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Abstract—Software Defined Networks (SDNs) are an appeal-
ing platform for network security applications. However, existing
approaches to building security applications on SDNs are not
practical because of performance and deployment challenges. Net-
work security applications often need to analyze and process traf-
fic in more advanced ways than SDN data plane implementations,
such as OpenFlow, allow. Much of an application ends up running
on the centralized controller, which forms an inherent bottleneck.
Researchers have proposed application specific modifications to
the underlying data plane to gain performance, but this results
in a solution that is not deployable as it requires new switches
and does not support all network security applications. In this
paper, we introduce OFX (the OpenFlow Extension Framework)
which harnesses the processing power of network switches to
enable practical SDN security applications within an existing
OpenFlow infrastructure. OFX allows applications to dynamically
load software modules directly onto unmodified network switches
where application-dependent processing/monitoring can execute
closer to the data plane at a rate much closer to line speed. We
implemented OFX modules for security applications including
Silverline (ACSAC’13), BotMiner (Sec’08), and several others
motivated by the custom OpenFlow extensions in Avant-Guard
(CCS’13). We evaluated OFX on a Pica 8 3290 switch and
found that processing traffic in an OFX module running on the
switch had orders of magnitude less overhead than processing
traffic at the controller. OFX increased the performance of the
evaluated security application by 20-40x as compared to standard
OpenFlow implementations and up to 1.25x when compared to
middlebox implementations running on dedicated servers. This is
all achieved without the need for additional or modified hardware.

I. INTRODUCTION

Software Defined Networking (SDN) has seen widespread
adoption by many companies such as Google, Facebook, and
Microsoft. Naturally, the security research community has
recognized the potential to leverage programmable networks
for novel security applications [24], [30], [15]. Unfortunately,
existing approaches to building network security applications
on top of SDNs are not practical – they either limit perfor-
mance or deployability.

A. Limitations of SDN-based Security Applications

Performance Limitations Network security applications of-
ten require processing and analysis techniques that are more
advanced than SDN data planes allow. OpenFlow, the de-
facto SDN standard for controlling switches, has many noted
data plane limitations [16], [35], for example. Due to these
limitations, SDN based security applications must implement
much of their functionality in the control plane (i.e., at the
centralized network control server that manages the data plane
switches). Fresco [34] takes this approach, and provides a
framework that simplifies the development of control plane
network security applications. However, implementing func-
tionality in the control plane hinders performance because the
communication channel between the data plane and control
plane is a bottleneck that adds latency and limits the amount
of traffic that the security application can process. It also limits
scalability because there are usually far fewer controllers than
switches in a network.

For SDN to be practical for security applications,
the data plane needs to support more advanced
functionality.

Deployment Hurdles Outside of the security domain,
vendors have added features to switches with software based
data plane extensions (commonly referred to as slow path
processing [29]), to provide additional functionality close
to the hardware-based forwarding path. For example, Cisco
switches run the embedded event manager (EEM) [3] which
can trigger minor reconfigurations based on a preset selection
of events, and BigSwitch Network pushed the ARP handling
from its Floodlight [8] SDN control into its Switch Light
operating system that runs on whitebox SDN switches [20].
Avant-Guard [35] demonstrated that a similar approach
can also be effective for security applications by designing
custom switch data planes that provide new functionality.
Unfortunately, these approaches have two drawbacks that
make them impractical. First, they define extensions that
are point solutions with only certain applications in mind.
Security applications are diverse in functionality, and unless
an extension is programmable, it is not likely to benefit many
applications besides the ones in mind when it was designed.
Furthermore, for network operators to use a custom data
plane, or vendor specific extension, they must deploy new
hardware and/or software into the network which may be
incompatible with the existing SDN infrastructure (hardware
and software).
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For SDN to be practical for security applications,
the added data plane functionality should be highly
programmable and work within existing SDN tech-
nology for both hardware (switches) and software
(controllers).

B. Our Proposal: OpenFlow Extension Framework

In this paper we introduce an OpenFlow Extension Frame-
work (OFX), which makes SDN practical for network security
applications by allowing them to extend most OpenFlow
enabled switches with custom functionality. To accomplish
this task, OFX leverages switches’ pre- existing general pur-
pose hardware and software. Most modern switches run a
small operating system [10], [5] (typically Linux- based)
with computational capabilities that are currently being under
utilized. OFX opens these resources up to network security
applications by allowing them to install OFX software modules
that perform application specific processing/monitoring tasks
directly on the switch, closer to the data plane. This approach
makes many security applications much more practical using
existing hardware because it reduces the overhead of perform-
ing complex packet processing and the amount of interaction
between the data and control plane.

A typical OFX enabled application, e.g., a DDoS detector,
defines custom switch functionality , e.g., threshold tests for
the rate of traffic flow à la Avant-Guard, that can be deployed
onto switches within the network. Once executing in the
switch, the OFX module can integrate with the existing Open-
Flow framework to monitor and process traffic, install forward-
ing rules, and communicate with the centralized controller (or
other servers on the network) if needed. Functionally, OFX
provides new control features and programmability between
the data plane and the control plane on the switch where
packets can be processed without having to traverse the long
path to the controller.

We implemented and evaluated OFX-based applications
in a testbed with a widely deployed model of a hardware
OpenFlow switch (Pica 8 3290) to measure the overhead
and benefits of using OFX. We found that the overhead to
process packets in an OFX module running on the switch was
orders of magnitude lower than the overhead to process packets
at the OpenFlow controller. Furthermore, OFX modules pro-
vided similar benefits and functionality as previously proposed
switch extensions, such as Avant-Guard, but with greater de-
ployability because OFX modules run on unmodified hardware
switches. Finally, by deploying custom OFX modules onto the
switch, the capacity of the network security applications we
tested increased by 20x − 40x when compared to using an
OpenFlow control plane implementation alone. OFX had up
to 1.25x higher capacity when compared against middlebox
implementations running on dedicated servers. These gains
are possible with adding any hardware to a SDN network or
modifying its low level software.

Analyze

Process Control

Inline security middlebox 

(a)

Analyze

Process

Control

Tap based security middlebox 

(b)

Fig. 1: Network security using a middlebox.

C. Contributions

To summarize, this work’s contributions are as follows:

• Introduction of a novel SDN framework that allows
data plane extensibility within existing SDN infras-
tructures.

• Demonstration of OFX capability by implementing
three security applications using OFX for DDoS pro-
tection, network based taint tracking declassification,
and botnet detection.

• Evaluation of OFX on real OpenFlow switching hard-
ware demonstrating that it meets performance and
deployment requirements.

We also wish to stress that this is the first proposal, to
the best of our knowledge, that allows security applications to
extend existing, unmodified OpenFlow switches in a functional
and high-performance manner. Further, OFX is a general
platform and can be used for a variety of applications beyond
those described herein, and may provide benefits to the wider
SDN community.

II. BACKGROUND AND MOTIVATION

OFX builds on many years of research in network security.
Here we describe several network security applications and
how they would be traditionally implemented. We then discuss
how these applications could benefit from SDN in theory
and the drawbacks to using SDN in practice. From this, the
motivation for practical SDN based security applications with
OFX will follow.

A. Network Security Applications

Many network-based security applications can be decom-
posed into three parts, as illustrated in Figure 1: processing,
analysis, and control. The processing component of the secu-
rity application performs measurements and extracts features
from network traffic. Next, the application must analyze the
data, come to a decision point, and draw conclusions, e.g., is
there nefarious activity or not? Finally, the control portion of
the logic handles traffic with respect to the analysis results.

Traditionally, security applications are deployed onto mid-
dleboxes – specialized equipment or software that exists in-line
with network activity or taps into the network to receive copies
(or samples) of network traffic. Both setups can perform pro-
cessing and analysis, but while in-line middleboxes can affect
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network traffic directly (e.g., drop traffic like a firewall), tap-
based applications can only create alerts for other equipment or
network operators to take action on ( e.g. an intrusion detection
system generating alerts for a network operator).

As a running example of the kinds of security applications
we wish to support with OFX, we outline middlebox imple-
mentations of three sample security applications:

• DDoS Detection: Consider a DDoS detector that ef-
fectively functions as a monitor of bandwidth usage at
a host (e.g., web server) and will alert a network op-
erator when thresholds are exceeded. If implemented
as a tap-based application, it would: 1) measures the
length of each packet sent to the monitored host
(processing); 2) calculates the bandwidth usage and
determines if it is above the threshold (analysis); 3)
alert the network operator if the bandwidth is above
the threshold (control).

• Network Taint-Tracking Declassifier: As an example
of an inline network security application, we consider
Silverline [32], a taint tracking system that contains
a network based declassifier which ensures a web
client has permission to receive the data that it has
requested from a locally monitored web server before
the packets containing data leave the local network.
Implemented as an inline application, the declassifier
would: 1) extract the taint tag from each packet
(processing); 2) check the tag against the client’s
permissions stored in a Silverline database (analysis);
3) if the client has the permission to view the data in
the packet, allow it to pass, otherwise drop the packet
(control).

• Botnet Detection: As a third example, consider in-
trusion and botnet detection as proposed by Bot-
miner [22], a network monitoring application that
detects bots in a network by clustering flow records.
Again, implemented as a middlebox tap application,
it would: 1) extract flow records from network traffic
(processing); 2) cluster the flow records to detect hosts
with similar, suspicious communication patterns and
decide if any hosts are bots (analysis); 3) alert the
network operators of detected bots, so that they can
take appropriate measures (control).

B. Using SDN to Enhance Security Applications

SDNs provide a standardized interface for an application to
remotely manage switch forwarding tables. A security appli-
cation implemented as an SDN application, which Figure 2a
illustrates, can push its traffic control logic into the data
plane by installing forwarding rules. However, more advanced
processing and analysis logic cannot generally be encoded
using forwarding rules, and must run at the controller. For
example, if the declassifier was implemented as a SDN control
application, it could check the permissions on the first packet
of a flow and then, if the packet’s permissions are correct,
install a rule on the switch to forward the flow’s remaining
packets without sending them to the control application. If the
DDoS or botnet detectors were implemented as SDN control
applications, they could install a forwarding rule for each
traffic flow, poll the switches for statistics about the traffic
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Fig. 2: Network security using an SDN, and OFX.

flows, and then modify the forwarding rules to block or redirect
malicious flows.

However, there are two important drawbacks to imple-
menting security applications at the controller. First, there is
an issue of scalability as there are far fewer controllers in a
network than switches (often times only one controller). As
the network grows, the controller is tasked with more and
more work. More fundamentally, there is a larger challenge
of performance regarding the controller. The path between the
data plane and control plane has many bottlenecks that can
lead to high latency and greatly restrict network bandwidth and
throughput. For example, our measurements in Section VI-B
show that for a Pica 8 3290, the control path can add upwards
of 1 second of delay to packets and can handle fewer than
1000 packets per second.

To overcome the scalability and performance challenges,
Avant- Guard [35] proposed to embed new packet processing
functions into the forwarding logic of software switches, such
as Open vSwitch [11] or Click [27]. While extending the data
plane adds scalability and performance, there are several large
drawbacks to existing data plane extensions. First, they cannot
be deployed onto hardware OpenFlow switches with data
planes implemented as ASICs (Application Specific Integrated
Circuits). Second, existing extensions are only designed for
specific applications (e.g. the Avant-Guard extensions may not
improve the performance of the example declassifier or botnet
detector applications).

III. INTRODUCING OFX

Our OpenFlow Extension Framework (OFX) is a practical
SDN platform that provides both high performance and de-
ployability. It leverages the processing power of the switches
themselves to run security application logic and mechanisms
that would otherwise run on the controller, and allows network
security applications to define their own custom data plane
functionality that works within the existing SDN hardware and
software infrastructure. In this section, we provide a high-level
description of OFX and how the example security applications
can leverage OFX. We expand on the OFX architecture in
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Fig. 3: The OFX architecture from a network-wide perspective.

Section IV, and elaborate on the design details of the example
security applications in Section V.

A. OFX Design

As illustrated in Figure 2b, OFX allows a network security
application to not only move its traffic control logic to the
data plane (as with SDN solutions), but also parts of the pro-
cessing and analysis logic. Although OFX extends switches,
it remains deployable because it runs on the general purpose
processors that all OpenFlow switches have. Router vendors
have used these resources to add pre-defined functionality to
their devices [20], [29], [3]. OFX provides a framework that
opens up the resources to enable custom, application-defined
data plane functionality.

At a network wide level, which Figure 3 illustrates, OFX
allows SDN controller applications to install software modules
into the data plane. Further, these SDN applications can
interact with the rest of the security infrastructure, enabling
traditional security middleboxes to make requests to install
functionality into the data plane that enhances their perfor-
mance. This builds on the design proposed by PANE [19], in
which end hosts could request bandwidth reservations from the
network.

B. OFX Application Integration

All of the example applications described in Section II
could be redesigned as OFX applications that push custom
functionality into the data plane to improve performance.

DDoS Detection The DDoS detection control application
could be refactored so that instead of polling the switch for
flow statistics, it installs a module onto the switch that monitors
traffic and only sends an alert to the controller if it detects the
DDoS condition. This refactoring requires a minimal amount
of changes to the SDN application itself, as the details can
be implemented in an OFX module that provides a simple
abstraction to the controller. We demonstrate that using an
OFX trigger alert module allows for much quicker DDoS
detection times in Section VI.
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Fig. 4: Adding security functionality with OFX, which loads
extension modules onto agents that run on a switch’s general
purpose hardware. The of packets processed by an extension
module is shown in red.

Network Taint-Tracking Declassifier The network taint-
tracking declassifier could connect with an OpenFlow control
application that uses OFX, and request that the application load
an OFX module with declassification logic onto the switch.
The declassifier could then load permissions onto the switch
via a channel maintained by the OpenFlow control application.
The declassifier module would check permissions locally on
the switch, without having to send packets from each flow to
the centralized controller or a declassification middlebox.

Botnet Detection For botnet detection, instead of tapping
a network switch to receive a copy of each packet and then
doing the preprocessing and analysis on a middlebox server, a
botnet detector middlebox could connect with an OFX aware
OpenFlow control application and request that a pre-processing
function be loaded onto the switch. The switch could then
send batch updates containing the processed feature vectors
to the middlebox via the controller instead of sending each
packet to the middlebox for processing. In Section VI, we
demonstrate that the OFX approach is effective, especially for
high bandwidth scenarios.

IV. OFX ARCHITECTURE

Figure 4 depicts the OFX framework. OFX modules specify
new security functionality to add to the network, and an
interface for control applications to access it. The OFX library
contains functions that OpenFlow control applications can use
to load and manage OFX modules. An OFX switch agent
manages the modules running on the switch and handles
communication between the controller and switch components
of modules. Finally, the OFX data plane agent executes a
module’s packet handlers (i.e. packet processing functions). In
the remainder of this section, we describe these components
of OFX in greater detail.
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Function Description
MessageSwitch(Message, SwitchID) Sends a message from a module’s controller component to its switch component.
MessageController(MessageContent) Sends a message from a module’s switch component to its controller component.
AddInterceptFlow(MatchPattern) Register a module’s packet processor to receive packets that match the given OpenFlow pattern.
AddTapFlow(MatchPattern) Register a module’s packet processor to receive copies of packets that match the given OpenFlow pattern.
AddNegativeInterceptFlow(MatchPattern) Register a module’s packet processor to not intercept packets that match the given OpenFlow pattern.
AddNegativeTapFlow(MatchPattern) Register a module’s packet processor to not tap packets that match the given OpenFlow pattern.
GetFlowStats(FlowIdList) gets statistics for a list of flows that the module has added through OFX.
RemoveFlows(FlowIdList) Instructs OFX to remove an intercept, tap, or negation flow.
SendPacketIn(Packet) Sends a packet to the control plane, encapsulated in a standard OpenFlow packet_in message.

TABLE I: The OFX Module API.

Function Description
LoadModule(FileName) loads an OFX module and returns a pointer to its control interface.
PushModule(ModuleID, SwitchID) installs a module onto a switch.

TABLE II: The OFX Controller API.

A. OFX Modules

An OFX module defines new security functionality for
OpenFlow switches and an interface that OpenFlow control
applications can use to invoke the functionality. Modules can
be dynamically loaded and installed onto switches by control
applications. To write an OFX module, a developer needs to
define:

• A module interface, which defines new functions
that an OpenFlow control application can call once
the module is loaded onto the controller and switches
in a network. Typically, module interface functions
will simply generate and send module messages from
the controller to one or more switches that have the
module loaded.

• Control messages both for controller to switch signal-
ing (i.e. to invoke new switch functionality), as well
as switch to controller signaling (i.e. to provide replies
to the controller). An OFX module can send messages
between its controller and switch components using
API functions in the OFX library or OFX agent.

• A switch handler that will be called whenever a
message defined in the module reaches a switch that
has the module loaded.

• A controller handler that will be called whenever a
message defined in the module reaches the controller.

• A packet handler that contains any code that the
module needs to run on individual packets. When a
packet handler is first loaded onto a switch, it will
not receive any packets. The module must register to
receive packets from specific flows, using OFX API
functions that the OFX switch agent provides.

• Startup functions that contains any code the module
needs to run when it is loaded onto controllers and
switches.

The OFX Module API

The OFX Module API, summarized in Table I provides
functions that an OFX module can use to send messages
between its controller and switch components, select which

packets its handlers receive, and interact with the OpenFlow
data and control plane in limited ways.

The MessageSwitch and MessageController
functions allow an OFX module to send messages from its
controller component (i.e. the module code running in the
controller) to its switch component (i.e. the module code
running in the OFX agents on switches), and vice versa.

The AddInterceptFlow and AddTapFlow functions
allow an OFX module to register its packet handler to receive
packets as they pass through the switch’s data plane. Both of
these functions accept an OpenFlow match pattern as input,
which can specify one or more Ethernet, IP, UDP or TCP
header fields, and permits wildcard entries.

The AddInterceptFlow function causes OFX to install
an OpenFlow rule that redirects packet to a module’s packet
handler before they reach the main forwarding table of the
switch. The AddTapFlow function causes OFX to install an
OpenFlow rule that sends a copy of all matching packets to
the module’s packet processor.

The AddNegativeInterceptFlow and
AddNegativeTapFlow functions allows an OFX module
to specify that it does not want to receive packets belonging
to a particular flow. This functionality is useful when an OFX
module only needs to process the first few packets of each flow
and does not want to waste resources processing subsequent
packets. For example, our implementation of the Silverline [32]
declassifier, which we describe in Section V, needs to check
the first packet of every flow leaving a monitored web
server. The declassifier can implement this functionality
to monitor a particular server, say 10.1.1.1, by first calling
AddInterceptFlow(src=10.1.1.1). Then, after it checks
the permissions on the first packet of each new flow from
10.1.1.1, it can call AddNegativeInterceptFlow with
the flow key as the match pattern, so that the flow’s remaining
packets proceed directly to the main forwarding table of the
switch instead of going through OFX.

The GetFlowStats function allows an OFX security
module to get packet and byte count statistics for any of
the flows that it registered using any of the above method.
The OFX switch agent implements this function by sending a
standard statistics request message to the switch’s OpenFlow
data plane, and then returning the results to the module. This
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function allows an OFX module to count the number of bytes
and packets in each flow without requiring packets to leave
the data plane.

Finally, the SendPacketIn function sends a packet to
the controller encapsulated in a standard OpenFlow packet in
message. The packet in message will not be received by the
OFX module’s controller handler, but rather by the control ap-
plication’s OpenFlow packet in handler. This function allows
OFX modules to process and filter packets before the switch
sends them to the controller’s standard OpenFlow handler.

B. The OFX Library

The OFX library implements the OFX controller API that
allows an OpenFlow control application to interface with
the OFX system. It provides two functions, summarized in
Table II. First, the LoadModule function that loads an
OFX module into the control plane. This function assigns
the module a unique ID and returns a reference its controller
interface. Second, the PushModule function, which installs
a loaded module onto a switch in the network. This function
encapsulates the module code inside of an OpenFlow experi-
menter message and sends it to the specified switch. The OFX
switch agent running on that switch receives the message and
loads the switch components of the module.

OFX Messages

The OFX library also defines messages that allow the
controller and switch components of OFX and any loaded OFX
modules to communicate. OFX messages are encapsulated
inside of OpenFlow Experimenter Messages [7], and trans-
mitted on the standard OpenFlow connection that a controller
maintains with its switches. Experimenter messages provide
a standard way for OpenFlow switches and controllers to
implement additional features within the OpenFlow message
type space. An Experimenter message has two header fields:
experimenter ID and experimenter Type. OFX sets the ID
field to a predefined constant, so that the OFX library and
OFX switch agent can distinguish OFX messages from other
experimenter messages. OFX sets the type field equal to the
unique ID of the module sending the message. OFX reserves a
type for OFX system messages, which are the messages that the
controller and switch send to each other to manage OFX agents
(e.g. the message that sends a module from the controller to
a switch). The maximum length of an OpenFlow message
is 65535 bytes. Besides this constraint, the format of the
remaining message is defined by the module. In our modules,
each message begins with a 32 bit length field, followed by a
32 bit message type field, followed by the message contents.

C. The OFX Switch Agent

The OFX switch agent proxies the OpenFlow connection
between the switch’s OpenFlow management agent and the
controller, which allows it to intercept OFX messages as
defined above. The OFX switch agent implements most of the
OFX module API functions, loads modules onto the switch,
and manages the switch’s OpenFlow tables to direct packets
to OFX module packet handlers in the OFX data plane agent.

Loading Modules

When the OFX switch agent receives a message from the
controller that instructs it to load a module, it:

• Writes the module’s code, which is included in the
message, to a local temporary file.

• Loads the module’s switch handler function, and regis-
ters it in a local table so that it gets called whenever the
OFX switch agent receives an experimenter message
with the module’s ID in its type field.

• Compiles the module’s packet handler, which is im-
plemented in C, and dynamically links it to the OFX
data path agent.

• Executes the module’s startup function.

Flow Table Management

The OFX switch agent implements the API functions that
direct packets to a module’s packet handler by installing flow
rules into OFX managed tables on the switch’s forwarding
engine (e.g. OpenFlow compatible ASIC hardware). When the
OFX switch agent starts, it initializes several OFX managed
OpenFlow tables that match packets before they reach the con-
troller managed forwarding table. Then, when an OFX module
requests that its packet handler receive packets matching a
specific pattern (using the OFX module API), OFX installs
rules into the OFX managed tables to direct those packets
to the OFX data plane agent, where the module’s packet
handler processes them. By installing these rules to a separate
table, OFX prevents security modules from interfering with
the switch’s standard forwarding table.

The OFX switch agent configures a pipeline of four flow
tables, as Figure 5 depicts. When a switch running OFX
receives a new packet, it first matches the packet against
the OFX intercept flow tables (i.e. the tables that OFX
adds rules to when a module calls AddInterceptFlow or
AddNegativeInterceptFlow). These tables implement
the following logic:

• If the packet matches a flow rule on the negative table,
it bypasses the positive table and continues to the tap
tables.

• If the packet matches a flow rule on the positive table,
it is forwarded to the OFX data plane agent, which will
process the packet and then return it to the main flow
table.

• If the packet does not match a flow rule on either
table, it continues to the tap tables.

Once a packet passes the intercept tables, it is guaranteed
to reach the main flow table without leaving the forwarding
engine. The tap tables implement similar logic to decide
whether or not to send a copy of the packet to the data plane
agent:

• If the packet matches a flow rule on the negative table,
it bypasses the positive table and continues to main
flow table.

• If the packet matches a flow rule on the positive table,
a copy of the packet is forwarded to the OFX data
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Fig. 5: OFX allows modules to specify which packets they want to intercept or tap using match patterns that OFX installs into
a pipeline of forwarding tables that check packets before they reach a switch’s standard forwarding tables.

plane agent, while the existing packet is continues to
the main flow table.

• If the packet does not match a flow rule on either
table, it continues to main flow tables.

D. Data Plane Agent

The data plane agent copies a packet from the data plane
of the local switch into a buffer in the switch’s system
memory, and then calls the packet handlers of any modules
that registered to intercept or tap matching packets, passing
the handlers a pointer to the buffer. To determine which packet
handlers to call, the data path agent keeps a local copy of
all the module flow tables. If multiple modules registered to
receive the packet, the data path agent calls them in order
of the modules’ priority, a value that the OpenFlow control
application can set when it loads a module.

After calling all of the packet handlers, the data plane agent
either sends the packet to the switch’s main forwarding table,
or drops the packet. Two conditions can cause the data plane
agent to drop a packet: first, the packet handler of an agent
registered to intercept the packet returned a code specifying
that the packet should be dropped; second, all of the modules
that registered to handle the packet did so in tap mode, in
which case the OFX pipeline already sent a copy of the packet
to the main forwarding table.

E. Implementation Details

Our current prototype of OFX is implemented to work
with the Ryu control platform [6], and any OpenFlow switches
running Linux. The OFX library is implemented as a Python
module that any Ryu control application can load. The OFX
switch and data plane agents are implemented as daemons that
run on a switch, in Python and C respectively. OFX modules
are written in Python, with the exception of the packet handler,
which is a C function.

On the Pica 8 3290 that we used for our experiments in
Section VI, we connected the OFX data plane agent to the
switch’s forwarding engine using a raw socket bound to a
spare management port that was physically connected to a port
on the forwarding engine. We took this approach because the
low level kernel interface to the switch’s Broadcom forwarding
engine was very inefficient and completely closed (i.e., the
forwarding engine’s firmware, driver, and even driver API were
closed source). Recently, companies including Broadcom have

begun initiatives to open up more of their API [1], [2], which
can lead to an improved OFX interface. OFX can also play a
role in motivating future switch designs with more open and
higher capacity interfaces to the forwarding engine.

V. OFX SECURITY MODULES

In this Section, we describe three OFX security modules
that we have implemented. These modules are motivated
by: 1) the functionality that Avant-Guard [35] proposed as
a data plane extension in a custom switch design; 2) the
example declassifier and botnet detector applications discussed
in Section II.

A. An Avant-Guard Inspired Module

This module provides OpenFlow control applications with
two additional functions that can be loaded onto the switches
in their networks: trigger alerts, which instruct a switch to
send an alert to the controller if the packet or byte rate of
traffic destined for a monitored host exceeds a certain value;
and TCP handshake validation, which allows a switch to send
a message to the controller when it detects that a new TCP
connection has completed the initial three way handshake.

Avant-Guard extended the data plane of a software Open-
Flow switch to achieve similar functionality. Our OFX imple-
mentation has a major deployment advantage, since it can be
installed onto any OpenFlow switch that runs OFX, even ones
with forwarding engines implemented in hardware. Further, it
does not require modifying the switch’s OpenFlow software or
the controller platform used to manage the switches.

Trigger Alerts This functionality allows a switch to signal
its controller whenever the packet- or byte-rate of the traffic
destined for a host on the network exceeds a certain threshold.
When a trigger fires, it sends the controller statistics about
the packet and byte counts of all the recent flows that have
connected to the monitored host. To achieve this functionality
with standard OpenFlow, a controller would have to add a flow
rule for each TCP or UDP connection, and then poll the switch
for the statistics of the installed rules. In Section VI, we find
that by using trigger alerts instead of polling, an OpenFlow
control application can detect DDoS attacks much quicker.

Using Trigger Alerts Once loaded, the module exposes
two trigger related functions to the control application.
First, the InstallTriggerAlert(IpAddress,
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type <bytes or packets>, rate, switchID,
updatePeriod) function, which the control application
can call at any time to install a trigger. Second, the
RegisterAlertHandler(FcnPointer) function,
which the control application can use to register a function to
handle trigger alerts when they arrive at the controller.

Trigger Alert Implementation Details

• The InstallTriggerAlert function packs
the input provided by the control application
into an install trigger message that is defined
in the module, and calls the OFX function
SendMessageToSwitch to send the message
to the switch that the control application wants to act
as a monitor.

• When the message arrives at the switch, the OFX
switch agent calls the module’s switch handler with
the message as input. The switch handler calls
AddTapFlow (from the OFX API) which registers
the module’s packet handler to receive a copy of
each packet destined for the host specified in the
install trigger message. The handler also adds an
entry to a trigger information table that stores the
packet and byte counts values of each flow involving
the monitored host. Each time the module’s packet
handling function receives a packet, it updates the
table. A trigger monitoring thread that starts when the
module is installed on the switch checks the entries in
the table to determine if any alerts need to be send to
the controller.

• Whenever the module’s packet handler receives a
packet destined for an a monitored host, it extracts the
packet’s flow key and updates the entry in the trigger
information table for that flow. If no entry exists for
the flow, it adds one. The module’s packet handler
then calls the OFX AddNegativeTapFlow, using
the flow’s key as the match pattern. This reduces the
load on OFX by stopping the data plane from sending
copies of future packets of that flow to the module’s
packet handler.

• The trigger monitoring thread periodically calls the
OFX function GetFlowStats to get the byte and
packet counts of all the added flows. When it receives
the results, it updates the trigger information table to
include the latest statistics from the OpenFlow data
plane, checks to see if any of the trigger conditions
have been reached for monitored hosts, and then sleeps
for updatePeriod seconds before repeating. If it
detects that a trigger condition has been reached for a
host, it generates a trigger alert message that contains
all the flow records involving that host, and then sends
the message to the controller using the OFX function
SendMessageToController.

• When the trigger alert message reaches the controller,
the OFX library intercepts it and passes it to the
module’s controller handler. If the control application
registered a trigger handler function, the module calls
that function.

TCP Handshake Validation This functionality allows a
switch to verify that a TCP flow has completed its handshake
before sending a packet from the flow to the controller, which
protects OpenFlow control applications that install routes for
each TCP flow from Syn flood attacks. In a standard OpenFlow
network, per TCP flow routing can only be implemented by
sending the first packet of each new TCP connection to the
controller via a packet in message, which would then install a
flow rule on the switch to handle future packets of that flow.
The authors of Avant-Guard [35] found that this leaves the
network vulnerable to Syn flood attacks, where an attacker
floods the control plane and brings down the network by
simply sending TCP syn packets with randomized sources, des-
tinations, and ports. The originally proposed Avant-Guard so-
lution to this vulnerability required modifications to a switch’s
forwarding engine, and therefore could not be deployed onto
dedicated switches that have forwarding engines implemented
in hardware. The TCP Handshake Validation component of
our OFX Avant-Guard module is, to our knowledge, the first
solution that can be used on such switches.

Using TCP Handshake Validation A control application can
use this function as follows:

• First, the control application must call the
EnableHandshakeValidation(switchID)
function for any switch that should use the feature.
The OFX Avant-Guard module exposes this function
to the control application when it is loaded.

• Second, the control application must install default
forwarding rules onto the switch to handle TCP pack-
ets that belong to unestablished connections.

After taking these two steps, the control application’s standard
packet in handler, which contains the logic to install a new
flow rule onto the switch to route each TCP flow, will only
receive packet’s from TCP connections that have completed
their handshake.

TCP Handshake Validation Implementation Details

• The EnableHandshakeValidation function
sends a message to the switch signaling it to
enable TCP handshake validation, using the OFX
SendMessageToSwitch function.

• When the message arrives at the switch, OFX passes
the message to the module’s switch handler, which
registers the module’s packet handler to intercept all
TCP traffic, using the OFX AddInterceptFlow
function.

• When the packet handler receives a TCP packet, it
checks the connection status of the packet’s flow using
a hash table. If the packet belongs to a connection that
is not yet fully established, the handler simply returns
the packet to the data plane, where it will be forwarded
to its destination by default flow rules that the con-
troller installed in the main flow table. If the packet
belongs to a connection that has completed the three
way connection, the packet handler sends the packet to
the controller using the OFX SendPacketIn func-
tion, so the controller can install the appropriate flow
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rule into the main flow table to route this specific TCP
flow. The packet handler then registers to not receive
future packets belonging to this specific flow, using the
OFX AddNegativeInterceptFlow function. To
prevent sending multiple packets from a single flow to
the controller, the packet handler keeps a hash table
cache of all the recently added negative intercept flow
rules. If the packet matches an entry in this table, the
packet handler still returns the packet to the data plane,
but does not send a copy to the controller.

B. A Traffic Declassifier Module

We implemented an OFX module that supports the taint-
tracking declassifier application, originally discussed in Sec-
tion II. When a control application loads this module, it installs
the declassifier logic into switches in the network and opens
a socket that other elements of the taint tracking system can
use to send permissions to the switches.

Startup The traffic declassifier module only exposes
one function to a network control application:
StartDeclassifier(). This function sends a start
message to the switches running the Silverline module.
Upon receiving the message, each switch calls the OFX
AddInterceptFlow function to register that all TCP
packets should go through the declassifier module’s packet
handler. Finally, after loading the module on all the switches,
the StartDeclassifier function on the controller starts
a socket thread to forward permission information from the
taint-tracking system to the switches.

Operation When the declassifier thread on the controller
receives a permission update from the declassifier database,
it packs the record into a update permissions message and
sends it to each switch running the declassifier module.

When a switch receives a permission update message, the
declassifier switch handler loads the permissions into a local
hash table that map client IP addresses to lists of taint tags
that clients from that IP address have permission to view.

Finally, whenever the declassifier packet handler receives
a TCP packet, it extracts the ToS and destination address
fields of the IP header. It looks up the destination (i.e.
client) address in the permission hash table. If the client
permission list includes the taint tag in the ToS field, the
packet handler returns the packet to the main flow table of the
data path, where it can be forwarded out, and calls the OFX
AddNegativeIntercept function so that future packets
from this flow, with this IP ToS field, bypass the packet
handler. If the client permission list does not include the
permission required to view the packet, the packet handler
generates a TCP connection reset packet directed to the server,
and returns that packet to the switch’s forwarding table instead
of the original packet directed to the client.

C. A Botnet Detector Module

We also implemented an OFX module to support the ex-
ample botnet detection application. When a control application
loads this module, it installs data collection logic onto switches
that gathers flow records, opens a connection to an analysis

process, and then periodically forwards flow records from the
switches to the analysis process.

Startup The botnet detector module exposes one function
to the controller: StartBotDetector(UpdatePeriod),
which starts the data collection module on all the switches
where it has been loaded. The UpdatePeriod parameter speci-
fies how frequently the switches should send data updates to
the controller. The StartBotDetector function sends a
message to the network’s switches that instructs them to begin
collecting data. When a switch receives the message, it runs
a start up function that registers the modules packet handler
to initially receive a copy of all packets that pass through the
switch, using the OFX function AddTapFlow. The module’s
switch start up function also initializes a hash table that collects
two the packet and byte count of each TCP or UDP flow and
starts a background process that periodically collects the flow
data and sends it to the controller in a data update messages
.

Operation When the packet handler on a switch receives a
packet, it extracts the packet’s layer 3 flow key (i.e. source,
destination, source port, destination port, IP protocol type). It
then checks the local flow hash table to see if an entry exists for
the flow. If an entry does not exist, it creates one and records
the flow’s packet and byte counts to the entry. If the entry does
exist, it updates the entry’s counters. Finally, the packet handler
installs a negative tap rule using AddNegativeTapFlow.

The update thread on the switch execute the following loop:

1) Get the statistics of all the flows that the packet
handler installed using GetFlowStats.

2) Sum the returned results with the counts in the local
hash table.

3) Send the summed records to the controller.
4) Sleep for UpdatePeriod.

When the controller receives an update from a switch, it
forwards the data to the analysis process.

VI. EVALUATION

With OFX, security applications can leverage data plane
programmability to enhance their operation and improve per-
formance. In this Section, we benchmark OFX on a testbed
with a hardware OpenFlow switch, and focus on answering
the following questions:

1) What is the raw processing overhead of using OFX?
2) Can we get the performance gains Avant-Guard

achieved with custom data plane extensions, but with
greater deployability using OFX’s programmable
framework?

3) How much of a performance gain can a security
application achieve by using OFX, when compared to
traditional middlebox deployments and more recent
SDN based security applications?

A. The Testbed

Figure 6 illustrates the testbed network for our experiments.
It contained a network infrastructure consisting of: a hardware
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Fig. 6: A diagram of our testbed network.

Fig. 7: Packet size vs packets per second using different paths
through our testbed network.

OpenFlow switch, a Pica8 3290 with a Broadcom Firebolt-3
forwarding engine that processes packets in hardware accord-
ing to OpenFlow rules and a 825 Mhz PowerPC CPU with
512MB of memory that runs Debian 7; a control server, a
quad-core Intel i7 machine with 4GB of RAM, running Ubuntu
14.04 server LTS and an OpenFlow control platform (either the
reference Open vSwitch reference controller with version 2.3,
or the Ryu controller [6]); and a middlebox server, also an Intel
i7 machine with 4GB of RAM, running Ubuntu 14.04 server
LTS. The controller connected to the first management port of
the switch with a Gigabit NIC, and the middlebox connected
to a port on the switch’s data plane, also using a Gigabit NIC.
We ran traffic through the testbed network using up to four
traffic generation machines, which were dual-core Intel Core-
2-Duo machines with 2GB RAM. Each traffic generator was
connected to a separate port on the Pica8 switch’s data plane
with a Gigabit NIC.

B. Raw OFX Overhead

To benchmark the raw overhead of using OFX, we mea-
sured its performance in a scenario where we directed every
packet through an OFX packet handler that copies each packet
into system memory, performs no operations to the packet, and
then sends the packet back out to the data plane. We compared

Statistic Control Path OFX Path Data Path
Min RTT 3.604 ms 0.251 ms 0.169 ms
Avg RTT 4.039 ms 0.31 ms 0.232 ms
Max RTT 8.08 ms 0.405 ms 0.292 ms
Max TCP 1.2 Mbps 584 Mbps 847 Mbps
Throughput
UDP Drop % 72 % 0 % 0%
@ 5MBPS
UDP Drop % - 0.13 % 0%
@ 50MBPS
UDP Drop % - 3.6% 0%
@ 500MBPS

TABLE III: Traffic statistics for flows travelling through dif-
ferent paths on our testbed.

with two baselines, a path through the network where the
packets stayed entirely in the switch’s hardware forwarding
engine, and a path through the network where the packets
went through the controller. For these benchmarks, we ran
the Open vSwitch reference controller on the control server,
and used two traffic generation machines. Figure 7 shows the
maximum number of ping packets one traffic generation host
can send to the other using the hping3 [9] tool and Table III
summarizes other network statistics measured using Iperf [36].
For all measurements, the OFX path performed several orders
of magnitude better than the control path. The main bottleneck
for both the control path and OFX path was the CPU usage
of the switch, though OFX was much more efficient, which
allowed it to perform better with respect to every metric.

C. Deployable Data plane Extensions

Next, we benchmarked the Avant-Guard inspired module
by comparing the performance of Ryu based OpenFlow control
applications that used the module, with ones that implemented
equivalent functionality without using the module.

TCP Handshake Validation To benchmark TCP Handshake
Validation, we implemented a simple TCP learning OpenFlow
control application that installs a flow on the switch whenever
it receives a packet from a previously unseen TCP stream. We
then compared the application to a slightly modified version
that loads the Avant-Guard inspired module and uses the TCP
Handshake Validation function, which allows the switch to
only notify the controller about a new TCP flow after the
TCP handshake has completed 1. We connected an attack host
to our testbed that sent a flood of TCP syn packets to the
controller, and then measured the likelihood of two other hosts
establishing a TCP connection within 6 seconds.

Figure 8 shows the percentage of 20 TCP connection
attempts that succeeded, for trials in which the flood rate
varied. Without the handshake validator, the attack packets
quickly overloaded the switch’s ability to send packets to the
controller, preventing the legitimate connections from being
established. Running the OFX module allowed the network to
be resistant to attacks several orders of magnitude larger. In the
original Avant-Guard proposal [35] , the authors demonstrated
that their custom data plane achieved similar performance

1Before a flow’s TCP handshake is completed, the switch forwards the
packets according to a default strategy, we used simple rules that matched the
Ethernet destination address.

10



Fig. 8: Attack packets per second vs TCP connection success
rate, for a standard OpenFlow network, and a network using
the OFX TCP Connection Validation function.

Fig. 9: The amount of time it took a control application to
detect a 600 Mbps DDoS attack from a varying number of
sources, while using OpenFlow polling or trigger alerts from
the OFX Avant-Guard inspired module.

benefits 2 However, the Avant-Guard data plane cannot be
deployed onto existing OpenFlow switches, whereas the OFX
module can add this feature to any OpenFlow switch, even
those with hardware data planes.

Trigger Alerts To benchmark trigger alerts, we wrote a
control application that monitors the bandwidth usage of
each traffic flow connecting to a host in the network, and
generates an alert when the total bandwidth usage exceeds
a threshold value. We compared two implementations of the
control application: a standard OpenFlow version, that installs
a flow rule for each new IP source address and then monitors
for DDoS attacks by periodically polling the switch for the
statistics of all the rules; and an OFX version that installs a
trigger alert that which collects the flow statistics on the switch
and only sends the statistics to the controller when the trigger

2In the Avant-Guard proposal [35], figure 13 showed that validating TCP
handshakes with a custom data plane provided resistance to attacks at least 1
order of magnitude larger, but did not display larger results.

Workload Name Median High Bandwidth Frequent Arrival
Flow Inter-arrival Period .015 .15 .0015
Per Flow Packet Rate 250 500 25
Flow Duration 1 30 .1
Packet Size 300 1400 100
Number of Flows 1000 100 10000
Average Transmission Bandwidth 43.57 970.99 19.75

TABLE IV: Workloads used to benchmark the declassifier and
botnet detector modules.

condition is reached. In both implementations, the update rate
was set to 1 second, and the threshold for generating an alert
was 500 Mbps. We generated TCP flows that simulated a 600
Mbps DDoS attack from varying numbers of source, and sent
the flows from one traffic generation host to another, through
the network.

Figure 9 shows the amount of time it took the two imple-
mentations to detect that a DDoS attack of greater than 500
Mbps was occuring. Both versions took longer to detect DDoS
attacks that were more distributed because they had to install
a counting rule for each source IP address that connected to
the monitored host. However, the trigger alert function allowed
the switch to install the rules without forwarding packets to
the controller, which led to them being installed much quicker
and greatly reduced the detection time.

D. OFX Security Applications

Finally, to understand how OFX can enhance the operation
of existing security applications, we benchmarked OFX as
a platform for deploying the taint tracking declassifier and
botnet detection applications that we used as running examples
throughout the paper. We compared three version of these
applications:

• A standard OpenFlow control application, as de-
scribed in Section II, that runs on the network’s
OpenFlow control server (1 in Figure 6).

• A middlebox application that runs on a dedicated
server in the network (3 in Figure 6). Our implemen-
tations were functionally equivalent to the OpenFlow
and OFX versions, and written in C. The declassifier
application ran inline (i.e. we configured the switch
route each packet through the declassifier before going
to its destination). The botnet detection application ran
as a tap application (i.e. we configured the switch to
send a copy of each packet to the detector.)

• An OFX enhanced application that runs on the con-
troller, but loads and deploys the application specific
modules described in V onto the switch. With this
deployment strategy, the security application is dis-
tributed across both the controller and switches in a
network (i.e. 1 and 2 in the diagram of our testbed,
Figure 6.)

We ran three traffic workloads through the applications,
which Table IV summarizes. The median workload models
median traffic conditions observed in previous studies. A large
scale data center study [26] reported that the median flow
inter-arrival period for a top of rack switch, similar to the
switch in our testbed, was .015 seconds. The other statistics
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were median TCP flow statistics reported in a large scale TCP
flow analysis [33]. The other two workloads represented con-
ditions that stress different aspects of the systems. In the high
bandwidth workload, flows last longer and use significantly
more bandwidth, but there are fewer flows and they arrive an
order of magnitude less frequently. This workload stresses the
systems’ ability to process data at high rates. The frequent
arrival workload contains more flows that arrive an order of
magnitude quicker than those in the median workload, but use
much less bandwidth individually. This workload stresses the
systems’ ability to manage a large number of quickly arriving
flows.

We used four metrics to compare the implementations:

• Latency, or how long it takes a packet to arrive at its
destination, once it leaves its source.

• Time to First Packet, or the latency of the first packet
of each flow. This metric measures flow setup time.

• Observed Throughput, or the throughput observed
by the hosts using the network.

• Security System Drop Rate, or the percentage of
packets that a security application dropped.

Taint Tracking Declassifier Figure 10 shows the cumulative
distribution of how much delay the declassifiers added to
packets in each workload. The OFX version added very little
delay to most packets because after checking the permission
of the first packet of a flow, it installed a rule into the data
plane to handle the remaining packets of that flow without
forwarding them to the switch’s CPU. The OpenFlow version
also used this approach, and performed well in the high
bandwidth workload. However, latency increased in the median
and frequent arrival workloads because the flows arrived more
quickly than the OpenFlow declassifier could install rules,
so many packets ended up queued in the slow path to the
controller. The middlebox deployment could not add flow
rules to the data plane, and so it had to process each packet.
This worked well in the frequent flow arrival and median
workloads, but in the high bandwidth workload, the packet rate
was too high and the middlebox application ended up queuing
approximately 30% of the packets, adding several orders of
magnitude more delay to them.

Figure 11 shows the cumulative distribution of how much
delay the declassifiers added to the first packet of each flow.
the OFX version added latency to these packets because they
went through the OFX module’s permission checking packet
handler. For 90% of the flows, the OFX version added under
2ms of latency to the first packet, across all workloads. This
was approximately 1 order of magnitude more latency than
it added to packets on average. However, for about 10% of
the flows, the OFX version added up to 100 ms of latency.
The bottleneck was the switch’s weak single-core CPU: to
install an OpenFlow rule into the data plane, the switch must
context switch to a Broadcom driver process, which delayed
the processing of whatever packet was being handled when the
interrupt occurred. Many switches, especially newer models,
would not have this bottleneck because they have faster CPUs
with two or more cores.

Implementation Frequent arrivals Median High Bandwidth
Middlebox 19.74 43.55 733.13
OFX 18.75 42.18 970.90
Controller 0.50 5.16 970.43
Maximum 19.75 43.57 970.99
Possible

TABLE V: Average network throughput (in Mbps) while using
the declassifier applications with different workloads.

Implementation Frequent arrivals Median High Bandwidth
Middlebox 0.03% 0.04% 24.50%
OFX 5.01% 2.79% 0.01%
Controller 96.47% 75.91% 1.73%

TABLE VI: Declassifier drop rates during different workloads.

In comparison, the non OFX versions did not perform
as consistently across the scenarios. The OpenFlow version
performed poorly in all scenarios, because it required the first
packet of each flow to travel the slow path to the control
plane. The delay increased with flow inter-arrival rate because
the path between the data plane and control plane is not
only slow, but also has very limited throughput. During the
median workload, the OpenFlow version added more than
10 ms of delay to the first packet of most flows, and more
than than 1 second of delay for 10% of the flows. The
middlebox distributions for time to first packet were the same
as the middlebox distributions for packet latency because the
middlebox processed every packet the same way.

Table VI summarizes the percentage of packets dropped
by each declassifier, and Table V summarizes the throughput
observed on the network while the declassifiers were in use.
The OFX declassifier performed well in all scenarios. In the
high bandwidth scenario, it installed flow rules quickly enough
to avoid becoming overloaded by the high bandwidth flows.
While it was not able to install rules for each flow in the other
workloads with more quickly arriving flows, OFX’s low level
connection to the data plane provided enough bandwidth to
handle most packets in software.

The other versions of the declassifier did not perform
as consistently. The middlebox deployment did well in the
lower bandwidth workloads. However, the higher bandwidth
workload saturated its 1 Gbps network interface and cause
it to drop approximately 25% of the packets, and reduce the
observed throughput . The controller deployment did well with
the high bandwidth workload because it had enough time to
install a rule into the data plane for each of the infrequently
arriving flows. However, in the other workloads where flows
arrived more quickly, the controller was not able to install a
rule for each flow. Packets from the flows that it missed flooded
the low bandwidth channel between the switch and controller,
and many ended up dropped.

Botnet Detection Unlike the taint tracking declassifier ap-
plication, which must run inline (i.e. on the path between a
protected server and a client), the botnet detection application
runs as a tap based application (i.e. it receives a copy of each
packet, but is not directly on the path between two hosts).

Figure 12 shows the latency the different versions of this
application added to packets in the median workload, and
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(a) Frequent arrival workload (b) Median workload (c) High bandwidth workload

Fig. 10: CDF of packet latency for declassifier applications with each workload.

(a) Frequent arrival workload (b) Median workload (c) High bandwidth workload

Fig. 11: CDF of time to first packet for the declassifier applications with each workload.

Fig. 12: CDF of packet latency for botnet detector deployments
during the median workload.

Figure 13 shows the latency added to the first packet of each
flow. The middlebox and OFX deployments added minimal
latency to packets, regardless of whether or not they were
the first packet of a flow, because the switch’s forwarding
engine can copy packets very quickly (i.e. approximately 1
microsecond according to the vendor [4]). The OpenFlow

Fig. 13: CDF of time to first packet for botnet detector
deployments during the median workload.

version added much more latency because the switch had
to forward a copy of the packet to the controller before
sending the original packet out. This affected the first packet of
each flow more, since the OpenFlow implementation installs a
counting rule to handle the remaining packets in a flow as soon
as the controller receives a packet from the flow. The time to
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Implementation Frequent arrivals Median High Bandwidth
Middlebox 19.75 43.57 970.99
OFX 19.75 43.57 970.99
Controller 2.68 5.90 967.09
Maximum 19.75 43.57 970.99
Possible

TABLE VII: Observed network throughput (in Mbps) while
using the botnet detection application during different work-
loads.

Implementation Frequent arrivals Median High Bandwidth
Middlebox 0.07% 0.03% 21.67%
OFX 7.09% 5.09% 0.47%
Controller 94.92% 80.86% 0.89%

TABLE VIII: Botnet detection application drop rates during
different workloads.

first packet and latency measurements for the other workloads
show the same trends.

Table VII summarizes the throughput observed in the
network while using the botnet detection applications with
different workloads. As was the case for network latency,
the OFX and middlebox versions did not affect the network
throughput at all, due to how quickly the data plane can copy
packets. The controller version affected throughput, especially
for the workloads with higher flow inter-arrival rates, since
it could not install rules into the data plane fast enough to
prevent the switch from executing the slow copy to controller
operation on a large number of packets.

Table VIII summarizes the drop rate of the botnet detection
applications themselves. Based on this metric, the OFX version
performed the most consistently, dropping at most 7.09% of
packets in the frequent arrival scenario. There were two factors
that contributed to this drop rate: first, the switch could not
install rules into the data plane quickly enough to prevent many
of the packets from being sent to the OFX software based
packet handler; second, the switch CPU was weak, which
caused it to drop a fraction of those packets.

The middlebox version performed significantly worse dur-
ing the high bandwidth scenario, droppping 24% of the pack-
ets. This is a limitation of the middlebox’s 1 Gbps NIC,
which was not able to keep up with the high bandwidth. The
control plane version of the application performed poorly in
all scenarios, again due to the limited throughput of the path
between the data and control planes.

Security Application Results Summary Overall, these re-
sults support the conclusion that OFX is a a better platform for
network security applications than either of the two alternatives
we tested.

• The OFX enhanced security applications performed
the most consistently across all the workloads and
metrics.

• The OpenFlow versions performed so poorly in most
scenarios that they would be unusuable in prac-
tice. OFX provided a 20x − 40x capacity increase
over these OpenFlow versions, based on Tables VI
and VIII.

• The Middlebox versions performed adequately in most
scenarios, but added more latency to most packets
and did not scale to higher bandwidth scenarios as
well when compared to the OFX versions. Based on
Tables VI and VIII, OFX provided an approximately
1.25x capacity increase compared to the middlebox
versions, in the high bandwidth scenario.

VII. RELATED WORK

We are motivated by recent work that proposes changes
to the OpenFlow data plane to support the needs of secu-
rity and monitoring applications [16], [31], [35], [37]. These
proposals are all for limited functionalities that only support
specific applications. In contrast to these proposals, OFX
provides a programmable framework that applications can
use to define and load whatever functionality they need into
their switches’ data planes. There is a large body of work
on building extensible data planes, including virtual switches
such as Open vSwitch [11] and Click [27], frameworks such
as SwitchBlade [13] for implementing customized data planes
on configurable hardware (i.e., FPGAs), proposals to build
network switches out of general purpose servers [17], and
programming models for the protocol parsing hardware of
switches [14]. OFX takes an alternate approach: it allows
users to extend the non-modifiable hardware data planes of
commodity network switches with software based functionality.

We also contrast OFX with OpenFlow control platforms
that seek to improve performance. Onix [28] and Kandoo [23]
allow network operators to build control applications that
run across multiple servers and Beacon [18] supports multi-
process control applications. OFX also allows parts of a control
application to be distributed, but across switches instead of
servers or CPU cores. By running on the switch, OFX allows
applications to avoid sending packets through the OpenFlow
control channel, which can itself be a significant bottleneck.
OFX also lets the module define how it distributes work
across the switches, which may provide more opportunities
for application specific optimization compared to other general
approaches to control plane distribution.

OFX draws inspiration from previous control platforms that
seek to simplify the development of SDN applications, such
as FRESCO [34], a network control platform for building
and deploying module-based control applications, and Fre-
netic [21], a high level language for writing network control
programs. The programming models in these systems could
be applied to OFX, which is a framework for building and
deploying switch extension modules instead of network con-
trol applications. An older but closely related area is active
networking, such as Active Bridging [12], which introduced
the concept of dynamically extending the functionality of
network nodes. Active networking nodes were implemented on
general purpose servers, and had no interface to a centralized
controller because the techniques predated the concepts of data
and control planes. The Tiny Packet Programs [25] framework
revisited this idea and proposed new switch hardware that can
execute simple code embedded in packets. In comparison, OFX
allows existing, unmodified switches to execute more complex
code that can be installed by the controller.
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VIII. CONCLUSIONS AND FUTURE WORK

Software Defined Networking has much to offer secu-
rity applications. However, current approaches to building
SDN based security applications are not practical because of
performance limitations and deployment hurdles. The OFX
framework provides a better approach that overcomes these
challenges. It allows security applications to improve perfor-
mance by extending switches with custom functionality and
works within existing OpenFlow infrastructures. Our sample
modules and evaluation demonstrate how OFX can improve the
performance of representative security applications running on
real OpenFlow hardware and software, in a variety of scenar-
ios. OFX is a first step towards allowing control applications
to dynamically install custom software based functionality
into the data plane. There are many future directions for
research that build on this idea, including: further optimizing
the interface between the switching hardware and the OFX
agents; refactoring more applications to use OFX; testing
OFX on other hardware platforms; and exploring alternative
programming models for building OFX modules.
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