwarding
decisions based on fine-grained identifiers. This architecture
allows packet processing on a real per-user or per-process
granularity instead of mapping a user to a MAC address which
can easily be changed and even more importantly is by no
means a unique identifier for a user in a multi-user system.

In the process of designing this system several challenges
emerged: Packets must be annotated with higher-level infor-
mation at the origin host, the data plane must be able to see
and understand the annotated finer-grained information about
traffic, and finally packet annotations must be correct, valid
and securely determined without trusting the end host. We
address each of these challenges in this paper.

As a step towards the solution of the problem of annotating
packets with finer-grained information and making decisions
based on these annotations, we leverage the trend towards
more programmable hardware in the context of software-
defined networks [2]. While the most prominently used SDN
control protocol OpenFlow [1] has a limited set of header-
match fields [12], the community presented approaches that
allow matching packets based on arbitrary bit patterns and
custom header formats [3], [9], [11], [15]. In this work we
are using the P4 technology [3] to match a custom flow
identification header within the data plane.

II. BEYOND THE MAC: THE NEED FOR FINER GRAINED
CONTROL

Today’s networking equipment has much more sophisticated
responsibilities than delivering packets from a source to a
destination. Middleboxes perform complex network functions
such as address translation, traffic prioritization and opti-
mization, load balancing, as well as intrusion detection to
name a few. Without doing computationally expensive and
performance-intensive deep packet inspection (DPI), these
tasks are performed on a limited set of knowledge about a
packet’s origin and destination in terms of the actual user or
service that injected the packet into the network or is expecting
the packet.

1Policy Routing using Process-Level Identifiers — the paper title, non
sensically pronounced purple

A. Limited information

This limited knowledge typically consists of layer 2 – layer
4 addresses (i.e., TCP and UDP port numbers, IP addresses,
and MAC addresses). These identifiers however do not neces-
sarily uniquely identify a service or a user or may be forged.
Furthermore, with the widespread use of virtualization in both
datacenters and enterprise networks (e.g., using terminals or
thin clients) L2-L4 identifiers even further lose semantics.
Besides the problem that multiple users may share the same
address, there are various issues with identifiers at the different
layers:

• TCP/UDP PORTS: Without using DPI, there is no way
making sure that a packet destined for a well-known port
is indeed carrying traffic of that service as any socket
may bind to any transport-layer address.

• IP ADDRESSES: IP addresses may frequently change and
are commonly translated into a different address space.

• MAC ADDRESSES: In virtualized environments MAC ad-
dresses can be arbitrarily set. Using them as an identifier
for a user which previous approaches do, is not a safe
assumption in respect to multi-user systems.

• LABEL SWITCHING IDENTIFIERS: Label switching tags
(such as MPLS tags) are typically introduced within
the network and are determined from standard L2-4
identifiers.

B. Fine-grained information

Compared to devices within the network, the hosts sending
and receiving packets have access to a vast array of additional
information about a packet’s origin and its properties. We
therefore investigate in this paper how such information can
be used not only at the end hosts but also within the network
for routing and forwarding purposes.

Modern operating systems provide advanced techniques to
filter incoming and outgoing packets and apply custom actions
before a packet even left the source host or reached the
destination process. Linux provides such capabilities in the
form of iptables and the netfilter system. Similar mechanisms
exist for other operating systems, e.g., the Microsoft Firewall
Architecture. Using these tools, packets can be filtered using
a wide array of parameters. Among them are the process id
of the sending process, their owner with user and group id,
the CPU which is handling a specific packet, the payload
size of the packet, quota information, connection status or
the control group of the sending process. Figure 1 depicts a
selection of the various additional information available to the
operating system in comparison to a typical forwarding model.
It becomes apparent that this valuable additional information
remains unused in today’s network setups.

Additionally, from this knowledge we can infer further
information about a process or user; examples are the number
and list of open file descriptors or their CPU or memory
usage. It is even possible to obtain a cryptographic hash from
a processes executable in order to verify that packets originate
from a specific version of the application or to prove that the

Process Process Process

Network
Interface

IP
MAC

Network

today PRPL

user-id, group-id
process-id
control-group
open files
executable fingerprint

PortPort

process-level
information remains

unused

Fig. 1. Fine-grained process-level identifiers and information

process is indeed an instance of the expected application (as
opposed to relying on the process name).

C. Benefiting scenarios

We now briefly elaborate on a few example scenarios where
extended information about a packet can be useful. Instead
of presenting use-cases with their complete solutions, we
rather like to give suggestions and share our (still limited)
imaginative set of interesting applications.

1) Identifying user sessions: Enforcement of (security)
policies remains a major management challenge in today’s
enterprise networks. Our system is a first step towards a higher
level of granularity in defining and enforcing policies. While
we realize that a user id or a process id is not necessarily
unique within an administrative domain, the combination of
multiple parameters (potentially mixed with hardware identi-
fiers) can form a unique identifier for a user session.

2) Identifying software: By matching streams of packets to
a process id, it is possible to define policy rules for certain
services. Today, this is mostly performed by matching on
TCP or UDP port numbers which however is not necessarily
accurate as any service may bind to any port number. Today
this problem would need to be solved using expensive deep
packet inspection.

3) Isolating vulnerable software: Keeping software up to
date and secure by applying security patches quickly remains
a challenging task in large organizations. In addition to the
previous example, a process id may be used to infer the version
number of a particular software by either reading the version
number explicitly or by taking a hash of the binary. Using
PRPL, packets originating from a known to be vulnerable
software may temporarily blocked or sent through additional
inspection (e.g., by an intrusion detection system) before a
respective patch is released and installed.

4) Quality of Service: Another potentially interesting use-
case is the enforcement of quality of service requirements
or quota constraints in networks. Packets exceeding a certain
quota on a host or originating from a bandwidth expensive
service may for example be metered within the network. In the
case of multi-homed hosts (e.g., in datacenters) certain services
may be sent over a different network using a centralized policy

that can easily be enabled or disabled in the field as opposed
to per-host routing configuration.

5) Forensic analysis: Using fine-grained policies and as-
suming that certain statistics about packets matching a policy
rule are logged, may be valuable for security audits or detailed
forensic analysis of attacks or data breaches.

III. RELATED WORK AND ENABLING TECHNOLOGIES

A. Network policy enforcement

After one of the first centralized network-policy enforce-
ment systems leveraging SDN technology Ethane [5], the
community has further refined and optimized ideas of this
early work. While the vast amount of work in this area
focuses on middlebox-traversal policies relying on capabilities
of specific middleboxes [6], [14], we would like to point
out two papers that present approaches for centralized policy
management enforced by various devices within a network and
are as such more similar to our work. FortNox [13] introduces
a security enforcement kernel on top of the NOX SDN
controller, allowing for role-based authorization of OpenFlow
applications and enforcement of security constraints. Merlin
[16] proposes a centralized framework for network-wide en-
forcement of policies by automatically partitioning complex
policies into components that can be placed on a variety of
devices. However, while spanning the entire network, both
systems rely on standard header fields.

B. More programmable hardware and protocol-independent
forwarding

Traditional SDN technologies are designed around match
and action patterns in the data plane based on packet header
fields. The most prominent implementation of this architecture
is OpenFlow [1]. The current version of OpenFlow (1.4)
supports 41 different match fields [12]. Still, most hardware
implementations of the OpenFlow specification support any-
thing between 12 and approximately 20 header fields. To our
knowledge there is no hardware implementation of the full
OpenFlow 1.4 specification today. With this trend of slow
adoption, there is (on top of technical challenges) a demand
for a paradigm shift. Instead of continuously extending the
OpenFlow protocol, it should be possible to match packets
on arbitrary bit patterns. As this is a relatively trivial task in
software, it is extremely complicated at high packet rates in
hardware and at scale.

Recent research exploring more programmable hardware
has shown that this vision of flexible packet forwarding is not
too far fetched and can actually be achieved at terabit speeds
using custom and specialized ASIC designs [2], [8], [11]. As
these first hardware designs emerge, relatively early work on
programming abstractions has recently been presented. Apart
from [15], which proposes this concept in the domain of
network processors, P4 [3] is the most prominent example of
work in this area as it aims to cover the entire processing range
from ASICs, over FPGAs, NPUs to CPUs using a common
language interface. Using the P4 language, an abstract for-
warding model can be described which defines how a packet

is traversing a data plane device, which bit ranges need to be
extracted and matched and how a packet is initially parsed and
further processed. This abstract forwarding model can then be
compiled using a switch-vendor specific compiler to a target-
dependent version which then provides platform-compatible
description of the processing flow.

IV. ARCHITECTURE

The main goal of PRPL is to process streams of packets
in the dataplane using the currently unused fine-grained addi-
tional information about applications that an operating system
has. We define a stream as a sequence of related packets, and
can be the traditional 5-tuple flow, or all packets matching
a particular policy rule (or any other grouping). To do so,
as shown in figure 2, the PRPL architecture has three main
components.

Within end-hosts, packets are mapped to policy rules and
prepared for the data plane by annotating them with a unique
token (section IV-A). Secondly, packets are processed and
handled within the network through data plane devices that
match our custom tokens (section IV-B). Finally, a control
layer consisting of a logically centralized policy controller
and store responds to rule requests, configures the data plane
as well as the host-internal filtering and classification mecha-
nisms using a custom control protocol (section IV-C). This is
akin to a typical reactive SDN approach.

The general architecture of our system is depicted in fig-
ure 2. We now elaborate on each of the three major building
blocks.

A. Annotating packet streams

In PRPL, we introduce a new header between a packet’s L2
and L3 headers to represent process-level information. With
the variety of possible information a packet may be annotated
with (as explained in section II-B), it is inherent that all these
parameters can not be directly encoded in a custom header.
This is for two reasons: The header would have to be long to fit
the variety of fields and secondly the system would be harder
to extend as the header format would have to be modified
when introducing new parameters.

Each packet sent by an application needs to be first classified
using the combination of (fine-grained) policy rule parameters
and then tagged with the respective token. Upon matching
a policy specification, packets are marked with a locally
unique identifier. We currently do not support overlapping
policies where a given packet could match multiple policy
specifications and leave this issue open for future research.

Whenever a new token is required, the agent requests a new
token from the token authority in the central controller in a
reactive manner. A new token is then cached in the agent to
save unnecessary communication to the controller and latency
overhead for subsequent packets of a particular stream or
flow. Finally, the PRPL header containing the token is inserted
between the L2 and L3 headers of the packet and the packet
is sent out to the network.

 Network

Policy
Controller

Directory
Service

verify
existence

install
flow entries

Gateway
Switch

Internet

user domain

admin domain

PRPL Agent

Process Process

Socket Socket

Switch

request stream/
obtain token

ANNOTATING PACKET STREAMS PRPL
FORWARDING

CONTROLLING/DISTRIBUTING POLICY

A

PRPL token action
0xa4..23 drop

reroute0xd3..42

B

C

Process

Socket

classify/mark annotate/forward

configure

Fig. 2. System architecture

Inherently, this reactive approach comes with a latency
overhead when waiting for a new token and copying the data
for embedding of the additional header. We however argue
that this latency overhead is negligible as the controller is
located in the same administrative domain and thus most likely
in the same (local area) network. We leave the discussion of
implications of such an architecture in a wide-area setting for
future research.

B. PRPL Forwarding

Packet forwarding in PRPL is based on the inserted PRPL
header. Clearly, this header is not a standard header and
thus cannot be parsed by today’s rigid forwarding devices.
However, with the recent trend of more programmable hard-
ware, which we elaborate more on in section III-B, and new
programming abstractions that make it possible to use this new
flexibility, we believe that in the near future packet forwarding
can be done on arbitrary bit patterns, which can be changed
in the field (i.e., not requiring expensive new hardware like
today). A recent proposal toward this goal is P4 [3], which
we leverage in this work.

In a limited way PRPL could still be deployed without
protocol-independent forwarding mechanisms. This however
would require misusing one of the standard header fields
(e.g., the IP source field) to encode custom tokens. At the
expense of more state within the network, the use of network
address translation and SDN techniques would still allow
correct packet routing.

Using the protocol-independent forwarding techniques, we
can define a parser that expects our custom header after
stripping the L2 encapsulation from the packet. From this
header, the token (being located at a specific bit-range) can
then be extracted and used as a match field in a similar
manner like traditional identifiers. The token can then trigger
forwarding decisions on top of standard match/action tables
with the policy token or flow token being the lookup key.

In our current design we require all packets within an
administrative domain using our system to carry a token.

Still, an empty (all zeroes) token may denote that no policy
rule applies to the packet and the policy routing mechanisms
should be bypassed. Finally, packets coming from outside of
the network (e.g., the Internet) must also be assigned a token
in order to ensure compatibility with the network’s forwarding
mechanisms. As the simplest solution we envision adding a
default token that designates a packet as external to each
packet. This would make it possible to treat the packet as
untrusted. Of course, finer-grained tokens (which however in
this case would rely on standard L2-L4 header fields) can be
used as well.

In an alternative (hybrid) approach, a custom EtherType
could denote packets carrying the extra header. This would
make it possible for annotated and unannotated packets to use
the same forwarding infrastructure alongside.

C. Controlling and distributing policy

Our design uses a centralized controller managing the
distribution of policies with their unique tokens, approving
requests, and configuring forwarding state in the data plane.

The controller provides a management interface using which
new policies may be defined and distributed to the agents
running on end-hosts, which then configure the local state
and intra-host classification and annotation mechanisms. The
classification part is typically implemented using operating-
system tools (e.g., iptables in Linux). By configuring these
tools through a centralized controller, we provide a control
interface not only to networking functions but also for host
configuration.

The controller maintains the list of distributed tokens and
their respective policy rules or flow information ensuring
uniqueness of tokens within the administrative domain. In a
reactive manner the controller provides agents with new tokens
upon an approved request for a flow belonging to a policy or
a stream’s first packet.

Before such a new token is given out to an agent, the
controller is also responsible for setting up the required

forwarding state in the network (i.e., a match and action pair)
in order to actually enable enforcement of the policy.

Instead of solely relying on the policies configured within
the controller, we also envision an interface to directory
services like LDAP or ActiveDirectory. This would enable
more secure verification of a user session by checking if a
particular user actually exists and is indeed currently logged
into a specific machine.

In order to implement a split between the user and admin-
istrative domains, our system currently leverages the concept
of superuser privileges. That is, the per-host policy agent as
well as virtual interfaces are owned by the superuser ensuring
users cannot bypass the traffic filtering process. A problem
however arises when users need to run services that require
well-known reserved ports. However, for solving this problem
Linux provides the privbind mechanism to specify policies
on a per-host basis allowing a user to bind a socket to a
reserved port. Akin to this, similar techniques exist to give
users extended privileges on a constrained set of subsystems or
commands without the need of giving full superuser privileges.

V. PROTOTYPE IMPLEMENTATION

We implemented a prototype of PRPL to test and evaluate
enforcement of basic network policies. The host agent which
uses pre-configured tokens is implemented in C, while the for-
warding logic is implemented in P4 code. For testing purposes
we are using the P4 behavioral model which is a software
implementation of a P4 switch. We use this software-switch
in conjunction with Mininet. The software switch is exposing
an Apache Thrift RPC API which allows the insertion or
deletion of forwarding rules at runtime. Our Mininet testbed
setup consists of three end-hosts connected to the P4 switch.
This setup including all custom routing and packet filtering
rules using iptables runs on a Ubuntu 14.04 Linux machine.

A. Mapping packets to policy rules

For the basic set of mapping functionality we solely rely on
standard tools shipping with Linux. As previously mentioned,
we leverage iptables as a first layer for filtering packets
based on one or a combination of the various available
match parameters. A typical rule to match a user’s id looks
like this: iptables -I OUTPUT -t mangle -m owner

--owner-uid 1042 -j MARK set-mark 0x1. Based on
internal firewall marks, packets are then redirected to a
custom routing table using rules set up through the ip
rule command. This routing table has a single (default)
route to the particular virtual interface of the policy. Figure 3
illustrates the different rules and table entries needed for this
setup.

The PRPL agent is implemented in about 200 lines of C. It
is mainly a proof of concept for the header and token insertion
mechanisms. The program maintains a list of file descriptors
of virtual interfaces and uses epoll for multiplexing. Based on
the virtual interface a packet is read from, a different (currently
statically defined) token is assigned to the packet before it is
being sent out to the network using a raw socket. We leave

iptables OUTPUT chain
--uid-owner1003 --set-mark 0xd2

1003

process

policy_d2
default dev tun2

policy_54
default dev tun5

from all mark 0xd2 lookup policy_d2
routing rules

/etc/iproute2
/rt_tables

tun2

Policy Agent Network

tun5

admin domain

user domain

Fig. 3. Detailed packet mapping flow within a participating host

Ethernet
Policy Token

IP

...

Eth PRPL

TCP UDP

0xd3...42 drop
0xa4...29 reroute

continue0xa6...76

IP

10.0.1/24
10.0.2/24

1
2

Routing Table

Policy Table

Parsing FSMIncoming Packet

Fig. 4. Schema of data plane implementation in P4

the full implementation of the policy controller and custom
control protocol open for future work.

B. Making forwarding decisions

The relatively simple data plane is implemented on top
of an example static router implementation in P4. The data
plane currently supports dropping a packet or rewriting the
destination IP address based on a policy. As a default action,
the packet is being handed to the normal routing stack. We
leverage a custom P4 table to match the token and take one
of the three (above described) actions based on the matching
table entry. This table is the first layer of processing a packet
traverses in our switch implementation. In order to do this, we
had to modify the initial parsing state machine to first extract
the policy token before taking any other actions. On the last
hop of a packet, the PRPL header is removed before the packet
is sent out and received by an end host.

VI. EVALUATION

A. Performance

Since in our current implementation of PRPL every packet
being sent out to the network needs to be processed in user-
space and annotated with a token, the PRPL tunnel client may
become a performance bottleneck. Every packet requires two
additional context switches as well as the time required to copy
the packet into a new buffer that contains the token. We see
an increase in end-to-end transmission delay in the order of
one to two milliseconds which we believe is negligible. Based
on these preliminary measurements the main overhead here
comes from copying the packet data into a new buffer. Our

������ ������������

����� ����

��� ��� ��� ��� ���� ���� ����
�

��

���

���

���

������ ���� [�����]

�
�
�
��
��
�
�
�
�
�
�
[�
�
��/
�
]

Fig. 5. TCP throughput as a function of packet size

��� �������

���� �������

����� �������

� � �� �� ���
�

��

��

��

��

������ �� ������ ����� ��� ���� (����)

�
��
��
�
�
��
�
�
�
�
��
�
[�
���

]

Fig. 6. Minimum required token size as a function of policy rules per host

throughput measurements using iperf show that there is little to
no decrease in throughput performance for small packet sizes.
However, at larger packet sizes, the maximum throughput we
were able to achieve in our Mininet setup was in the order of
110 - 130 Mbit/s (see figure 5).

B. Token size

Our current token size of 32 bits allows for 232 different,
unique tokens. We now evaluate if this number is sufficient
even for large setups. The following discussion is based on
medians from the PRV2 datacenter from Benson et.al. [4].
Assuming a setup with 48 servers per top-of-rack (ToR)
switch, and a median of 1140 active flows per ToR switch
at any given time, each server handles about 23.75 active
flows at any given time. If we further assume that each 5-
tuple flow matching a certain policy rule is annotated with a
flow- and rule-unique token, the number of bits required in
the header for accommodating all unique streams, is simply
given by dlog2(a × n × m)e, with a being the number of
active flows per host, n being the number of hosts within the
administrative domain, and m being the number of policy rules
per host. Figure 6 shows a plot of this expression as a function
of m for different network sizes with a = 23.75 on logarithmic
scale. We see that even for large networks (≥ 10000 hosts)
a token size of 32 bits is absolutely sufficient. For smaller
networks, even a token size of only 16 bits may be adequate.

VII. CONCLUSION

In this paper we introduced the concept and architecture of
PRPL — Policy Routing using Process-Level Identifiers. Our
contributions are threefold: We make a case for why network
management can greatly benefit from fine-grained process-
level information and elaborate on several example use cases.
Secondly, we present a system architecture that enables packet
processing and forwarding based on this process-level infor-
mation without requiring any modifications of programs or the
operating system’s networking stack. Finally, we implemented
a prototype of our system using the P4 system for protocol-
independent forwarding. To our knowledge this is one of the
first practical instantiations of P4 in an academic paper.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by NSF NeTS award
number 1320389.

REFERENCES

[1] OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
CCR, 38(2), 2008.

[2] Forwarding Metamorphosis: Fast Programmable Match-action Process-
ing in Hardware for SDN. In Proceedings of the ACM SIGCOMM 2013
Conference, SIGCOMM ’13. ACM, 2013.

[3] P4: Programming Protocol-independent Packet Processors. ACM SIG-
COMM CCR, 44(3), 2014.

[4] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, IMC ’10. ACM, 2010.

[5] M. Casado, M. Freedman, and J. Pettit. Ethane: Taking control of the
enterprise. ACM SIGCOMM CCR, 37(4), 2007.

[6] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. En-
forcing Network-Wide Policies in the Presence of Dynamic Middlebox
Actions using FlowTags. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’14), pages
543–546, 2014.

[7] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. ACM SIGCOMM CCR, 35, 2005.

[8] Intel. Intel Ethernet Switch Silicon FM6000.
http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ethernet-switch-fm6000-sdn-paper.pdf.

[9] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling Packet
Programs to Reconfigurable Switches. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’15. USENIX Association, 2015.

[10] H. Kim and N. Feamster. Improving network management with software
defined networking. Communications Magazine, IEEE, 51(2), 2013.

[11] C. Kozanitis, J. Huber, S. Singh, and G. Varghese. Leaping Multiple
Headers in a Single Bound: Wire-speed Parsing Using the Kangaroo
System. In Proceedings of the 29th Conference on Information Com-
munications, INFOCOM’10. IEEE Press, 2010.

[12] ONF. OpenFlow 1.4 Switch Specification, 2013.
[13] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A

security enforcement kernel for OpenFlow networks. In Proceedings of
the first workshop on Hot topics in software defined networks, HotSDN
’12. ACM, 2012.

[14] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13.
ACM, 2013.

[15] H. Song. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, HotSDN ’13. ACM, 2013.

[16] R. Soul, R. K. E. G, and N. Foster. Managing the Network with Merlin.
In Proceedings of the 12th ACM Workshop on Hot Topics in Networks
(HotNets-XII). ACM, 2013.

