
Apps	with	Hardware
Enabling	Run-time	Architectural	
Customization	in	Smart	Phones

Michael	Coughlin,	Ali	Ismail,	Eric	Keller
University	of	Colorado	Boulder

Mobile	Devices

2

Devices	are	designed	around	certain	restrictions

This	leads	vendors	to	make	tradeoffs

What	if	users	and	developers	could	choose?

Vision:	Smart	Phone	with	an	FPGA

3

HW SW

Android

FPGA ARM

App

Software-defined	Radio

4

High-performance	Computing

5

Cryptography

http://www.nallatech.com/40gbit-aes-encryption-using-opencl-and-fpgas/

Analytics

http://www.datanami.com/2015/03/10/fpga-system-smokes-spark-on-streaming-analytics/

Architectural	Enhancements

6

Somniloquy (NSDI	09)
(SEC	04)

Why	is	now	the	right	time?

7

SoCs with	Programmable	Logic	coupled	with	
ARM	Cortex	A9 (same	as	iPhone	4	and	many	other	smartphones)

High-level	Synthesis
Write	C	/	C++	/	SystemC /	OpenCL code

8

Fundamental	Problem:

Sharing	the	FPGA	between	applications

What	we	can	already	do

9

Processor

App	loads:	software	runs	on	processor,	FPGA	configured	with	hardware

FPGA

AppX

AppX
Hardware

AppX
Software

What	we	can	already	do

10

This	is	currently	possible	– run-time	reconfiguration

Processor FPGAAppX
Hardware

AppX
Software

App	loads:	software	runs	on	processor,	FPGA	configured	with	hardware

Sort	of

What	we	can’t	do

11

What	if	we	have	two	apps?

Processor FPGAAppX
Hardware

AppX
Software

AppY

AppY
Hardware

AppY
Software

What	we	can’t	do

12

What	if	it’s	a	single	chip	(and	some	I/O	goes	through	the	FPGA)

I/O

Processor FPGAAppX
Hardware

AppX
Software

I/O

AppY

AppY
Hardware

AppY
Software

• Over	a	decade	of	research	has	proposed	two	main	solutions:
– Run-time	place-and-route
– Slot-based	reconfiguration

Why	hasn’t	this	been	solved	before?

13

• There	is	free	space	in	the	FPGA
• Place	a	new	module	there

14

Approach	1:	Run-time	Place/Route

• Routing	can	fail
• Routing	is	also	very	time	consuming

• Therefore,	is	not	practical

15

Approach	1:	Run-time	Place/Route

• Identical	empty	regions	are	
reserved	in	FPGA

• Constrain	tools	to:
– Not	use	wires/logic	inside	of	slots
– Use	exact	same	wires	for	interface

16

Approach	2:	Slot-Based	Reconfiguration

Slot
1

Slot
2

Slot
3

• Hardware	is	loaded	into	slots
• Problem:	if	other	logic	exists,	
wire	routing	becomes	very	
constrained

• Therefore,	is	also	not	practical

17

Approach	2:	Slot-Based	Reconfiguration

Slot
1

Slot
2

Slot
3

• Run-time	Place	and	Route
– Is	very	computationally	expensive
– Can	possibly	fail

• Slot-base	Reconfiguration
– Constrained	routing	is	very	restrictive	and	not	applicable	generally

• Therefore,	previous	research	is	not	practical

Previous	Research

18

• Allows	for	sharing	of	the	FPGA	between	general	apps

• Uses	existing	vendor	technologies

• Adopts	the	idea	of	slots	from	previous	research

• Cloud	RTR	makes	existing	vendor	technology	work	for	general	
apps

Introducing	Cloud	RTR

19

The	App	Deployment	Model

20

Cloud	RTR

21

Manufacturers

Developer

Cloud	RTR

Android

FPGA ARM

Consumer

Static	Design

1 2 3

Static	Design

1 2 3

Static	Design

1 2 3

• Creates	a	static	design
– All	logic	that	does	not	change

• Design	includes	areas	reserved	
for	slots

• Sends	this	to	the	cloud	compiler

Manufacturer

22

Static	Design

1 2 3

GPU AXI

• Create	an	app	using	existing	tools

• Create	a	hardware	definition	in	C

Developer

23

bool	example(ap_uint<32>	*in
ap_uint<32>	*out,
bool	*enabled,

)

• Compiles	hardware	for	each	app
– For	each	device	variant
– For	each	slot	in	each	variant

App	Store	(Cloud	Compiler)

24

X

App

[device1:	
[slot1:	a.bit,
slot2:	b.bit,
slot3:	c.bit]]

[device	2:	
[slot1:	d.bit,
slot2:	e.bit]]

Cloud	
Compiler

Static	Design

1 2 3

Static	Design

1 2 3

Static	Design

1 2 3

• A	system	service	
manages	slots

• Downloaded	apps	include	
slot	hardware

• The	system	service	loads	
app	hardware	for	apps

User	(Operating	System)

25

.apk:
[device	1:	
[slot1:	a.bit,
slot2:	b.bit,
slot3:	c.bit]]

FPGA
GPU AXI

1 2 3X

• The	slot	manager	enforces	access	to	hardware

• However,	FPGAs	can	theoretically	directly	access	sensitive	
resources	(while	bypassing	the	OS)

• A	secure	loading	system	ensures	that	apps	cannot	access	
sensitive	resources

Security	Considerations

26

Secure	loading	system

27

Processor

FPGA

How	does	the	secure	loader	work?

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Secure	loading	system

28

Processor

FPGA

Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Signed	
module

Slot	1

The	OS	wants	to	reconfigure	Slot	1

Secure	loading	system

29

Processor

FPGA

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Signed	
module

The	signature	of	the	module	is	verified

Secure	loading	system

30

Processor

FPGA

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP

Signed	
module

The	module	is	written	to	the	ICAP

Secure	loading	system

31

Processor

FPGA

Slot	1 Slot	2

Memory	
Controller

Operating	System Signature	
Verification

Reconfiguration	
Module

ICAP
Signed	
module

The	ICAP	performs	the	reconfiguration

• Is	there	value	in	apps	with	hardware?

• Is	the	cloud-based	compilation	of	Cloud	RTR	practical?

Evaluation

32

Micro	benchmark	1:	QAM	demodulator

33

4	orders	of	
magnitude

Micro	benchmark	2:	AES

34

FPGA	is	3x	
vs.	

OpenSSL

• We	also	implemented	a	hardware	memory	scanner

• It	can	scan	the	entire	address	space	transparently	to	the	OS
– 2.7%	memory	read	performance	hit
– 5.5%	memory	write	performance	hit

• We	tested	this	using	the	LMbench testbench

Micro	benchmark	3:	Memory	Scanner

35

Brute-force	compilation

36

Google	Play	Store Figures

#	of	Apps	as of Dec 14 1.43	Million

Average	Monthly	App	Growth 6.10%

#	of	Apps	for	January	16 117,521

provided by AppFigures.

Brute-force	compilation

37

Max	#	of	Apps Compiled	
per	day

#	of	
Slots

Apps

2 121

3 96

4 76

5 59

6 51

2	Slots	Requirements %	of	April	Apps that	use	Hardware
(#	of	Apps	Uploaded	per	Day)

0.1	
(3)

1	
(34)

10
(347)

#	of	Device
Variants

#	of	Machines Required	to	Compile	
Apps

1 1 1 3
10 1 3 29
100 3 29 288
1000 29 288 2875

Reasonable	for	
most	scenarios

Brute-force	compilation

38

6	Slots	Requirements %	of	April	Apps that	use	Hardware
(#	of	Apps	Uploaded	per	Day)

0.1	
(3)

1	
(34)

10
(347)

#	of	Device
Variants

#	of	Machines Required	to	Compile	
Apps

1 1 1 7
10 1 7 69
100 7 69 681
1000 69 681 6809

Max	#	of	Apps Compiled	
per	day

#	of	
Slots

Apps

2 121

3 96

4 76

5 59

6 51

Still	reasonable	
for	most	
scenarios

• Compilation	can	be	offloaded	to	manufacturers

• Manufacturers	will	likely	reuse	designs (Qualcomm,	ARM	chips	
are	often	reused)

• Developers	will	likely	use	libraries

Reducing	the	numbers	even	more

39

• Tor	on	Android

• AES	is	on	the	critical	path

• Examine	AES	as	an	integration	study

Implementation	Case	Study:	Orbot

40

What	we	found:
• Memory	operations	are	the	bottleneck
– Data	must	be	placed	correctly	in	memory
– Userspace I/O	has	high	overhead
– Many	system	calls	are	incompatible	with	UIO

• It	is	easier	to	build	an	application	from	ground-up

Implementation	Case	Study:	Orbot

41

• We	have	presented	our	vision	of	apps	with	hardware

• Cloud	RTR	implements	our	vision	by	leveraging	the	mobile	app	
deployment	model

• We	have	demonstrated	the	value	and	practicality	of	our	vision

Conclusion

42

• Email:	michael.coughlin@colorado.edu
• Source	code:	https://github.com/nsr-colorado/cloud-rtr

Questions?

43

Vendor	Supported	Partial	Reconfiguration

44

Target	FPGA

Static	Design

Dynamic	Module	 (s)

Vendor	 tools

• base.bit
• partial_1.bit
• partial_2.bit

(Partial	bitstreams work	in	1	location,
and	are	just	for	base.bit)

Goal:	Space	saving	for	customer

• Crypto
– Asymmetric	(RSA,	ECDSA,	etc…)
– Symmetric	(3DES,	Twofish,	Blowfish)

• Soft	processors
• Encoding
– Network	encoding	(Reed-Solmon,	etc…)
– Media	encoding	(JPEG,	MPEG,	etc…)

• DSP
– FFTs,	Filters,	etc…

Examples	of	Libraries

45

bool	example(ap_uint<32>	*in
ap_uint<32>	*out,
bool	*enabled,

)

Example	hardware	definition

46

typedef ap_uint<32>	uint32_t_hw;
typedef hls::stream<uint32_t_hw>	mem_stream32;

bool	aes(volatile	unsigned	intm_mm2s_ctl	[500],	
volatile	unsigned	intm_s2mm_ctl[500],	
volatile	unsigned	sourceAddress,	
ap_uint<128>	*key_in,	
ap_uint<128>	*iv,
volatile	unsigned	destinationAddress,	
unsigned	int numBytes,	
intmode,
mem_stream32&	s_in,	
mem_stream32&	s_out

)

More	complicated	hardware	definition

47

The	problem

48

Let’s	examine	the	problem

Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

The	problem

49

Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

First,	there	are	various	interconnects	needed

The	problem

50

Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

Control	signals	and	logic	must	also	be	placed

The	problem

51

Processor FPGA

AppX
hardware

AppX
software

I/O

I/O

The	app	may	have	complex	inputs,	or	need	to	interact	with	other	logic

• A	trusted	system	is	booted	with	Secure	Boot

• Included	is	a	static	module	that	reconfigures	slots

• This	module	only	allows	signed	modules	into	slots	that	access	
sensitive	resources

Secure	loading	system

52

• Builds	off	of	prior	research…

• …but	in	a	way	that	is	compatible	with	vendor	tools

• To	do	this,	we	leverage	the	deployment	model	for	mobile	apps

Our	solution

53

