Taking the Surprise out of Changes to a Bro Setup

Matthew Monaco, Alex Tsankov, Eric Keller
University of Colorado, Boulder
{matthew.monaco, alexander.tsankov, eric.keller}@colorado.edu

ABSTRACT

With network functions virtualization, an organization gains
an ability to provide a much more agile security infrastruc-
ture. In this paper we focus on vulnerabilities and challenges
created by this new flexibility itself. In particular, using Bro
as a case study, we present i) a framework for testing Bro
scripts using a packet traces, ii) a complementary framework
for testing the performance impact of Bro scripts, iii) a con-
tinuous integration system for triggering automatic testing
in response to code changes. With this system, security ad-
ministrators are protected against logic errors in new and
modified scripts as well as performance degradation.

1. INTRODUCTION

Cybersecurity threats have shown no signs of decreasing.
As such, network administrators have an increasingly diffi-
cult task of protecting their infrastructure, with intrusion
detection systems (IDS) playing a central role e.g., Bro [9],
Snort [10]. In moving from physical appliances to software-
based virtual network functions, we gain an ability to elasti-
cally scale and flexibly to deploy new network functionality.

This flexibility can be a great asset in defending against
emerging threats, but also poses a significant unresolved
challenge — the development and deployment model. First,
elasticity is not infinite. Organizations will typically deploy
Bro (or in the future, more generally, a variety of network
functions) as a cluster in their network. They will have a
set number of servers which determines the limit of process-
ing power available to all Bro workers (or network function
instances more generally). Second, elasticity is not free. In
the case of a more cloud-like deployment, elasticity is effec-
tively infinite, but comes at a cost — running more instances
directly costs more money. Third, agility comes with risks.
Whereas in web applications, deploying new functionality
at a rapid pace may result in odd behavior for users, follow-
ing similar practices in, for example, an IDS, can result in
security vulnerabilities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SDN-NFVSec’16, March 11 2016, New Orleans, LA, USA
© 2016 ACM. ISBN 978-1-4503-4078-6/16/03. .. $15.00
DOL: http://dx.doi.org/10.1145/2876019.2876031

In deploying new functionality, the administrator using is
left to wonder how the addition of a new script will impact
their existing infrastructure. Will this new script, or modi-
fication of an existing script, inadvertently break the current
protection (letting some malicious traffic go by unnoticed)?
Likewise, Will this new script, or modification, increase pro-
cessing requirements such that traffic must be discarded or
new hardware deployed? These questions are often answered
simply by deploying and seeing what happens.

In this paper we argue that more formal management of
network functions configuration and setup are essential. We
use Bro as a case study to present our preliminary work
in this space. As a step toward providing administrators
with knowledge of how modifications to their network func-
tions software and configuration will impact functionality
and performance, before it is deployed in a production envi-
ronment, we present a new, test-driven infrastructure with
Bro as a case study. This framework provides (i) the abil-
ity to define and perform ad hoc testing (BroUnit (§3)),
(ii) the ability to track the performance impact of configu-
ration changes across a variety of traffic patterns (BroFiler
(84)), (iii) a continuous integration system for Bro which is
integrated with GitLab [3], a git management platform that
can, in response to code changes, oversee the execution of
BroUnit and BroFiler, as well as perform some bookkeeping
for later analysis and visualization (BroCI (§5)), and (iv)
ultimately, we envision it serving as a central component to
foster a community ((§6)).

2. RELATED WORK

The Bro project provides a “simple driver for basic unit
tests,” called btest [2]. Btest is a generic tool — not specific
to, but appropriate for Bro — which adds syntactic sugar to
shell scripts for evaluating the results of commands. Addi-
tionally, btest offers a baseline functionality for storing the
results of an initial test and using them for comparisons on
future tests. Btest is an imperative approach to function-
ality similar to the checks sub-component of BroUnit (§3),
however BroUnit checks are defined declaratively which sim-
plifies things for administrators.

Pcapr [4] is a social networking site built around packet
captures. Through pcapr, users can view, publish, and edit
packet captures for educational purposes. In Section 6 we
discuss taking a site like pcapr further with additional fea-
tures for viewing, publishing, and editing Bro scripts paired
with packet captures.

Automatic testing methodologies have been developed for
IDSs which generate synthetic traffic by reversing traffic sig-

http://dx.doi.org/10.1145/2876019.2876031

BroUnit l

Setup Checks

¥

Traffic_.-" Scripts Results

\
. '
“. '
'
'
'

'

'

'

Bro Worker
Replayed
Traffic

Generated

Figure 1: BroUnit configures and runs Bro against
multiple traffic sources. It then analyzes Bro’s log
files and determines the pass/fail status of each test
case.

natures [7]. This is primarily for evaluating how an IDS
behaves in response to a deliberate storm of false attacks,
which can be used to mask a real attack. This type of testing
can be integrated with BroUnit as a traffic source.

3. BROUNIT

BroUnit is our testing framework for Bro centered around
testing individual scripts as well as a collection of scripts.
A key insight of this paper is that Bro scripts should be
tightly married to test traffic. This contribution is embodied
in BroUnit and its test case definitions.

As illustrated in Figure 1, the test cases instruct BroUnit
how to configure and run test (Bro) workers, and when they
are ready, what traffic to pass through them. The test cases
also instruct BroUnit how to evaluate the resulting Bro log
files to determine which tests passed and which tests failed.
In the remainder of this section we will elaborate on the
two main testing mechanisms as well as describe the current
state of our implementation.

3.1 Specific Traffic Patterns

This insight that scripts should be coupled to test traf-
fic evolved from our desire to mitigate against a number of
things that can go wrong while modifying Bro scripts or
upgrading Bro itself. Formal and comprehensive testing is
required to assure that malicious traffic does not go by unno-
ticed. By explicitly defining the purpose of a script through
a test case, an organization can be sure that future changes,
additions, and removals to its overall Bro configuration con-
tinue to honor the intent of administrators; a task which can
be difficult as focus changes, personnel rolls over, etc.

A simple example is in the context of Bro version up-
grades. From version 2.2 to 2.3 there were syntax changes
which resulted in Bro workers crashing until their scripts
were altered or dropped [1].

A more subtle case involves modifications to existing scripts.
For example, a Bro cluster might contain a script to alert
on SQL injection attempts, which includes a rather compli-
cated regular expression. From time to time, changes to the
regular expression are required as the potential strings used
for injection evolve. (Or conversely, the regular expression
needs to be changed because of too many false positives).
Guaranteeing that the updated regular expression, and thus
the script as a whole, continues to match old patterns as
well as new is non-trivial without a library of test traffic.

3.2 Representative Traffic Mix

Whereas replaying a specific traffic pattern can be used
to test whether a single condition is met (and therefore es-
sential step in testing), we also need the ability to test the
script(s) as a whole with a mix of traffic that is more rep-
resentative of real traffic. In doing so, we can uncover any
issues that arise under load, or that may arise from un-
specified test cases (i.e., conditions for which there is not
a specific traffic trace, or that invalidate assumptions made
when constructing test cases [8]).

Further, organizations’ assumptions about the traffic that
they are scanning must be tested as the statistical break-
down of packets evolves over time. For example, a cluster
might contain a script with a high performance cost for an-
alyzing FTP traffic. Such a script was originally acceptable
because there was only one, rarely used FTP server. How-
ever, over time, a department increases its FTP footprint
without necessarily notifying its network security team.

For such a scenario, BroUnit allows tests to be run against
(i) the live traffic itself, (ii) synthetic traffic matching the
characteristics of the live traffic, or even (iii) synthetic traf-
fic with traffic mixes that can be used to test behavior under
sudden traffic changes. (This also benefits performance pro-
filing, which is discussed further in Section 4). Live traffic
can be scanned from a real Ethernet interface to run tests
against an organization’s live traffic. Traffic generators such
as D-ITG can also be used to run test cases under load.

Here, the checks on the resulting logs will be statistical
based (rather than exact matches) because we cannot be cer-
tain of the exact number of times a certain portion of a script
will be triggered. We can, however, know roughly what we
would expect for the chosen traffic mix (live or synthetic).
These statistics can be minimum and maximum thresholds,
a multi-modal threshold (e.g., in-attack we might expect
one result and otherwise we might expect another result),
or even relative to information from baseline scripts (which
are assumed to be good, such as a script that simply tracks
the number of connections).

A test failure, in this case may be due to a number of
factors such as the traffic mix having changed since the script
was created. It is then a trigger to the administrator to
seek understanding behind the result and adjust the test
or deployment accordingly (e.g., remove scripts targeted at
traffic no longer seen).

3.3 Implementation

BroUnit (like much of the tooling ancillary to Bro) is im-
plemented in Python. At this time, each unit is an entire
script. It is designed to be modular and extensible, while
also being easy to use. As such, test cases are declarative but
are themselves valid Python and stored in either brounit.py

or brounit/*.py, so could, for example, even call arbitrary
code to setup each test.

The traffic source types are modular and can be easily ex-
tended by writing sub-classes of BroUnitSource. Currently,
traffic sources are defined for packet captures, live traffic,
D-ITG [5], and composites thereof. The test case checks are
also modular and similarly to traffic sources are derived from
the base class BroUnitCheck. Currently, the primary check
is BroUnitRegex for performing regular expression matching
within Bro log files.

4. BROFILER

Understanding the performance profile of Bro script li-
brary is just as important as being confident of its ability to
correctly alert on specific traffic patterns. There are three
possible outcomes in situations where a Bro cluster can not
keep up with the traffic it is tasked to analyze: i) packets
can be discarded (the default behavior if Bro is incapable of
storing the packets properly in its buffer), ii) more hardware
can be thrown into the cluster, and/or iii) the active set of
scripts can be modified or reduced.

This first option is undesirable because without prioritiza-
tion, important traffic can go by unnoticed, and there is not
always a clear path to prioritization in the first place with-
out an expensive hardware frontend or specialized network
interface cards. As a general rule of thumb each Bro worker
can handle 100Mbit/s. Peering points of 10Gbit, 40Gbit,
and even 100Gbit are common; therefore without any pre-
filtering of packets a cluster might require 1,000 cores to
guarantee zero packet drops. This itself is on the scale of
small datacenter. Therefore the second option can quickly
become cost-prohibitive. The third option, optimizing the
Bro script configuration, is often the best as it both elegantly
and deterministically manages the demand on a cluster. For
the third option, with the changing demands on a network
at different times, it’s possible for security administrators to
leverage information provided by BroFiler to develop differ-
ent, and dynamic security profiles — performing less analysis
at peak hours or deeper packet-analysis with the same de-
vices without dropped packets in off-hours.

4.1 Design and Implementation

BroFiler, like BroUnit (§3) is implemented and configured
in python). It is used in conjunction with BroUnit to collect
statistics. These include packet drop rate, CPU utilization,
memory utilization, etc. Conceptually, BroFiler is quite sim-
ple. It currently knows two sets of configuration options, de-
fined in brofile.py. Absolute limits can be defined which
cause an error to be raised if the performance while running
BroUnit is not acceptable. Relative thresholds can also be
defined which trigger an error if performance impact of the
current commit is too pronounced (it is the job of BroCI
(85) to pass along the previous commit’s results).

4.2 Analysis with BroFiler

BroFiler enables two levels of analysis through graphs on
a web frontend. First, time-based plotting of individual runs
provide insight into how specific traffic patterns impact per-
formance of a Bro cluster. This is tightly coupled to the
set of scripts which are configured. For example a perfor-
mance spike can indicate a particularly troublesome pattern

4000K

M Total
M Bare
3500K B Bare and Utilities
Default
3000K M Default and Custom
P 2500K
g
S 2000K
o
1500K
1000K
500K
0 10 20 30 40 50 60 70 80 90 100 110

Seconds

Figure 2: BroFiler results obtained by running the
same test case against various script configurations.
Higher lines (more packets processed), are better.

needs to be worked around, or that it’s simply not worth
attempting to detect it.

As an example evaluation that we performed, figure 2
shows the number of packets processed over time from the
same test case for multiple script configurations. It also in-
cludes the total number of packets sent. The test traffic
consists of four packet captures, replayed in parallel, for 100
iterations each. The data shown in Figure 2 indicates that
the custom scripts used in this test do not actually have a
large performance impact. Rather, Bro’s default configura-
tion affects the drop rate significantly for this test. These
results would indicate to a new installation that defaults
should be evaluated and thinned out based on what’s im-
portant to the local site.

A second type of analysis, historical-based graphs, allow
administrators to track performance from commit to commit
in the source repository. Knowing the relative performance
impact of each commit is an important tool when a Bro
cluster begins to drop too many packets and it is necessary
to go back and evaluate if any scripts should be dropped
from the cluster. BroFiler gives administrators the ability
to balance the value of targets in their network vs. the cost
of protecting them; for example there might be a 5% perfor-
mance impact from doing deep analysis on FTP traffic, but
the organizations servers are not high-value targets because
they are read-only archives of public files.

As future work (§8) we would like to provide finer-grained
detail with BroFiler. Currently script-by-script and change-
by-change statistics are available, the latter of which can po-
tentially be used to infer profiling information from within a
script itself. Explicit, per-event statistics are also desirable.

S. BROCI

Continuous integration testing is an increasingly common
practice in modern software development. It is a powerful

concept that automatically gives developers near-instantaneous

feedback in response to code changes. The overhead of set-
ting up a CI system is negligible as most free and public git
hosting services such as GitLab and Bitbucket provide out-
of-the-box support. Further, CI systems open the door for
structured and automated paths from development to pro-
duction when combined with sufficient unit test cases (§3).

Our BroCI implementation is written in Python with a
few lines of Bash for interfacing with GitLab. As illustrated

BroCl

3. Setup
BroUnit/BroFiler

4. Run

Script »<{ GitLab
\ 1. Commit and Push J

Figure 3: BroCI workflow.

5. Analyze 2. Notify

in Figure 3, when a developer makes a change and pushes
it to GitLab, a GitLab “runner” sets up a clean copy of
the repository on a BroCI server and hands off execution
to BroClI (via a shell script). BroCI'’s exit code indicates to
GitLab the results of testing which can in turn dictate any
subsequent actions from GitLab such as automated merging.

BroCl itself is in charge of running both BroUnit and Bro-
Filer and then storing results in a database. It provides
BroFiler with the previous run’s test results so that relative
performance thresholds can be evaluated (§4).

6. TOWARDS A BETTER COMMUNITY

The components previously described are a significant im-
provement to the workflow surrounding the management of
a Bro cluster. This is especially true as Bro’s footprint in
industry grows and more formal requirements take shape.

6.1 A De Facto Repository

We believe that these tools build towards a more cohesive
de facto community as well. A major pain point we have
identified both for novice users as well as established instal-
lations is the acquisition of an appropriate set of scripts with-
out a standardized, and centralized source. For new users,
it can be an overwhelming process to pull together, with
confidence, an effective and performant configuration. For
established sites, which are ostensibly higher value targets,
keeping pace with new attack patterns is a high priority.

BroCI can serve as a community where organizations can
publish and download scripts and, importantly, test cases
and packet captures to accompany them. Having multiple
alternatives of attacks is important as traffic can be con-
structed in such a way to deliberately evade IDSs [6]. Rat-
ing systems, alerts to new attacks, discussion, and improve-
ments to others’ scripts can all take place in a centralized,
trustworthy location. This, we feel, will lower the barrier to
entry of Bro as well as increase its effectiveness as an IDS.

6.2 BroClI as a Service

Beyond a community for the sharing and discussion of
scripts, packet captures, and test cases, BroCI can easily
be launched as a service. Most obviously, BroCI as a Ser-
vice lowers the barrier to entry for organizations wishing to
transition to formalized testing. Some may wish to use the
service indefinitely, while others as a means to gain experi-
ence before deploying a private testbed.

Conversely, organizations can donate workers to the pub-
lic testbed. This is how the public GitLab-CI suite operates.
The service itself just performs bookkeeping and coordina-
tion but does not actually provide compute resources for
servicing testing. Users must associate their own runners,
and can choose for them to be private or public.

Finally, BroCI as a Service offers the ability for dynamic
feedback of script, packet capture, and test case changes.
For example, a user forks a script with an ostensibly more
efficient implementation to detect malicious behavior in a
pcap file. Rather than waiting for users to give feedback
about whether or not the fork works, BroCI can test auto-
matically, for both correctness and performance.

7. ACKNOWLEDGMENTS

This research was supported in part by the National Sci-
ence Foundation award number 1406192.

8. CONCLUSIONS AND FUTURE WORK

With the great flexibility afforded by NFV and SDN to
deploy new security functionality comes the challenge of en-
suring that what is being deployed does not make the secu-
rity infrastructure less secure. In this paper, we presented
an initial step toward a solution where administrators can
understand the impact changes have on both traffic han-
dling as well as performance. Together, BroUnit, BroFiler,
and BroCl fill a need in the management workflow of Bro as
well as in the community at large. As future work, we hope
to continue the development with richer set of capabilities,
generalize the platform, and ultimately, develop enough out-
side interest in these tools to foster a community where users
can browse, comment on, and change a library of scripts and
packet captures, as well as provide BroCI as a service.

9[1} &(])Z x%].%l}g:egsgr%%s. https://www.bro.org/
sphinx-git/install /release-notes.html#bro-2-3.

[2] Btest - a simple driver for basic unit tests.
https://www.bro.org/sphinx/components/btest/
README.html.

[3] Gitlab. http://about.gitlab.com.

[4] pcapr - web 2.0 for packets. http://www.pcapr.net.

[5] A. Botta, A. Dainotti, and A. Pescape. A tool for the
generation of realistic network workload for emerging
networking scenarios. Computer Networks,
56(15):3531-3547, 2012.

[6] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In USENIX
Security Symposium, pages 115131, 2001.

[7] D. Mutz, G. Vigna, and R. Kemmerer. An experience
developing an ids stimulator for the black-box testing
of network intrusion detection systems. In Computer
Security Applications Conference, 2003. Proceedings.
19th Annual, pages 374-383. IEEE, 2003.

[8] S. Myagmar, A. J. Lee, and W. Yurcik. Threat
modeling as a basis for security requirements. In
Symposium on requirements engineering for
information security (SREIS), 2005.

[9] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer networks,
31(23):2435-2463, 1999.

[10] M. Roesch et al. Snort: Lightweight intrusion
detection for networks. In LISA, volume 99, pages
229-238, 1999.

https://www.bro.org/sphinx-git/install/release-notes.html#bro-2-3
https://www.bro.org/sphinx-git/install/release-notes.html#bro-2-3
https://www.bro.org/sphinx/components/btest/README.html
https://www.bro.org/sphinx/components/btest/README.html
http://about.gitlab.com
http://www.pcapr.net

	Introduction
	Related Work
	BroUnit
	Specific Traffic Patterns
	Representative Traffic Mix
	Implementation

	BroFiler
	Design and Implementation
	Analysis with BroFiler

	BroCI
	Towards a Better Community
	A De Facto Repository
	BroCI as a Service

	Acknowledgments
	Conclusions and Future Work
	References

