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Mobile	Devices
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Devices	are	designed	around	certain	restrictions

This	leads	vendors	to	make	tradeoffs

What	if	users	and	developers	could	choose?



Vision:	Smart	Phone	with	an	FPGA
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Software-defined	Radio
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High-performance	Computing
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Cryptography

http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas/

Analytics

http://www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/



Architectural	Enhancements
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Somniloquy (NSDI	09)
(SEC	04)



Why	is	now	the	right	time?
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SoCs with	Programmable	Logic	coupled	with	
ARM	Cortex	A9 (same	as	iPhone	4	and	many	other	smartphones)

High-level	Synthesis
Write	C	/	C++	/	SystemC /	OpenCL code
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Fundamental	Problem:

Sharing	the	FPGA	between	applications



What	we	can	already	do
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Processor

App	loads:	software	runs	on	processor,	FPGA	configured	with	hardware

FPGA
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What	we	can	already	do
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This	is	currently	possible	– run-time	reconfiguration

Processor FPGAAppX
Hardware

AppX
Software

App	loads:	software	runs	on	processor,	FPGA	configured	with	hardware

Sort	of



What	we	can’t	do
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What	if	we	have	two	apps?

Processor FPGAAppX
Hardware

AppX
Software

AppY
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What	we	can’t	do
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What	if	it’s	a	single	chip	(and	some	I/O	goes	through	the	FPGA)

I/O

Processor FPGAAppX
Hardware

AppX
Software

I/O

AppY

AppY
Hardware

AppY
Software



• Over	a	decade	of	research	has	proposed	two	main	solutions:
– Run-time	place-and-route
– Slot-based	reconfiguration

Why	hasn’t	this	been	solved	before?
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• There	is	free	space	in	the	FPGA
• Place	a	new	module	there
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Approach	1:	Run-time	Place/Route



• Routing	can	fail
• Routing	is	also	very	time	consuming

• Therefore,	is	not	practical
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Approach	1:	Run-time	Place/Route



• Identical	empty	regions	are	
reserved	in	FPGA

• Constrain	tools	to:
– Not	use	wires/logic	inside	of	slots
– Use	exact	same	wires	for	interface
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Approach	2:	Slot-Based	Reconfiguration

Slot
1

Slot
2

Slot
3



• Hardware	is	loaded	into	slots
• Problem:	if	other	logic	exists,	
wire	routing	becomes	very	
constrained

• Therefore,	is	also	not	practical
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Approach	2:	Slot-Based	Reconfiguration

Slot
1

Slot
2

Slot
3



• Run-time	Place	and	Route
– Is	very	computationally	expensive
– Can	possibly	fail

• Slot-base	Reconfiguration
– Constrained	routing	is	very	restrictive	and	not	applicable	generally

• Therefore,	previous	research	is	not	practical

Previous	Research
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• Allows	for	sharing	of	the	FPGA	between	general	apps

• Uses	existing	vendor	technologies

• Adopts	the	idea	of	slots	from	previous	research

• Cloud	RTR	makes	existing	vendor	technology	work	for	general	
apps

Introducing	Cloud	RTR

19



The	App	Deployment	Model
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Cloud	RTR
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Manufacturers

Developer

Cloud	RTR

Android

FPGA ARM

Consumer

Static	Design

1 2 3

Static	Design

1 2 3

Static	Design

1 2 3



• Creates	a	static	design
– All	logic	that	does	not	change

• Design	includes	areas	reserved	
for	slots

• Sends	this	to	the	cloud	compiler

Manufacturer

22

Static	Design

1 2 3

GPU AXI



• Create	an	app	using	existing	tools

• Create	a	hardware	definition	in	C

Developer
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bool	example(ap_uint<32>	*in
ap_uint<32>	*out,
bool	*enabled,

)



• Compiles	hardware	for	each	app
– For	each	device	variant
– For	each	slot	in	each	variant

App	Store	(Cloud	Compiler)
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X

App

[device1:	
[slot1:	a.bit,
slot2:	b.bit,
slot3:	c.bit]]

[device	2:	
[slot1:	d.bit,
slot2:	e.bit]]

Cloud	
Compiler

Static	Design

1 2 3

Static	Design

1 2 3

Static	Design

1 2 3



• A	system	service	
manages	slots

• Downloaded	apps	include	
slot	hardware

• The	system	service	loads	
app	hardware	for	apps

User	(Operating	System)
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.apk:
[device	1:	
[slot1:	a.bit,
slot2:	b.bit,
slot3:	c.bit]]

FPGA
GPU AXI

1 2 3X



• The	slot	manager	enforces	access	to	hardware

• However,	FPGAs	can	theoretically	directly	access	sensitive	
resources	(while	bypassing	the	OS)

• A	secure	loading	system	ensures	that	apps	cannot	access	
sensitive	resources

Security	Considerations
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Secure	loading	system
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Processor

FPGA

How	does	the	secure	loader	work?
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Memory	
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Reconfiguration	
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Secure	loading	system
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The	OS	wants	to	reconfigure	Slot	1



Secure	loading	system
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Processor

FPGA

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Signed	
module

The	signature	of	the	module	is	verified



Secure	loading	system
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Processor

FPGA

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Signed	
module

The	module	is	written	to	the	ICAP



Secure	loading	system
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FPGA

Slot	1 Slot	2
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Operating	System Signature	
Verification

Reconfiguration	
Module
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Signed	
module

The	ICAP	performs	the	reconfiguration



• Is	there	value	in	apps	with	hardware?

• Is	the	cloud-based	compilation	of	Cloud	RTR	practical?

Evaluation
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Micro	benchmark	1:	QAM	demodulator
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4	orders	of	
magnitude



Micro	benchmark	2:	AES
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FPGA	is	3x	
vs.	

OpenSSL



• We	also	implemented	a	hardware	memory	scanner

• It	can	scan	the	entire	address	space	transparently	to	the	OS
– 2.7%	memory	read	performance	hit
– 5.5%	memory	write	performance	hit

• We	tested	this	using	the	LMbench testbench

Micro	benchmark	3:	Memory	Scanner
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Brute-force	compilation
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Google	Play	Store Figures

#	of	Apps	as of Dec 14 1.43	Million

Average	Monthly	App	Growth 6.10%

#	of	Apps	for	January	16 117,521

provided by AppFigures.



Brute-force	compilation
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Max	#	of	Apps Compiled	
per	day

#	of	
Slots

Apps

2 121

3 96

4 76

5 59

6 51

2	Slots	Requirements %	of	April	Apps that	use	Hardware
(#	of	Apps	Uploaded	per	Day)

0.1	
(3)

1	
(34)

10
(347)

#	of	Device
Variants

#	of	Machines Required	to	Compile	
Apps

1 1 1 3
10 1 3 29
100 3 29 288
1000 29 288 2875

Reasonable	for	
most	scenarios



Brute-force	compilation
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6	Slots	Requirements %	of	April	Apps that	use	Hardware
(#	of	Apps	Uploaded	per	Day)

0.1	
(3)

1	
(34)

10
(347)

#	of	Device
Variants

#	of	Machines Required	to	Compile	
Apps

1 1 1 7
10 1 7 69
100 7 69 681
1000 69 681 6809

Max	#	of	Apps Compiled	
per	day

#	of	
Slots

Apps

2 121

3 96

4 76

5 59

6 51

Still	reasonable	
for	most	
scenarios



• Compilation	can	be	offloaded	to	manufacturers

• Manufacturers	will	likely	reuse	designs (Qualcomm,	ARM	chips	
are	often	reused)

• Developers	will	likely	use	libraries

Reducing	the	numbers	even	more
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• Tor	on	Android

• AES	is	on	the	critical	path

• Examine	AES	as	an	integration	study

Implementation	Case	Study:	Orbot
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What	we	found:
• Memory	operations	are	the	bottleneck
– Data	must	be	placed	correctly	in	memory
– Userspace I/O	has	high	overhead
– Many	system	calls	are	incompatible	with	UIO

• It	is	easier	to	build	an	application	from	ground-up

Implementation	Case	Study:	Orbot
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• We	have	presented	our	vision	of	apps	with	hardware

• Cloud	RTR	implements	our	vision	by	leveraging	the	mobile	app	
deployment	model

• We	have	demonstrated	the	value	and	practicality	of	our	vision

Conclusion
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• Email:	michael.coughlin@colorado.edu
• Source	code:	https://github.com/nsr-colorado/cloud-rtr

Questions?
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Vendor	Supported	Partial	Reconfiguration
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Target	FPGA

Static	Design

Dynamic	Module	 (s)

Vendor	 tools

• base.bit
• partial_1.bit
• partial_2.bit

(Partial	bitstreams work	in	1	location,
and	are	just	for	base.bit)

Goal:	Space	saving	for	customer



• Crypto
– Asymmetric	(RSA,	ECDSA,	etc…)
– Symmetric	(3DES,	Twofish,	Blowfish)

• Soft	processors
• Encoding
– Network	encoding	(Reed-Solmon,	etc…)
– Media	encoding	(JPEG,	MPEG,	etc…)

• DSP
– FFTs,	Filters,	etc…

Examples	of	Libraries
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bool	example(ap_uint<32>	*in
ap_uint<32>	*out,
bool	*enabled,

)

Example	hardware	definition
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typedef ap_uint<32>	uint32_t_hw;
typedef hls::stream<uint32_t_hw>	mem_stream32;

bool	aes(volatile	unsigned	intm_mm2s_ctl	[500],	
volatile	unsigned	intm_s2mm_ctl[500],	
volatile	unsigned	sourceAddress,	
ap_uint<128>	*key_in,	
ap_uint<128>	*iv,
volatile	unsigned	destinationAddress,	
unsigned	int numBytes,	
intmode,
mem_stream32&	s_in,	
mem_stream32&	s_out

)

More	complicated	hardware	definition
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The	problem
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Let’s	examine	the	problem

Processor FPGA

AppX
hardware

AppX
software

I/O

I/O



The	problem
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Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

First,	there	are	various	interconnects	needed



The	problem
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Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

Control	signals	and	logic	must	also	be	placed



The	problem
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Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

The	app	may	have	complex	inputs,	or	need	to	interact	with	other	logic



• A	trusted	system	is	booted	with	Secure	Boot

• Included	is	a	static	module	that	reconfigures	slots

• This	module	only	allows	signed	modules	into	slots	that	access	
sensitive	resources

Secure	loading	system
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• Builds	off	of	prior	research…

• …but	in	a	way	that	is	compatible	with	vendor	tools

• To	do	this,	we	leverage	the	deployment	model	for	mobile	apps

Our	solution
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