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ABSTRACT
Software Defined Networking (SDN) offers unprecedented control
to network administrators. With datacenters, because of the rapid
build-out (new equipment installed) and the pervasiveness of virtu-
alization (software switches are widely used), SDN is rapidly gain-
ing traction. The reality for enterprises is that there is already an
existing (legacy) network and, for the most part, companies don’t
have the excess capital to throw away their current investment and
replace all of their network equipment with SDN capable devices.
This means that uptake of SDN in enterprises is understandably
slow. What is needed is a way for companies to gradually transi-
tion to SDN. In this paper, we present ClosedFlow, a system which
incorporates techniques for exercising SDN control over existing
proprietary hardware which closely mimics the fine grain control
available in OpenFlow. This allows enterprises to control the net-
work through a centralized controller, taking advantage of SDN’s
benefits today with no new investment, and gradually transition the
hardware to SDN enabled hardware (e.g., OpenFlow) over time as
part of their typical equipment replacement lifecycle.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Network operating systems

General Terms
Design, Experimentation, Management

Keywords
software-defined networking; legacy devices; OpenFlow

1. INTRODUCTION
SDN substantially lowers the barrier for adding new networked

services, such as flexible access control [6], Web server load bal-
ancing [12, 23], energy-efficient networking [13], adaptive network
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monitoring [14], and seamless user mobility and virtual-machine
migration [9]. A software-defined network runs these services on
a logically-centralized controller that uses a standard API (such
as OpenFlow [17]) to install packet-handling rules in the under-
lying switches. In addition, SDN naturally supports network virtu-
alization, where each virtual topology runs its own controller ap-
plications tailored to the needs of a particular “tenant” or class of
traffic [20, 1, 3]. SDN can also enhance network scalability and
reliability by leveraging advances in distributed systems to man-
age network state separately from any application-specific control
logic [15]. Finally, and potentially most importantly, SDN can
greatly enhance network security through the ability to dynamically
adapt to changing threats [21, 11].

Despite the many advantages and possibilities of SDN, enter-
prises are understandably slow to adopt the new technology. For
network administrators that want to move to a software-defined
network today, the main option is effectively to “fork lift” their
existing infrastructure to SDN-capable devices (illustrated in the
top half of Figure 1)1. Once they fork-lift replace their hardware,
they can gradually transition over to SDN control with ‘ships-in-
the-night’ behavior supported in most commercially available SDN
switches, where traffic can be designated to be handled by either by
the SDN-capable portion or by legacy protocols. In one attempt at
an alternate transition, Panopticon effectively proposes sprinkling
a few SDN switches (e.g., at the edge) and configuring the legacy
switches to act as tunnels between the SDN switches [16]. While
this allows SDN functionality to be incorporated, it does require
new hardware along with specialized configuration on the legacy
devices to handle operating in support of SDN enabled switches.

In this paper we propose a different transition with ClosedFlow,
illustrated in the bottom half of Figure 1, which allows SDN control
over existing legacy hardware. That is, with no new hardware pur-
chases an SDN controller, such as Floodlight [5] or Ryu [4], can run
network controlling applications but instead of targeting OpenFlow
switches, legacy devices can be targeted (with no modifications to
the applications, only to the code that interfaces with hardware).

While many have been ‘pushing configs’ from a centralized server
for years to realize SDN-like control over legacy switches [10, 7],
the key question is how closely we can mimic the current leading
embodiment of SDN (OpenFlow) with the proprietary configura-
tion interfaces of legacy devices. While SDN is generally consid-
ered more general than OpenFlow, we focus on OpenFlow because
it represents a well-defined and open interface designed by the com-

1Some vendors do offer firmware updates to some more recent de-
vices, but there are many devices still being used in production
networks which are either from vendors that have yet to support
OpenFlow or which are older than the models the vendor provides
an OpenFlow firmware update for.
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Figure 1: Single Phase SDN Transition vs. Multi-Phased Configuration and Hardware Transition

munity, and as such targeting it represents an interface that is unde-
niably SDN. We make the following contributions.

• We explore and answer this key question by demonstrating
the four main capabilities in OpenFlow: establishing a con-
trol channel, automatically discovering the topology for a
network-wide view, modifying a flow table with entries that
specify matching packet headers and actions to forward or
drop packets, and handling the ‘send-to-controller’ actions.
In Section 2, we demonstrate these four capabilities, though
handling the ‘send-to-controller’ action requires a compro-
mise. Our prototype static flow pusher application is dis-
cussed in Section 3.

• We evaluate the system with our prototype targeting 10 year
old Cisco switches. We show that while the table sizes of
legacy switches is not as large as modern SDN switches,
the legacy switches have flow table optimization technology
which allows for many flow table entries to be set before pro-
cessing needs to be relegated to lookups in slower memory
such as DRAM (discussed in Section 4).

• We illustrate that if we don’t limit ourselves to OpenFlow, we
can enable much more capabilities by tapping into function-
ality that has been present in commercial switches for over a
decade (discussed in Section 5).

2. REALIZING CLOSEDFLOW
The key question is whether we can provide an OpenFlow inter-

face (from the SDN controller’s perspective) to control a network of
legacy switches. That is, we are not just proposing a centralized in-
terface to legacy switches, with vendor specific configurations. We
are proposing that the control associated with OpenFlow (and capi-
talized on in the many research works illustrating the benefits), can
be achieved with legacy switches and with hardware performance.

To explore this, in each of the subsections we will illustrate the
four main characteristics of an OpenFlow network: (i) A commu-
nication channel between a central controller and each switch, (ii)
topology discovery, (iii) matching packets up to layer 4 and ap-
plying standard actions (e.g., drop, forward), and (iv) handling the
special action ‘send-to-controller’ with packet-in messages. Here,
we focus on Cisco configuration for switches with a with a mini-
mum IOS of 12.2(44)SE (which we have running on our over 10
year old Cisco 3550 switches), but we note that similar capabilities
are present in all major vendor’s switches.

2.1 Controller-switch Control Channel
A central requirement in SDN is that a centralized controller is

able to communicate with each switch in the network and not need
to be physically (directly) connected to each switch. Ethane over-
came this through the use of spanning-tree protocol, commonly
used to support plug-and-play Ethernet networks.

One challenge we face is that we are asking each switch in our
topology to operate over layer-3 interfaces (in order to support match-
ing at layer’s 3 and 4). Because of this, we do not have layer-2
protocols, namely spanning-tree protocol, at our disposal to auto-
matically discover and calculate paths between each switch and the
controller (for control traffic).

To facilitate a communication channel and topology state aware-
ness between switches and our controller, we chose to run a min-
imal instance of the Open-Shortest-Path-First (OSPF) routing pro-
tocol. To be clear, this instance is segregated from data flow traffic,
which is forwarded based on route-map configurations and access-
list match conditions.

Our OSPF instance includes advertisements for the Loopback
management interfaces of each switch, a point-to-point connection
between switches, and a VLAN dedicated for communication with
the controller(s). With this, we enabled an in-band overlay con-
trol channel and remote access (SSH or telnet) to each switch for
control traffic, such as pushing new flow rules.



New switch installation does require some minimum configura-
tion. For our architecture, the below basic configurations are suffi-
cient for the installation of a new switch.

• Set IP address for interface Loopback 0
• Configure “routed” interfaces for switch-to-switch links
• Configure OSPF Instance and Set Router-ID to Loop-

back 0 IP
• Advertise Loopback and point-to-point networks in OSPF
• Set up remote access (e.g., SSH or Telnet)
• Set Enable Mode Password

This effectively establishes the line of communication with our
controller, and enables remote access facilities to allow the con-
troller to push configurations to each device.

2.2 Topology Discovery
A second requirement for an SDN network is for the controller to

have a network-wide view, including a view of the entire topology.
With Ethane, this was achieved by each switch periodically sending
link-state information to the controller.

In our architecture, we could also follow Ethane’s approach. The
first is to use remote logging to the controller from each switch, to
simply log adjacency changes. This would allow the controller to
store topology state and maintain its control channel in the event of
a link failure.

Alternatively, we can capitalize on the fact that in OSPF, each
node in the network has complete visibility over the entire topology.
This would require the controller to run the complete OSPF routing
protocol and expose the current topology to the SDN controller. We
believe the first approach is simpler and lighter-weight, though we
have not implemented the second approach to say with certainty.

Our stored topology information will serve as an important ref-
erence point for the controller to know what route-map to apply
to a specific interface. We also store ACL and route-map configu-
ration information for each switch to keep track of existing match
rules and route-map sequence numbers (explained further in Sec-
tion 2.3).

2.3 Packet Matching and Applying Actions
The third requirement is that the SDN controller have the fine-

grain ability to control how individual flows are handled, as op-
posed to tuning knobs on a variety of standard routing protocols.
In an OpenFlow network, flow rules along with the forwarding be-
havior can be defined fairly simply.

In targeting legacy switches, we can achieve a similar level of
control with a combination of access-control lists (ACLs), Route
Maps, and Interface configuration.

• Access control list – ACLs specify the match conditions to
classify the packet, and whether to permit or deny the traf-
fic. If the OpenFlow action is to drop, that is set here. If
the action is to forward out a specific port, the ACL will be
configured to permit and a route map will handle.

• Route Map – Route maps are applied at an inbound interface,
and specifies several pairs of an ACL to match on and the
forwarding behavior.

• Interface – specifies which route map is relevant to it. Each
physical interface, such as FastEthernet 0/48, can have a dif-
ferent Route Map, or if groups of physical interfaces are to
have their traffic handled in the same manner (e.g., if the

OpenFlow rule does not specify an input port as part of the
match condition), then we can optimize by assigning the in-
terfaces all to the same VLAN, so that they are all aggregated
as one interface.

To illustrate, shown below is some familiar OpenFlow syntax
that is used to describe match criteria and apply a forwarding be-
havior. We expect to enter a flow with something like the below
statement.

match: src_ip="1.2.3.4",
dest_ip="2.3.4.5", action:OUT_PORT_2

To push a flow rule and its forwarding behavior to a switch we
want to create a route-map, apply an access-control list to it, de-
fine its forwarding behavior, install an access-control entry for the
access-list to match on, and finally, apply the route-map to the in-
terfaces we require as given by our stored topology state.

So, the ClosedFlow controller creates the new route-map and de-
fines forwarding behavior as the next-hop IP address of our adja-
cent switch (per the topology discovery, we know OUT_PORT_2
has a next hop address of 2.0.0.1), applies an access-list to it (ACL
101), creates the access-control entry based on the operator sup-
plied match condition (involving the source and destination ad-
dresses), and applies the route-map to interface VLAN 1 (in this
case, no match condition specifies the input port, so we default to
using the default VLAN interface). Configurations applied shown
below.

Switch1#show route-map
route-map SW1_OUTBOUND, permit, sequence 10

Match clauses:
ip address (access-lists): 101

Set clauses:
ip next-hop 2.0.0.1

Switch1#show access-lists
Extended IP access-list 101

10 permit ip host 1.2.3.4 host 2.3.4.5

Switch1#show run interface vlan 1
interface Vlan1
ip address 1.2.3.1 255.255.255.0
ip policy route-map SW1_OUTBOUND

end

2.4 Handling Packet-In Events
The fourth capability associated with OpenFlow networks is the

special action ‘send to controller’, which can be used, for example,
to enable a reactive network where the first packet of every flow is
sent to the controller.

In an OpenFlow network, when a packet arrives at an interface,
we have a couple potential outcomes: the packet matches a flow
table entry and some forwarding, dropping, or modify action is ap-
plied, or when the packet does not meet these criteria (e.g., a “table
miss”), it is sent to the controller allowing decision logic to take
place. We propose two potential options to handle “table misses”,
or more generally ‘send-to-controller’ actions (which do not have
to be table misses) – neither option mimics OpenFlow exactly, but
has aspects of OpenFlow’s two ways to handle send-to-controller.

• Remote Logging on Explicit Deny: Our first option uses the
remote logging feature to send a message to the controller
when a packet does not match our access control criteria



specified in our route-map. To achieve this, we must place an
“explicit deny” access control entry (ACE) at the end of our
access-control list. Additionally, we must us the “log-input”
keyword to indicate that a syslog entry should be made if the
explicit deny is matched on. To ensure that our remote log-
ging is restricted to this specific message, we create a logging
discriminator that uses regular expression matching and we
suppress excessive logging with simple threshold limits until
a flow rule is installed. An example of these configuration
steps is shown below, and the down side is that while the
header of the packet is sent to the controller, the packet it-
self is dropped (instead of being buffered at the switch, as in
OpenFlow).

SW1(config)# access-list 101 permit
icmp host 2.2.2.2 host 3.3.3.3

SW1(config)# access-list 101 permit
icmp host 3.3.3.3 host 2.2.2.2

SW1(config)# access-list 101 deny udp
any gt 0 any gt 0 log-input

SW1(config)# access-list 101 deny tcp
any gt 0 any gt 0 log-input

SW1(config)# access-list 101 deny ip
any any log-input

SW1(config)# logging discriminator
tblMiss msg-body ‘‘101 denied’’

SW1(config)# logging host
<<controller-IP>> transport udp
port 22345 discriminator tblMiss

• Send Entire Packet To Controller: Rather than implement-
ing remote logging to notify the controller that no match cri-
teria were met, we also have the ability to direct the flow to
the controller and allow it to decide whether the traffic will
be forwarded over a particular interface or be dropped by
the switches involved. To accomplish this, rather than log-
ging an access control entry, we want to apply a “forward-
to-controller.. behavior by essentially defining this as our de-
fault forwarding behavior. Once the controller receives the
first packet, a decision is made to install a flow entry to ei-
ther forward the traffic down a preferred path, or drop the
traffic.

SW1(config)# access-list 103 deny ip
any any

SW1(config)# route-map SW1_OUT 15
SW1(config-route-map)# match ip

address 103
SW1(config-route-map)# set ip

next-hop <<controller-IP>>
SW1(config)# int vlan 1
SW1(config-if)# ip policy route-map

SW1_OUT

Neither of these options, directly matches the OpenFlow packet-
in message, specifically the option where the packet is buffered on
the switch and only the header is sent to the controller. In one
option, we can match the behavior that only the header is sent to
the controller, but the packet is dropped (relying on retransmis-
sion). In the other option, we can match the behavior of OpenFlow
which sends the entire packet to the controller, which has overhead,
but only for highly reactive networks (more proactive SDN control
would not suffer from this overhead). We are still exploring mech-
anisms to realize the buffering capability to increase reliability.

3. PROTOTYPE
Our end-goal is for this to be able to be integrated into an SDN

controller, and allow SDN applications to run, unmodified, con-
trolling legacy switches instead of OpenFlow switches. Our initial
prototype is not quite there yet. We instead implemented two inde-
pendent programs to illustrate the key parts:

• A constantly-running topology discovery application which
uses the info received from the remote logs to display the
current adjacencies, and

• A simple python program equivalent to static flow pusher
which allows flow modifications to be specified.

With these two capabilities, we intend to integrate a Cisco con-
figuration backend with an SDN controller which provides an API
which can closely match the OpenFlow control (e.g., with the OF-
PTableMod method in Ryu, or with the flow entry files in yanc [19]).
Since yanc completely separates out the the hardware interfacing
control, it provides a simple path to allowing us to add support for
the legacy devices (by creating a new driver) with no modifications
to the yanc code or applications – and we can, without modify-
ing the application, we can gradually replace legacy switches with
OpenFlow enabled switches.

4. EXPERIMENT AND EVALUATION

4.1 Environment Setup
Throughout our experiments and implementation, we utilized

Cisco 3550 Multi-Layer Switches with a minimum IOS of 12.2(44)SE.
Our research and observations have shown that functionality and
control only increase in granularity with each new evolution. In
particular, we later examine Cisco’s Embedded Event Manager and
Tool Command Line scripting features, first introduced to the Cat-
alyst family of switches, with the Cisco 3560 MLS using IOS ver-
sion 12.2-(55)SE. These features enable vast potential for customized
functionality to support communication with a central control plane.

• Configure SDM Template: To optimize our environment
for policy-based routing and TCAM ACL entries, we must
first reformat our TCAM table using the Switch Database
Manager. Template options for formatting the TCAM tables
include access, default (balance of all functionality), routing,
and VLAN. The first of these options, access, allows us to
maximize our resources for ACL functionality. We choose
this template because ACL entries on layer 3 and 4 fields
will act as the majority of our configuration entries when in-
stalling flow rules. To enable policy-based routing it is im-
portant that the ‘extended-match’ keyword is used with the
SDM template enabling 144-bit layer-3 TCAM. After these
commands are used, a reboot is required.

• Enable IP Routing and Cisco Express Forwarding: Be-
cause we wish to match on layer 3 and 4 packet fields and
define interface forwarding behavior with policy-based rout-
ing, we will enable IP routing and Cisco Express Forwarding
(CEF). We exploit the benefits that CEF offers through its di-
rect use of the Forwarding Information Base and adjacency
tables to perform fast IP switching coupled with Policy-based
routing (PBR) Route-Maps that specify forwarding behav-
iors and match criteria stored in the TCAM.



4.2 Results
To evaluate the effects of our technique on the hardware and the

feasibility of operation in a production network, we chose to mea-
sure the direct correlation between installed flow rules and their
storage in the TCAM. We chose 3 flow rule datasets: a realistic
enterprise sampling which used realistic IP address ranges, port
ranges, and matching on both layer 3 and 4 fields. The other two
sample datasets used a worst-case, completely random source/des-
tination IP and source/destination port combination. With these
datasets, we essentially want to see how quickly we can cause
TCAM ACL installation and merge failures if an administrator does
not adhere to basic, responsible configuration best practices. In
each worst case event, rules are applied in software, requiring CPU
processing for match criteria.

We see that our realistic network flow dataset scales quite well.
The Cisco Catalyst 3550 multi-layer switches used for our exper-
iments permitted up to 4432 PBR TCAM entries. Based on the
graph in Figure 2, we may extrapolate that our flow rule limit would
be 50,000 for this particular piece of hardware. In our final two ran-
domized datasets, we see that the switch begins to experience ACL
merge and installation failures at 500, for layer 3, and 250 layer
4, access-list rules respectively. These results are consistent with
Cisco’s recommendations to avoid TCAM resource exhaustion.

Figure 2: TCAM Policy-Based Routing Utilization

For our next evaluation, we chose to determine the impact of the
previous cases where we experienced TCAM merge and installa-
tion failures, that is, the newly added flow rules would be processed
in software until space became available. We performed tests using
Iperf to witness forwarding rate performance at 100 percent inter-
face utilization. Figure 3 depicts the results, by average bitrate,
for flow rules installed in software, as IOS configuration that are
CPU processed, and in hardware, installed as TCAM policy-based
routing entries. Two flows are depicted, one installed in hardware
from time zero, and another that is installed in software (because
the TCAM was too full), and at 10 seconds in, can be moved to
hardware as space became available (we deleted other rules). Upon
transition into TCAM, we see an immediate jump to full hardware
speed.

5. DISCUSSION
Looking beyond realizing OpenFlow on the specific legacy switch

we used, we discuss here how we can go beyond OpenFlow and we
can also go beyond the model and vendor we used.

5.1 OpenFlow Extensions
In some regards we are able to go beyond what OpenFlow pro-

vides if we allow capabilities of the legacy switches to be exposed
(i.e., if we don’t limit ourselves to OpenFlow only). For exam-

Figure 3: Flow Performance Hardware vs. Software

ple, AvantGuard [22], DevoFlow [8], and Software-defined coun-
ters [18] each noted some limitations with OpenFlow with regard
to security or monitoring applications and proposed new switch ad-
ditions. Existing legacy switches already have lots of other capabil-
ities, such as the on-switch monitoring with triggered events along
the lines of what AvantGuard and Software-defined counters pro-
posed, namely through the use of Cisco’s Embedded Event Man-
ager [2]. With the send to controller action, we were not able to ex-
actly match what OpenFlow can provide. But with legacy switches
we can match the intent of the proposed extensions (though, likely
not the exact realization proposed).

5.2 Other Switches (Vendors, Models)
Despite the fact that we chose to implement these techniques in

Cisco 3550 and 3560 series multi-layer switches, we note the pres-
ence of identical functionality among other major vendors’ operat-
ing systems – we examined HP and Juniper switches, specifically,
and believe we would find it to be the case with other vendors as
well.

Further, it is important to note that the functionality we describe
can be realized in newer equipment models (from Cisco). Each
generation beyond the equipment we used carries richer function-
ality and more powerful features than the previous. In more recent
Cisco switches, we have the facility for logging Cisco Discovery
Protocol adjacency changes or the use of the Link Layer Discovery
Protocol at layer-2 for topology discovery which allows us to avoid
using OSPF for control channel connectivity and communication at
time-zero. In many older Cisco branch routers and slightly newer
multi-layer switches, we have added packet classification granular-
ity with the Network Based Application Recognition(NBAR) fea-
ture. This allows us to use deep packet inspection to classify traffic
and make decisions up to layer-7. Cisco maintains a vast database
of application signatures and NBAR allows for creating custom sig-
natures.

6. CONCLUSION
In this paper we have discussed specific techniques for leverag-

ing open, logically centralized, network control, and OpenFlow-
like control over the forwarding plane of proprietary legacy equip-
ment. We show that the barrier to entry by organizations may be
alleviated by offering options for transitioning from a legacy net-
work with proprietary configuration, to an all SDN network with
custom control applications without the need for a costly network-
wide upgrade of equipment. In addition, we discuss that technolo-
gies that have been in network equipment can be used to realize
similar functionality to many of the new OpenFlow extensions pro-
posed recently.
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