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ABSTRACT

In this paper we introduce WASP, a general communication
layer for hybrid wireless networks where multiple networks
are used to complement each other. In our system, we capi-
talize on an infrastructure with a ubiquitous, wide-area net-
work to help enable the creation of a local mobile ad-hoc
network in an efficient, scalable, evolvable, and manageable
way. In particular, in an architecture inspired by software-
defined networking, we decouple the control plane and data
plane in the mobile devices and shift the control plane to
a centralized controller. The controller, reachable via the
wide-area network, manages a collection of mobile devices by
informing each device how to handle traffic based on neigh-
bor information provided by the mobile devices. With this,
a mobile ad-hoc network can help reduce the data burden
on the ubiquitous network, and the ubiquitous network can
help reduce the burden on the mobile devices. WASP can
be used in different networks with different applications such
as cellular and military networks. In this paper, we based
our implementation on Android and tested on a collection
of Google Nexus-4 devices to measure metrics such as bat-
tery consumption. We evaluate on an extended ns-3 simula-
tion platform which we added the ability to run unmodified
Android applications on the nodes within ns-3. Our ex-
periments show that WASP scales better than traditional
ad-hoc networks with only a minimal trade off of energy.
Additionally, we show that a content distribution scheme
using WASP on smartphones with cellular data plans signif-
icantly offloads bandwidth from the cellular infrastructure,
and in turn reduces expensive data usage and energy usage.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: subject—
centralized networks, wireless networking
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1. INTRODUCTION

Mobile ad-hoc networks (MANETS) are traditionally de-
signed for environments with no pre-existing infrastructure.
The need to self-organize leads to the need to exchange and
process a high volume of control messages to manage its
communication network and recover from changes in the net-
work, such as through mobility. This leads to overwhelming
the wireless channels which, in turn, causes packet loss. It
also puts an extra overhead on mobile devices to process
and forward these control packets. With these challenges,
MANETSs become unscalable and suffer high packet loss and
error rates as the number of nodes increases.

In this paper, we explore a scenario where ubiquitous net-
work connection exists but is expensive to use. We note
that many of today’s mobile devices routinely equipped with
multiple interfaces. Examples of such hybrid networks can
be seen in cellular infrastructures where smartphones have
multiple interfaces (e.g., Wi-Fi, Bluetooth, 3G/4G), and
military setting where satellite or a unmanned aerial ve-
hicle(UAV) provides ubiquitous network connection to sol-
diers’ mobile devices that also are equipped with UHF/VHF
radios. We take advantage of the existence of a long-range,
ubiquitous wireless interface to offload network control and
management from the wireless nodes to a centralized, gen-
eral purpose server.

With this, a mobile ad-hoc network can help reduce the
burden on the ubiquitous network (e.g., by reducing the
data downloaded through it), and the ubiquitous network
can help enable the creation of a local mobile ad-hoc network
(e.g., by removing the burden of running complex routing
protocols from the mobile devices).

We present the design, implementation, and evaluation
of WASP !, a communication layer within a mobile device
for hybrid networks. In contrast to mobile ad-hoc networks,
with WASP, the devices themselves do not run any rout-
ing protocols. Instead, we are guided by software-defined
networking (SDN) [24, 18]. By capitalizing on a ‘one-hop’
connection to a centralized controller, we transfer the duty of
network management calculations from battery constrained

WASP is named for the technologies our prototype encom-
passes (Wi-Fi, Ad-Hoc, Software-Defined Networking, and
Personal-Mobile)



devices to a powerful server (or elastic collection of servers).
When topology changes occur, we do not need to flood the
network with information and wait for convergence as in
a distributed protocol (such as OLSR [12]). At the same
time, we do not have to revert to such approaches as being
exclusively reactive (as in AODV [34]) where, to be more
scalable, paths are calculated when two nodes attempt to
communicate. Importantly, as we will show, this shift does
not introduce a lot of control overhead on the expensive
wide-area radio interface — our solution uses an on-demand
network control protocol which is very efficient.

It is important to highlight that WASP is a general pur-
pose communication layer for hybrid networks, not a special
purpose architecture. In this paper, we evaluate with a hy-
brid cellular/Wi-Fi network, but can envision this easily ex-
tending to a military setting where satellite or a unmanned
aerial vehicle (UAV) provides the ubiquitous, expensive cov-
erage and another radio technology provides the local con-
nectivity. Further, we are not limited in scope of application.
To demonstrate this, layered on top of the communication
layer, we provides services for aiding applications with differ-
ent content distribution requirements. For example, the web
content service uses peer-to-peer content serving of cached
content similar to Firecoral [38], but as a general service not
tied to the browser. In this case, the controller also acts
as a look up mechanism to track which mobile devices are
caching content, make suggestions as to which device to re-
quest the content from, and enable direct communication to
fetch that content.

In this paper, we make the following contributions:

e Design of the WASP communication layer which pro-
vides a lightweight control protocol between a central
server and mobile devices, efficiently forwards traffic,
and reacts quickly to failure or mobility.

e Implementation of WASP and associated layered ser-
vices on Android, and tested in a small collection of
five Google Nexus S phones.

e Evaluation of WASP where we demonstrate that (i)
the amount of control traffic per node remains rel-
atively small and constant with an increasing num-
ber of nodes in the network, whereas ad-hoc protocols
grow exponentially and quickly become unusable, (ii)
in streaming data among 100 nodes, WASP delivers up
to 95% of the packets while OLSR and AODV barely
deliver 10%, and (iii) a content distribution scheme
using WASP significantly reduces load on the cellular
infrastructure.

e FEaxtension to ms-3 which provides the ability to effi-
ciently run Android application unmodified within ns-
3. This capability allows us to test WASP within the
context of large networks while still being able to mea-
sure the impact on a real Android device, and use the
same code base for each.

2. RELATED WORK

Industrial solutions to the cellular load problems have re-
volved around heterogeneous networks (HetNets), a combi-
nation of cellular base stations with large and small cells,
and Wi-Fi access points. While this can provide relief, it is
an expensive solution and leads to significant management

complexity. Others have shown the benefits of offloading
from an ‘expensive’ (in some definition) ubiquitous / wide-
area network to a local network which is less ‘expensive’.
For example, using a cellular radio for transmission not only
has the high cost of bandwidth, but is also extremely in-
efficient in terms of battery usage — e.g., for normal use,
LTE is 23 times less power efficient when compared to Wi-
Fi, and 3G is 14.6 less power efficient [27]. This has led
to a number of solutions that: (i) use Wi-Fi access points
instead of cellular when available [11], (ii) multi-cast video
over Wi-Fi between a small collection of smartphones [31],
or even (iii) tether to a friend’s phone to share bandwidth
caps [6]. Generalizing, these ‘mobile ad-hoc networks’ don’t
scale as the number of mobile devices is limited (e.g., [31]
can only handle 7-10 mobile devices). Further, to date the
resulting systems have placed a great deal of responsibility
on the mobile devices themselves and in many cases, limit
the generality of the local network. With WASP, we extend
the heterogeneous network to any wireless devices and pro-
vide a centralized network-wide management. That is, we
do not believe that additional access points are a bad thing,
we simply do not treat these as special boxes, but as nodes
in the system that we can leverage when they are available,
each with a different set of costs.

At the other end of the spectrum, Mobile Ad-hoc Net-
works (MANETS) or mesh networks use routing protocols
(e.g., AODV [341], ROMA [22], Serval [10], and Roofnet [16])
among nodes to determine connectivity. With WASP, we
look to gain benefits of MANETS for data traffic, but do so
targeting a different environment and with different goals.
Rather than designed for environments with no pre-existing
infrastructure, in which case the network is to be created
ad-hoc, WASP is designed for an environment where there
is overall connectivity that we can leverage, but wish to limit
its use.

We do this with a centralized management scheme. Algo-
rithms have been developed to centrally determine schedul-
ing transmission slots for each radio [21], and channel as-
signment in wireless mesh networks [36]. With WASP, we
designed, built, and evaluated a real hybrid wireless com-
munication system and added a service layer on top of the
communication layer. Further, systems such as Meraki’s [3],
enable the central management of Wireless access points
over the web, but are targeted at fixed nodes. Whereas
with WASP, we go further and organize mobile nodes (in
addition to fixed nodes, which can also run WASP).

Additionally, with WASP we capitalize on different inter-
faces, one better suited for management traffic (e.g., 3G/4G
cellular) and one better suited for data traffic (e.g., Wi-Fi).
This is similar in spirit to the separation of the VoIP wakeup
notification over the cellular connection, and the VoIP data
transmission over Wi-Fi [14].

Finally, we apply techniques from software-defined net-
working [24, 33] with WASP. The idea of using SDN to of-
fload network control functions in heterogeneous networks
which also takes advantage of device-to-device communi-
cation is fairly new. There have been some papers which
propose similar ideas of leveraging SDN for heterogeneous
networks [15, 32], but none had a concrete architecture, im-
plementation, or evaluation as we have with WASP. Further,
while there has been a port of OpenVSwitch [35] (which is
widely used in software-defined networking) to Android [40],
it was only used to enable an application to switch between,
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Figure 1: WASP network architecture, showing the controller and mobile devices, and the communication for (a) discovery,
(b) control traffic between mobile device and controller, and (c¢) data traffic between mobile devices.

or use in parallel to maximize bandwidth, multiple inter-
faces (3G, Wi-Fi). This is more akin to MultiNet [20] or
FatVAP [29] than WASP, as there is no network wide con-
trol.

3. ARCHITECTURE

Applying software-defined networking (SDN) [24, 33, 4]
concepts to a network of mobile devices allows us to lever-
age ubiquitous wide-area network connectivity for low-rate
management traffic, while leveraging ad-hoc connectivity for
data traffic where possible. In doing so, it relieves the mo-
bile devices from having to run the typically expensive rout-
ing protocols and enables more complex management to-
ward network-wide optimization. As illustrated in Figure 1,
WASP consists of a central controller, mobile devices, and
a communication protocol among them.

Our architecture might look similar to existing SDN pro-
tocol architectures (e.g., OpenFlow [33]), however these pro-
tocols were built to primarily target wired networks such as
datacenters. As presented in this paper, OpenFlow would
probably be sufficient, but we believe going forward, our
design will begin to deviate from OpenFlow (e.g., adding
support for channels).

3.1 Controller

A distinguishing aspect of WASP is the use of a cen-
tralized controller. Rather than intelligence in the nodes
themselves, we push functionality into a centralized server
as much as possible. The controller can technically reside
and be accessed by any means. For example, with the cur-
rent architecture, WASP relies on a direct connection (via
3G/4G) between a node and the controller. This matches
our targeted operation environment where an existing cellu-
lar infrastructure has good coverage, but usage needs to be
reduced.

Figure 2 shows the main components of WASP controller.
The essential goal of the controller is to have a network wide
view. This is accomplished by communicating and collecting
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Figure 2: Overview of WASP controller’s components.

WASP API

information from each node through WASP-API . This in-
formation is managed by Device Manager and includes a

node’s ID, neighbors, data to share, available Internet con-
nections, and any other information we can easily add in
the future (e.g., location, battery). The controller uses this
information to calculate the routes among nodes, through
Topology Manager , and sends the routing tables back to

the nodes to indicate what the next hop is for each desti-
nation. Importantly, with this architecture, the controller
can evolve to calculate routes differently without requiring
software updates to each mobile device. We can continu-
ously add more complexity into the algorithms within the
controller, and if, for example, we find a more optimal as-
signment of paths, we can notify the mobile devices of the
change. The controller can also be used as a Content Dis-

tributor between the Internet and the mobile devices. As
we will see in the evaluation in Section 6, if one of the nodes
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in WASP’s network requests data (e.g., picture, video) and
this data is not cached by other nodes in the network, the
WASP controller can provide the requested data directly to
the node. Another feature of WASP is that controller can
manage and add more services, through Service Manager

, and easily push them to all nodes in the network. We
discuss WASP’s service in more details in Section 4.

We assume that all nodes in the WASP network are reg-
istered in the controller with some unique identity. In our
current implementation we use nodes’ MAC addresses and
can easily change it in the future for any better identifi-
cation method. This helps the controller to assign unique
IP addresses to the nodes and manage sub-nets to create
node clusters in the network if needed. The controller keeps
track of the nodes through the neighbor list messages and
keep-alive messages sent from each node. If a node does not
contact the controller in a specified (configurable) amount
of time, and it is not reported to be a neighbor of another
node, the controller will assume that this node is unreach-
able and delete it from network, recalculate the route, and
send the updates to the other reachable nodes.

3.2 Nodes

In WASP, we take advantage of nodes equipped with mul-
tiple interfaces. We use the interface connected to the ubig-
uitous network to send information to the controller such as
the node’s ID, neighbor updates, and keep-alive messages.
In return, the same interface is used to receive information
from the controller, such as IP assigned and routing tables.
The other interface is used for local communications among
the nodes to send and receive periodic Hello messages. It is
also used to send, receive, and forward data packets.

As we can see in Figure 3, at the lowest layer, the WASP
communication layer provides low-level functions such as
sending a message to a given node, receiving a message from
another node, sending a message or query to the controller,
and receiving a message from the controller. The WASP
communication layer then uses the underlying socket in-
terface to communicate with controller and each next-hop
neighbor.

Table 1: WASP Control Messages

Type Name Description

(from-

to)

Node- Node- Node sends its ID to request an IP

Controller| ID address in first time registration or

reconnecting
Node- Neighbort Sent when node’s neighbor table is
Controller| Update | updated
Node- Find- Sent when node requests data and

Controller| Data needs to know if any other node in
the network has it (e.g., file)

Sent periodically (default 5sec) un-
less node is sending any of the pre-
vious messages

Controller{ Assignedi Reply with IP address to Node-ID
Node 1P message

Controller{ Routing-| Sent to nodes that are affected by any

Node- Keep-
Controller| Alive

Node Table change in network topology
Controller{ Data- Node-ID that host the requested data
Node Node in Find-Data message, or Data itself
if no node hosts the data requested
Node- Hello Sent periodically (default 1sec) un-

Node less node is sending or forwarding
data packets

The WASP services are additional packages that use inter-
faces provided by the communication layer. Each WASP ser-
vice provides an inter-process communication API, which al-
lows bound mobile device applications to utilize its function-
ality. APIs are specific to services, such as: get_content(URI)
for the web content service. Multiple applications can bind
to one or more WASP service simultaneously. One example
service is the web content distribution service which allows
web interfaces (e.g., a browser) to exchange content within
the WASP mobile-to-mobile network. We discuss WASP
services in more details in Section 4.

Each node in the WASP network maintains two tables.
The first one is the neighbor list table. The table contains
neighbor’s ID and IP(assigned by the controller) and its
time stamp. Every time the node receives a hello message
from another node, it updates the table by either adding the
neighbor, if it not existed already, or refreshing the neigh-
bor’s time-stamp. If a timer of one of the neighbors time-
outs, the node deletes the neighbor from its list. In case of
adding or deleting neighbor, the node updates the controller
with such information. The second table is the forwarding
table. It contains next-hop(neighbor ID) and destination ID
fields. The forwarding table is updated whenever the con-
troller sends route update to the node. Once the node re-
ceives a data packet to be forwarded, it looks at the packet’s
header and match the destination ID with the corresponding
next-hop in the routing table. The node then uses the neigh-
bor list to lookup the next-hop IP and forward the packet
to it through the local communication channel.

3.3 Communication

As we mentioned in the previous two subsections, WASP
manages the network through two types of control messages.
One is between controller and nodes (controller-messages)
and the other type is among nodes (hello-messages). Table 1
shows WASP control messages with brief description.

To reduce the number of messages sent from nodes, the
node does not need to send keep-alive messages if it has re-



cently sent the controller a neighbor update messages. Once
the controller receives any message from the node, it updates
its timer and considers the node reachable. At the same
time, after the controller calculates the routes, rather than
sending the entire routing table of the network to all nodes,
it only sends routing table updates (diffs) to the nodes af-
fected by the topology change. This approach considerably
reduces the number and the size of messages sent by the
controller.

4. LAYERED SERVICES

The ability to communicate within a network of mobile
devices only has benefit if applications can and do use it.
As such, with WASP we layer services on top of the com-
munication layer as a mechanism to optimize the specific
communication pattern.

In general, we have completed the direct communication
and web services, and are in the process of adding a stream-
ing service, and can and will expand as future work. In each
case, there are alternate, probably better, implementations,
but we do not go into an in-depth exploration here. These
are merely meant to demonstrate the possibilities.

4.1 Direct Communication

More and more, mobile devices are already directly com-
municating between mobile devices. Of course, that was the
original functionality of mobile devices before data plans be-
came popular — to make calls to other mobile devices, and
then later on to send text messages to other mobile devices.
With data traffic, this direct communication has evolved to
-include voice, video, or text chat (instant messaging). Fur-
ther, services such as Samsung AllShare Play [9], are push-
ing applications in the direction of mobile device-to-mobile
device communication.

Extending an application to use the WASP communica-
tion layer is trivial as the communication is direct already.
However, we need the application to know whether the other
mobile device is within local (multi-hop) range or not, trans-
parent to the user. To do this, a lookup (much like DNS) to
the controller, will indicate whether a given user ID is cur-
rently in the same network as the inquiring mobile device,
and if so, what the node identifier is.

4.2 Web Content

Web content has been shown to follow a Zipf distribution
where a relatively few pieces of content are accessed most
of the time [17]. Even more, studies have shown that the
popular content is getting even more popular [28]. This has
provided the basis for in-network content caching [37] and
peer-to-peer content distribution networks [23]. We extend
this concept into a mobile device-to-mobile device content
distribution network with the WASP Web content service.

With the WASP Web content service, each mobile device
maintains a cache of content recently accessed and can act
as a server to serve up that content — capitalizing on the
caching of popular content to alleviate cellular use and to
help with flash crowds (the Slashdot effect). This has been
explored with FireCoral [38], but with WASP the cache is
not tied to the web browser. In fact, we would not be sur-
prised if the locality of access in a network of mobile de-
vices is greater than found in a p2p network of computers
connected over the Internet. Off course, this needs to be
further studied, but our belief is based on the fact that the

mobile device network has physical locality, which may in-
troduce a bias of like individuals (e.g., college students on a
campus). The logically central controller (or for future ex-
ploration, other tracking mechanism) maintains a tracker to
track which mobile device has cached which content. This
means that the mobile devices should (and eventually must)
notify the central controller of any changes to the cache.

The general flow of an access is an application uses the
WASP content service (running on the same mobile device)
to request a URI. The WASP content service contacts the
central tracking server to find which mobile devices have
cached that URI, the server responds with a list of mobile
devices that are within some hop-count radius, the request-
ing mobile device’s WASP content service then requests the
URI from one of the mobile devices in the list, and if that
mobile device still has the content (i.e., the tracker was up-
to-date), the mobile device will return the content (and if it
doesn’t have the content, the requesting mobile device will
try the next mobile device, and eventually can fall back on
the Internet over the cellular connection). At this point, the
requesting mobile device caches the content, possibly evicts
some other cached item, and notifies the central tracking
server.

We acknowledge that there may be some privacy issues in
this scheme such as other users knowing what sites a given
user is visiting. However, this is not the main focus of this
paper and used as an example to illustrate how an underly-
ing mobile-to-mobile network can benefit content distribu-
tion.

4.3 Streaming Service

While the WASP streaming service is still in development
phase and we leave its evaluation as future work, we discuss
it here not to indicate that it is in itself a contribution, but
to provide further understanding of the potential of WASP.

The streaming service provides an efficient distribution
means for an emerging communication pattern. As smart
mobile devices become a more integral part of our lives
and as connectivity and processing power of the devices in-
creases, so to will our consumption of streaming media such
as live sports. In many cases, multiple mobile devices will be
receiving the same stream. With WASP, rather than each
mobile device getting the stream over the cellular connec-
tion, a single stream can be transferred over cellular and
then the mobile devices collectively distribute the stream
over the Wi-Fi direct mobile device-to-mobile device net-
work. As an aside, a special case of this is where one of the
mobile devices is generating the stream, in which case we
can limit the cellular traffic to zero.

An effective mechanism is a multicast tree to distribute
the stream. The challenge in this case is fairness — e.g., the
node that downloads the stream over the cellular connec-
tion is at a disadvantage from a cost and power consumption
standpoint. Here, we can leverage the approach taken with
SplitStream [19] which divides the stream into multiple sub-
streams and distribute each with a different multicast tree.
In fact, there has been further research which extends this
(each of which could be incorporated into WASP as future
work) — SV-BCMCS [26] leverages proximity to the bases-
tation as an additional consideration, and Microcast [31]
capitalizes on the broadcast nature of Wi-Fi.
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5. IMPLEMENTATION

In this paper, we focused on the scenario of hybrid cel-
lular networks to implement WASP. We believe WASP can
be implemented on any type of hybrid networks as long as
mobile devices equipped with multiple interfaces.

5.1 Controller Implementation

While WASP’s architecture is flexible, for the case of a cel-
lular network, we envision the logically centralized controller
being run as a service by the cellular company in order to
optimize the network (likely coupled with a hot-swappable
backup server). However, a 3rd party could also assume this
role since we can communicate with any server on the In-
ternet over the cellular connection. The controller resides
in the Department of Computer Science at the University of
Colorado main campus with a public IP address. The con-
troller is a server machine running Ubuntu OS with Intel-
Core-i7X2GHz CPU and 8GB of RAM. We wrote 3000 lines
of Java code to implement WASP’s Controller prototype.
Currently, the controller implementation calculates the all-
pairs shortest path — a solution which does not scale well due
to the algorithm complexity. We believe better approaches
can be used such as clustering the network to smaller groups
and manage them individually, or incremental shortest path
algorithms.

5.2 Node Implementation

We built an initial prototype of WASP on top of the An-
droid platform. WASP is implemented as a service within
Android such that it runs in the background and has higher
priority. For communication with the controller, each phone
opens a TCP connection (through the 3G /4G interface) with
the controller. The connection is used to send and receive
messages and can stay in idle mode without disconnect-
ing for up to 30 minutes depending on the cellular com-
pany [39]. Neighbor discovery and data packet forwarding

are performed with the Wi-Fi interface and controlled by
the WASP communication layer as well. We verified the op-
eration of WASP and associated test applications on a small
collection of five Google Nexus 4 devices.

5.3 Extended ns-3 Testbed

To perform evaluations beyond a small collection of phones
we made use of the ns-3 simulation environment [5]. We im-
plemented an extension to ns-3 which provides the ability to
efficiently run Android application unmodified within ns-3.
Doing so allows us to test and evaluate WASP on real devices
as well as within the context of large networks, while being
able to use a consistent code base. This includes the WASP
communication layer, WASP service layer, and an applica-
tion which uses a WASP service. For the application, we are
only referring to the logic of the application. The user inter-
face is not intended to run in both ns-3 and on the phone as
we do not intend to support graphical interfaces. We imple-
mented the same extension to AODV and OLSR to compare
their performance to WASP. We refrained from using the
ns-3 implementation of AODV and OLSR for two reasons.
First, we wanted the code of WASP in ns-3 to be the same
as the Android application, and for the most direct compar-
ison with WASP we leveraged an Android implementation
of AODV and OLSR. Second, ns-3’s current implementation
of AODV has an implementation issue that limits the pro-
tocol’s scalability and performance (as discussed in various
support forums, such as [13]). With our AODV extension
to ns-3, AODV performance is greatly increased. We used
the existing open source Java implementation of AODV and
OLSR in our testbed and comparison to WASP [1, &].

Each simulation includes four types of nodes which are
shown in Figure 4.

The basestation is the LTE access point. It mediates the
LTE network and is the Internet gateway. The basestation
is not part of the Wi-Fi network.



The controller is an application running at an arbitrary
location on the Internet. For our testbed this location is a
nearby virtual machine, however deployments can place this
anywhere from a datacenter to the basestation.

The bulk of the testbed consists of a configurable number
of emulated nodes with both LTE and Wi-Fi interfaces.
To achieve the ability to run unmodified Android applica-
tions, each node combines an ns-3 Node class with the WASP
client running in a Linux network namespace. The network
namespaces isolate each network stack. Within each net-
work namespace are the WASP threads representing the dif-
ferent parts of WASP. For efficiency, we run a single JVM
for all WASP nodes, but are able to assign a collection of
threads representing a single WASP node into its own net-
work namespace. To provide the connectivity between ns-3
and the WASP client code, each interface is implemented
as a chain including an ns-3 NetDevice class, layer 2 tap
device, Linux bridge, and a virtual Ethernet pair.

In extending ns-3, we opened up a new possibility that
we are currently working on — phone-in-the-loop (shown
in the left side of Figure 4). Hardware-in-the-loop has been
used extensively in testing of embedded systems. We are
replicating this with the ns-3 environment with a phone-in-
the-loop extension to verify that WASP works on a phone at
larger network scales. The phone uses Wi-Fi to connect to
the testbed server, but is additionally on the ns-3 emulated
Wi-Fi network. The phone-in-the-loop uses our carrier’s ac-
tual LTE basestation and connects to the controller over the
Internet. (Note that in Figure 4 we use Open vSwitch [7] for
bridging because many wireless chipsets are not supported
on Linux bridging). With this, the logic for a given node
(or set of nodes) within ns-3 is being run across a real wire-
less channel on a real phone. As it is still early stage, we
leave the evaluation and discussion of phone-in-the-loop for
future work, but mention it here to provide a view into the
possibility of the extended ns-3 platform.

The testbed is configured by two programs. There is an
ns-3 C++ program for creating the Phy and MAC layers of
the Wi-Fi and LTE networks. Additionally a shell script
creates all of the necessary devices and assigns IP addresses
within each namespace (in real life, the controller will be
the one assigning IP addresses to the nodes). The script
also sets up Internet access by assigning IP addresses to the
appropriate bridges and establishes NAT rules in iptables.

6. EVALUATION

In this section we evaluate the performance of WASP im-
plementation, the benefit of our centralized approach, and
compare WASP to AODV and OLSR protocols under dif-
ferent network settings. We start by presenting experiment
setup in ns-3, evaluate packet delivery ratio and number
of control packets of WASP, AODV, and OLSR. We then
show the amount of traffic WASP’s used through LTE. Fur-
ther, we show the benefit of using WASP in interesting
applications such as content distribution and flash crowd
event. Finally, we describe and evaluate power consumption
in WASP, AODV, and OLSR.

6.1 WASP’s Performance vs. AODYV and OLSR

In the following experiments we measure packet delivery
ratio and total number of control packets from all nodes gen-
erated in each protocol. We designed two sets of network
setups — one for fixed density and another one for fixed ra-

dius. In fixed density experiments, the density of the nodes
in the simulation grid is fixed by increasing the radius as
the number of nodes increases — allowing us to understand
the effect the number of nodes has on performance. In fixed
radius experiments, the number of nodes increases while the
grid area is constant — allowing us to understand the ef-
fect increased density has on performance. With this, we
can understand the performance of WASP in various sce-
narios. Table 2 shows number of nodes and corresponding
grid radius and mobility of nodes. For each experiment we
pick 10% of the nodes to be senders and 10% to be receivers.
The rest of nodes simply serve to forward packets (if the con-
troller selects a given node as part of a path). The senders
simultaneously send 300 packets at the rate of 1 packet ev-
ery 100ms. We ran each experiment 5 times and took the
average.

Table 2: WASP vs. AODV and OLSR Experiment Param-
eters

Fixed Radius Fixed Density
Radius (me- | 250 250, 356, 437, 504, 564
ter)
Number _of | 20, 40, 60, 80, 100 | 20, 40, 60, 80, 100
nodes
Mobility medium(1m/s) station(0m/s),
(m/s) medium(1m/s),

high(5m/s)

Broadcast 1 (WASP, AODV, [ 1 (WASP, AODV,
Interval (s) OLSR) OLSR)
Neighbor 3 (WASP, AODV, | 3 (WASP, AODV,
Timeout (s) | OLSR) OLSR)

As we see in Figures 5a, 5b, and 5¢, WASP achieves higher
packet delivery rate than OLSR and AODV under the same
network topology, mobility and load setup. We believe this
is because scalability of MANETS is limited by the fact that
high volume of control messages must be exchanged and
processed (e.g, in the case of OLSR) and the high packet
processing overhead which causes the node to drop pack-
ets (e.g, in the case of AODV). A distinguishing feature of
WASP is that we apply software-defined networking (SDN)
principles and shift all the control overhead to the controller.
In this way, WASP’s nodes avoid exchanging large number
of control packets for topology changes and the number of
control packets increases linearly and proportionally to the
number of nodes and their mobility as seen in Figures 5d,
5e, and 5f.

In fixed radius networks, we wanted to see the impact
of making the network as dense as possible. As expected,
AODYV and OLSR overwhelm the network with high volume
of control packets as seen in Figure 6b. This causes both
data packets and many control packets to be dropped since
every node is waiting for the medium to be free to send
its packets. With WASP, our control traffic is significantly
lower. This stems from the fact that the amount of rout-
ing control messages in OLSR and AODV grow non-linearly
with the network size, as compared to WASP for which there
is a linear increase. This is in contrast to discovery control
messages (hello messages) which grows proportional to the
network size (since each node sends at a fixed rate) in each
approach (WASP, AODV, OLSR). In reducing local control
messages, the network is freed for more data packets to be
delivered — leading us to a considerable high packet delivery
ratio, as seen in Figure 6a.



100 ——— 100 — 100 .
90 . ., ) - i 90
o080 280 280
g7 x &0 \ &0
> > >
geo . geo geo
2 50 =50 2 50
S 40 S 40 S 40
2 2 2
230 5 90 5 %0
8- 20F wasp —— . 0201 wasp —— 8- 20F wasp —— .
10l AODV - 10l AODV 1ol AODV -
OLSR -~ OLSR - OLSR -~
06 20 70 80 80 70 0 20 %0 0 80 o0 © 20 %0 80 80 700
Nodes Nodes Nodes

80000

80000 70000

70000 60000

S
3
3
3

B0000 o
o Br0000
g 2
¥50000 X
4] ©40000
240000 o
o gsoooo
Eooooo g
o2

O20000

10000 10000

Nodes
(d) No mobility

(e) Medium mobility

70000
B0000
g
¥50000
9]
240000
S
e
30000
S
Oz0000

10000

i
Nodes Nodes

(f) High mobility

Figure 5: Performance of WASP, AODV, and OLSR under fixed density networks. (a), (b), and (c) show packet delivery
ratio. (d), (e), (f) show total number of control packets generated from all nodes.

100 T

%
280
70 )
260 .

0201 WaASp ~
10l AODV
OLSR -~ 0

20 80 100

“20 40 60 80 100
40 60
Nodes Nodes

(a) Packet delivery ratio (b) Number of control packets

Figure 6: Performance of WASP, AOVD and OLSR under
fixed radius networks (a) shows packet delivery ratio. (b)
shows total number of control packets generated from all
nodes.

In addition to delivery performance, the amount of control
traffic is important in WASP. We measured the aggregate
control traffic sent over LTE over time for a network with
100 nodes within a radius of 1000m. In this experiment,
each node will move at high mobility. As seen in Figure 7,
the aggregate control traffic over LTE for all 100 nodes is
minimal.

6.2 Throughput and Latency

As WASP is based around the ability for participating
phones to relay traffic among phones via the Wi-Fi connec-
tion, an important metric is the throughput and latency of
this forwarding. To determine this, we used three phones
(Google Nexus-4 labeled A, B, and C) arranged in a line
(i.e., phone B has a Wi-Fi link to both A and C, but A and
C do not have a link between them). In this setup, B will for-
ward traffic between A and C. We used the iperf for Android
application to measure throughput [2], and our own custom
application to measure latency between A and C. The mea-
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Figure 7: Control traffic over LTE over time for 100 nodes
with high mobility.

sured throughput was 7.096 Mbps and the round-trip time
was 11.668 ms. This compares to the direct communication
between two phones measured at 12.753 Mbps throughput
and 10.559 ms round-trip time. The decrease in throughput
and increase in latency is to be expected with an extra hop,
but the numbers are fairly reasonable given our application
level forwarding in an unoptimized implementation.

6.3 Battery Consumption

While it may appear that using a cellular channel for con-
trol may lead to a design which is significantly less power
efficient — e.g., for normal use, LTE is 23 times less power



efficient when compared to Wi-Fi, and 3G is 14.6 less power
efficient [27]. Fortunately, we show that this is not the case.
A brief analysis of network and computation cost on mobile
device for running WASP protocol will be given, followed
by experiment setup for measuring power consumption and
the experiment results on WASP, AODV and OLSR. The
activities of mobile devices running WASP protocol include:
(i) periodically sending and receiving “Hello” message and
data packets via Wi-Fi, and (ii) sending and receiving con-
trol packets as needed to and from controller via LTE. The
computation cost is small as generating the neighbor list
and performing routing table lookups are O(n). The ma-
jor power consumption is the network load — sending and
receiving control and data packets.

To learn the scalability of WASP and power consumption
characteristics when the network size increases, data needs
to be collected for a large network. As the major power
consumption is network traffic on mobile device, we took
a log file for each device sending and receiving packets via
Wi-Fi and LTE in the previous ns-3 experiments, and then
simulated the sending and receiving behavior on real phone
(this removed any computation, which AODV and OLSR
have significantly more than WASP). The simulation on the
phone exactly follows the log, i.e., the time interval, packet
size, and network. During simulation, the screen is off and
all other apps on phone are disabled.

Figure 8 shows the battery trace for a phone running
WASP, AODV, OLSR, LTE (Where the phone is receiving
all the data through the LTE interface), and IDLE (where
the phone is not transferring any data) under fixed density
and medium mobility experiment with 100 nodes. WASP
is 7% less energy efficient than AODV and OLSR. This is
the trade off for performance as in this size of 100 nodes
and type of mobility, WASP is delivering 95% of the packets
while AODV and OLSR are delivering less than 10%.

100
)
8ot
70}
60t :
>
Qo 50 |
S a0} ]
01 wasp —— '
201 S8R - '
R -
06 60

0
Time (min)

Figure 8: Battery log under fixed density and medium mo-
bility for 60 minutes.

6.4 Content Distribution

From the applications perspective, the usefulness of WASP
depends on the ability to capitalize on the phone-to-phone
network for data traffic. To evaluate this, we explored the
web content service to show amount of LTE bandwidth saved
for different parameters — namely the network size, cache
size, and acceptable number of hops.

In this experiment, each application will be continuously
fetching content according to the following model (as de-
scribed in [17]): 1) Content size varies according to a Weibull
distribution. We use a total of 10,000 objects (effectively
cutting off the long tail). Each of these objects is assigned a
URI and a size based on the distribution. 2) Content pop-
ularity follows a Zipf distribution. When fetching content,
each node will select a URI based on this distribution. 3)
Content is continuously fetched with the interval between
each request being chosen at random between 0 and 3,000
milliseconds. 4) Content is cached with a fixed size cache
with a least recently used eviction scheme.

Shown in Figure 9 is the amount of savings as a function
of the network size. Interestingly, the network size seems to
have little effect as we can get roughly a 35% saving in the
amount of cellular traffic.
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Figure 9: Fraction of traffic serviced locally as a function of
network size.

In addition to providing benefits for average-case (Zipf)
distribution of web requests, WASP can be a great fit in sup-
porting a flash crowd (also known as the the Slashdot effect),
where there is a single, or small set, of content that is fetched
by many at roughly the same time. To evaluate this, we pro-
vided a similar setup to what was used to evaluate the Coral
CDN’’s relief on the web server during a flash crowd [23] In
our setup within ns-3 we use 200 nodes, each mobile with
using RandomWaypointMobilityModel. Each node is config-
ured to access the same 3 objects starting at a randomly
distributed start time between 0 and 180 seconds. We limit
the number of hops away that a node can request the con-
tent from to be 3 hops. Shown in Figure 10, we can see that
an initial spike of requests over LTE, as more phones access
the content, the traffic over LTE quickly drops.

7. DISCUSSION

In this section we discuss WASP’s possible limitations and
how to overcome them in our future work.

7.1 Incentives to use WASP

One challenge WASP faces is the incentive for users to
participate in the network as it requires users to forward
traffic (consuming battery) on behalf of others. While a set-
ting such as the military can force the use as the overall
benefit to the collective network is greater with WASP than
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Figure 10: WASP handling a flash crowd.

without, we understand this might be a barrier for com-
mercial networks such as cellular networks where each user
is independent. We believe that overtime, everyone bene-
fits. Even so, a barrier still remains as it is human nature
to want to see evidence they are benefiting. To overcome
this challenge, we envision a credit based system applied to
WASP and managed by the controller. The credits can be
monetary or better service for nodes participating. The con-
troller will add/subtract credits based on node’s role in the
network (e.g., nodes requesting data will use some credits
while nodes sending or forwarding traffic earn credits). This
type of scheme may fit well within the new pricing structures
being explored [25].

7.2 Wi-Fi Access Points

A push by industry is to offload data from the cellular
infrastructure to Wi-Fi access points, when they are avail-
able. Unfortunately, finding Wi-Fi access points can be chal-
lenging (Even in highly dense environments such as stadi-
ums [30]) and accessing shared Wi-Fi access points often re-
sults in poor performance (due to many users accessing it).
In an attempt to overcome these issues, node-to-node teth-
ering apps are appearing to allow sharing of cellular data
plans [0], leading to different management for when Wi-
Fi access points are available and for when they are not.
Since WASP is generally targeting any hybrid network, we
don’t only focus on mobile devices to build our network.
We view Wi-Fi access points as simply another node in the
network that also has two interfaces — wired Ethernet for
the ‘one hop’ connection (via the Internet) to the controller
(optimized for long distance), and the Wi-Fi interface for
communicating locally (optimized for local area). Each link
simply has a cost associated with it (not just in terms of
dollars) — e.g., LTE might be higher cost than using Eth-
ernet. The cost, by design, is flexible and can dynamically
change. In current open Wi-Fi access points, the link from
the access point to the controller might be considered free,
but our model is more flexible and supports future business
models and can incorporate additional costs such as where
the access point is overloaded.

7.3 Energy Consumption

Although WASP considerably outperforms AODV and
OLSR, it is (slightly) less energy efficient than AODV and
OLSR. We believe this is because WASP uses the ubiqui-
tous expensive channel to communicate with the controller.
We believe we can reduce WASP’s energy consumption by
reducing the number of packets sent and received between
the node and the controller. From the node’s prospective,
this can be done by allowing the node to wait for a little
amount of time before updating the controller of any neigh-
bor missing. With the nature of wireless networks, hello
packets might be dropped or not reached easily.

7.4 Deployment on Android Today

One of the challenges we had in order to deploy WASP
on Android phones was the Wi-Fi Direct interface. Wi-Fi
ad-hoc mode is not accessible to unrooted phones, and Wi-
Fi Direct requires user interaction to establish connections
between phones which we find unpractical to our system.
(WASP, using Wi-Fi ad-hoc, could authenticate connections
automatically, eliminating the need for the interaction). In
either case, a simple update to Android would make WASP
instantly deployable.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design, implementation,
and evaluation of WASP. WASP is built on the idea that by
leveraging different interfaces which are optimized for differ-
ent needs, we can provide a more efficient and scalable net-
work for mobile devices. We show through our extended ns-
3 simulation environment that WASP is more scalable than
existing ad-hoc protocols, at only a small energy penalty
(due to control messages going over LTE), Further, through
the network WASP manages, we are able to save about 35%
of traffic that would otherwise be served over cellular.

As future work we are looking to roll WASP out to real
users once we overcome the Wi-Fi direct limitation. Be-
yond live user testing, WASP opens up much future work in
evolving the control of the network and services run on the
phones. Optimizing the services for the various trade-offs
involved will require an in depth study of each. Further, we
experimented with certain design decisions but the design
space has much more to explore.
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