Enabling Practical SDN Security Applications with OFX (The OpenFlow eXtension Framework)

John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith

University of Colorado Boulder

Outline

Introduction Overview of OFX Using OFX Benchmarks

Basic Networking: Forwarding and Routing

Packet Forwarding

Route Computation

SDNs: Networking in Two Planes **Control Plane Open**Flow Route computation

Data Plane

Packet forwarding

Assumption: Interactions between the control plane and data plane are *infrequent*.

Packet forwarding

Data Plane

SDNs for Network Security

Casado, Martin, et al. "Ethane: taking control of the enterprise." ACM SIGCOMM Computer Communication Review. Vol. 37. No. 4. ACM, 2007. Data Plane

SDNs for **Dynamic** Network Security: Flow Monitoring Control Plane

Gu, Guofei, et al. "BotMiner: Clustering Analysis of Network Traffic for Protocol-and Structure-Independent Botnet Detection." USENIX Security Symposium. Vol. 5. No. 2. 2008.

Collect flow records without routing through a middlebox. Install byte counting rule

_ _

Bot Detection

Packet from new TCP flow

Data Plane

SDNs for **Dynamic** Network Security: Traffic Declassification Traffic Declassification Check flow Check flow

tags and user

permissions

Enforce access control on tagged data leaving the network.

Mundada, Yogesh, Anirudh Ramachandran, and Nick Feamster. "SilverLine: preventing data leaks from compromised web applications." *Proceedings of the* 29th Annual Computer Security Applications Conference. ACM, 2013.

Can this flow leave the network?

Data Plane

decision

(Allow | Block)

Obstacle: Low Throughput Control Path

Appelman, Michiel, and Maikel de Boer. "Performance analysis of OpenFlow hardware." University of Amsterdam, Tech. Rep (2012).

Curtis, Andrew R., et al. "DevoFlow: scaling flow management for high-performance networks." ACM SIGCOMM Computer Communication Review. Vol. 41. No. 4. ACM, 2011. 13

Obstacle: Centralized Control Plane

Our question: How Can We Make SDNs More Practical?

The General Approach: Switch Level Security Control Plane

Previous Work: Security Functionality in the Forwarding Engine

Shin, Seungwon, et al. "Avant-guard: Scalable and vigilant switch flow management in software-defined networks." Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. ACM, 2013.

Our insight: Leverage Switch CPUs

OFX: A Framework for Application-Specific Switch Extensions

Each application can load custom functionality into switches. At runtime!

Outline

Introduction

Overview of OFX Using OFX Benchmarks

OFX at the Switch Level

Outline

Introduction Overview of OFX Using OFX Benchmarks

Refactoring OpenFlow Applications to use OFX

class DeclassifierApp(app_manager.RyuApp): def __init__(self, *args, **kwargs): super(SimpleSwitch13, self).__init__(*args, **kwargs) self.permissionsDb = dbServer.connect() self.monitoredServers = [] self.switchIds = []

```
def switch_up_handler(self, switch):
    self.switchIds.append(switch.id)
    ...
```

def packet_handler(self, switch, pkt): action = self.compute_next_hop(pkt. switch) if pkt.src in self.monitoredServers: permission = check_permission(pkt)

if permission:
 switch.send_packet(pkt, action)
 switch.add_flow(pkt.src, pkt.dst, action)
else:
 resetPkt = build_reset(pkt)
 switch.send(resetPkt)
 switch.add_flow(pkt.src, pkt.dst, DROP)

```
OFX
```

:tsei

...

switch.send_packet(pkt, action)

Declassifier Module

Refactoring OpenFlow Applications to use OFX

Outline

Introduction Overview of OFX Using OFX Benchmarks

Benchmarking OFX

How much raw overhead is there for processing packets with OFX?

How do OFX based security applications perform, compared with Middlebox and OpenFlow implementations?

OFX Benchmark: Packets Per Second

Benchmarking OFX

How much raw overhead is there for processing packets with OFX?

How do OFX based security applications perform, compared with Middlebox and OpenFlow implementations?

Benchmark: Declassifier Packet Drop Rate

Implementation	Frequent arriving flows	Median	High bandwidth flows		
Middlebox Proxy	0.1%	0.1%	20.4%		
OpenFlow	97.5%	88.2%	0.1%		
OFX	5.1%	3.2%	0.1%		
OpenFlow implementation limited by flow arrival rate		Proxy implementation limited by bit rate			
OFX implementation performed well in all workloads					

Workload Name	Frequently arriving flow	vs Median flows	High bandwidth flows
Flow Inter-arrival Period	0.0015 Seconds	0.015 Seconds	0.15 Seconds
Average Transmission Bandwidth	19.75 Mbps	43.57 Mbps	970.99 Mbps

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, "The nature of data center traffic: measurements & analysis," in *Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference*. ACM, 2009, pp. 202–208.

L. Qian and B. E. Carpenter, **"A flow-based performance analysis of tcp and tcp applications,"** in *Networks (ICON)*, 2012 18th *IEEE International Conference on*. IEEE, 2012, pp. 41–45. 33

In the Paper

OFX API and Implementation Details

Application Specific Modules

Enhanced

Switch API

Modules

More benchmarks

Thank You OFX: The OpenFlow Extension Framework

OFX lets OpenFlow security applications **push parts of their control plane logic down to switch CPUs**, which can greatly **improve performance and scalability on existing hardware and software.**

University of Colorado Boulder

