Active Security

Ryan Hand, Michael Ton, Eric Keller,
University of Colorado, Boulder
{ryan.hand, michael.ton, eric.keller}@colorado.edu

ABSTRACT

In this paper we introduce active security, a new methodol-
ogy which introduces programmatic control within a novel
feedback loop into the defense infrastructure. Active secu-
rity implements a unified programming environment which
provides interfaces to (i) protect the infrastructure under com-
mon attack scenarios (e.g., configure a firewall), (ii) sense
the current state of the infrastructure through a wide vari-
ety of information, (iii) adjust the configuration of the in-
frastructure at run time based on sensed information, (iv)
collect forensic evidence on-demand, at run-time for attri-
bution, and (v) counter the attack through more advanced
mechanisms such as migrating malicious code to a quaran-
tined system. We built an initial prototype that extends the
FloodLight software-defined networking controller to auto-
matically interface with the Snort intrusion detection system
to detect anomalies, the Linux Memory Extractor to collect
forensic evidence at run-time, and the Volatility parsing tool
to extract an executable from physical memory and analyze
information about the malware (which can then be used by
the active security system to better secure the infrastructure).

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and Protection

General Terms

Security, Design, Experimentation, Management

Keywords

Network security, central management, digital forensics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Hotnets ’13, November 21-22, 2013, College Park, MD, USA.

Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

1. INTRODUCTION

The task of securing an enterprise’s, nation’s, or military’s
cyber infrastructure is increasingly complex due to the diver-
sity in attack vectors, sources, and targets. Recent articles
regarding attacks on defense contractors [34] and Universi-
ties [31] illustrate the constant threat and diversity of ways
attackers are able to infiltrate and, in many cases, extract
confidential data. Not only is it important to be able to detect
attacks, we need to be able to perform attribution, and pre-
vent future attacks. Unfortunately, today’s systems lack the
ability to be highly active and customized for context-aware
individual responses. At best, today’s security systems can
detect attacks, block traffic, and perform post-incident re-
sponse and investigation.

To address these complex threats, we propose active se-
curity which provides a centralized programming interface
to control the detection of attacks, data collection for attack
attribution, configuration revision, and reaction to attacks.
Rather than settle for a system which has many individual
components which can capture, detect, and even block traf-
fic, having programmatic control would, for example, al-
low for one component to detect something (having par-
tial information), trigger an automated response to investi-
gate, perhaps alter the network based on the findings, and re-
configure security devices with an updated view of threats.
To realize active security, a centralized, ‘active security’ con-
troller interfaces with various sensors, network equipment,
host, and security systems allowing for programmatic con-
trol over an event driven feedback loop of the entire cycle
of configuration, detection, investigation, and response. Re-
cent research has capitalized on the network programmabil-
ity of software-defined networks to introduce some dynamic
network security applications [35]. With active security, we
believe we must go even further where, “how the network
directs traffic”, is only one aspect.

In this paper we first motivate active security by discussing
some of the main security systems of today and an example
where these systems fall short (Section 2). We then present
the core components of active security that provides contin-
uous monitoring and reaction to the network infrastructure
(Section 3). The overall architecture of a platform for active
security is then presented (Section 4). Following that, we de-

tail our prototype implementation (Section 5) and a complete
example of active security where a machine was infected, an
intrusion detection system (IDS) detected anomalous egress
traffic, triggered in-attack volatile memory forensics of the
affected machine, automatically analyzed the memory con-
tents to recover a copy of the malware executable and extract
other open sockets for which anomalous traffic was not de-
tected, and then reconfigure the network to block the traffic
associated with these sockets (Section 6). We wrap up with
a discussion of some challenges (Section 7) and conclusions
(Section).

2. MOTIVATION

We argue that today’s security mechanisms are too rigid
and that a highly dynamic and programmable security in-
frastructure is needed. Here we motivate with discussion of
today’s security systems and provide an example of where
this rigidity limits the capabilities of the security system.

2.1 Today’s Individual Components work In-
dividually

Today’s tools to secure network and computing infrastruc-
tures are a mixed collection of individual components which
can be configured, but have limited active programmability.

e Firewalls: can block traffic based on the specified con-
figuration. They are good at blocking traffic from the
outside, but attackers often find holes in the firewall
configuration and can often perform host-to-host at-
tacks within the network — avoiding the firewall com-
pletely.

o Intrusion detection/prevention systems: are capable
of monitoring traffic, but require many machines to
handle a full traffic load. As such, traffic is often sam-
pled, leading to only seeing a sub-set of traffic. Explicit
traffic signatures must be specified in traditional con-
figurations, with databases of known signatures grow-
ing daily. Newer techniques such as those that use
learning to detect anomalies are a step in the right di-
rection, but still only have a limited vantage point on
which to base the judgment. Intrusion detection sys-
tems can only alert problems, and intrusion preven-
tion systems can block traffic, but cannot perform more
complex actions.

o Digital Forensics: include tools and techniques to find
and correlate information in the scattered logs through-
out the entire infrastructure. However, operators can-
not be sure that the correct information is being logged
and whether or not the attacker already cleaned up.

e Security Information and Event Management: pro-
vide real-time aggregation of events and logged infor-
mation. These are a step in the right direction, but still
limited from a programmability standpoint.

In each case, these only have limited response measures
(e.g., updating the firewall to block traffic) and have static
configurations that require human intervention to change any
aspect of the configuration (such as altering what’s being
monitored or altering the IP address assignment to protect
a current target). Strides have been made in the research
community, such as FRESCO [35], which provides a script-
ing interface to enable the creation of security applications
on an OpenFlow network. We believe that we need to go
even further to monitor, interface with, configure, and con-
trol the entire infrastructure. The power lies in context aware
automation with active security.

In industry, there has been point solutions to use a feed-
back loop to, for example, detect DDoS attack and recon-
figure routers to block associated traffic [1]. The Cisco CS-
MARS [9] and SolarWinds [3] systems went a bit further
and integrated some remediation within a SIEM product.
These responses (or actions) were built-in and limited to
capabilities of routers, as opposed to leveraging software-
defined networking for more general actions and an exten-
sible framework. They also limit the actions to defensive
actions, rather than also incorporate information gathering
actions as with active security. With active security we look
to expand to a more general, open, and programmable solu-
tion which uses a continuous process of sensing and adapta-
tion to discover and defend against threats, including those
that have not been seen before.

2.2 Example: Active In-Attack Attribution

As a motivating example of something that cannot be ach-
ieved easily with today’s systems, we consider the value of
volatile memory for forensic evidence and even in helping
to better defend against attacks. We’ll revisit this example
in more depth in Section 6 with a demonstration using our
prototype.

In practice, volatile memory contents are often lost piece
of information in intrusion investigations, yet would prove
quite valuable. Consider the value of being able to see mem-
ory contents during an attack — that is, before the attacker
has cleaned up. First, we can get a complete picture of the
attack as many exploit payloads are able to reside completely
in memory and clean themselves up after execution. By ex-
tracting system memory contents, we can obtain a copy of
the executable, identify any open files and network sockets,
etc. This can be very powerful in understanding the attack
as well as attributing the attack to a person or organization.
This can also help in defending the network — e.g., the open
sockets may be traffic that security middleboxes have not
detected as anomalous, but through the forensics, the traffic
can be dealt with.

Second, obtaining a memory dump during an active at-
tack can enable forming a more complete and reliable as-
sessment of the damage that was done. For example, sys-
tems today already have the ability to capture traffic traces.
Yet, if the attacker was leaking sensitive information through

encrypted channels, we may not know what was leaked. By
grabbing the contents of system memory, we can gain access
to cryptographic keys that would enable determining what
was transmitted, which is particularly important in the case
of intellectual property or sensitive government information.

This example only touches on one aspect of security that
is not possible with today’s systems. Through the software
programmability offered by an active security system, we
can enable these capabilities and others such as migrating
malicious code to a quarantined system and reconfiguring
the network to direct flows associated with the malware to
the quarantined system so that we can monitor the malware
behavior while cleaning up the live system. We will elabo-
rate in the following sections.

3. ACTIVE SECURITY COMPONENTS

Active security couples passive components which moni-
tor the state of the network and act according to some config-
uration, with highly dynamic components that enforce pol-
icy or manipulate traffic, and a programming environment to
exercise granular control over each of these. In this section
we first outline requirements of such a system and then in the
following section provide details of the proposed platform to
meet each requirement. At a high-level, we are inspired by
concepts from software-defined networking (SDN) in pro-
viding a centralized programmatic control over devices in
the infrastructure.

Active security is centered around five core capabilities:
protect, sense, adjust, collect, and counter.

3.1 Protect: Configure the infrastructure

As a first step, any infrastructure must be setup to be able
to operate properly. Part of this is utilizing protection mecha-
nisms which provide some level of security against common
attack scenarios — e.g., using and configuring a firewall. Un-
fortunately, while configuration to protect an infrastructure
is somewhat well understood today, it still leads to many
errors [36]. Research has been performed in this space in
how to realize less error-prone firewall configuration [12,
15]. This part of active security is not new, but it is an essen-
tial foundation upon which we may build a context-aware
security system.

3.2 Sense: Interface to many different sensors

The security controller must be able to accept information
(alerts or other information) from a variety of sources that
are performing some sort of detection and monitoring. Tra-
ditionally, intrusion detection systems (IDS) perform most
of the detection as stand alone boxes, but there are many
other potential sources of information — e.g., an end-host
firewall that receives a packet that it ends up blocking (but
somehow made it past the IDS) may be able to notify the
reactive system to pay attention to this kind of traffic, or an
SDN network controller designed to provide security mech-
anisms within the network [35] may provide insight into ac-

tivity within the network. Each of these is a sensor in an
active security system. With active security, we can allow
operators to program how different sensor inputs should be
interpreted and combined in a context-aware manner to ulti-
mately seek convergence upon a consistent configuration.

3.3 Adjust: Alter the network to better de-
fend or monitor

A static network configuration gives attackers the ability
to map out the infrastructure and plan an attack. The ac-
tive security controller must therefore be able to control the
configuration of the infrastructure (e.g., the assignment of
IP addresses) to alter its behavior at run-time. Moving tar-
get defense [25] has been positioned as a counter measure,
and even demonstrated within an OpenFlow network [24].
We believe that doing so in a targeted manner rather than
randomly will be more effective. In order to achieve this,
our active security controller can interface with a software-
defined network controller [22, 29] to alter the network.

A static network configuration also limits the visibility of
what is happening on the network. It is not feasible to log
all ingress and egress traffic, so instead, operators are forced
to sample traffic or explicitly configure subsets of traffic to
monitor (e.g., based on a central policy, Ethane could direct
a sub-set of traffic through a proxy [18]). Instead of stat-
ically defining, we need the dynamic ability to alter what
we’re looking at closely at run-time (in response to other
information, such as alerts from firewalls or IDS). Going be-
yond simple re-direction of traffic, we can extend to more
heavy-weight operations. Researchers have proposed mech-
anisms to rewind the network and replay it [37, 28]. Like-
wise, researchers have proposed mechanisms to ensure an
‘accountable virtual machine’ is behaving properly [23]. In
each case, these actions, while useful, are expensive to per-
form. With active security, we have the ability to determine
when these active actions should be run.

3.4 Collect: Actively perform forensics

As part of the response to a potential attack that has been
detected, we need to expose to the software control the abil-
ity to perform forensic evidence gathering in order to under-
stand attacks and attribute it to an individual or organization.
The challenge here is that there are many different sources
of information with a wide diversity of devices — servers,
routers, wireless access points, etc. As such, an extensi-
ble framework to plug-in evidence gathering mechanisms is
needed.

Importantly, this forensic evidence gathering needs to be
performed in a stealthy and non-intrusive manner. There
have been a few research projects which indicate we will be
able to perform the memory gathering in such a manner [32,
14]. We believe memory to be one of the more challenging
sources of evidence to gather in a stealth manner, and believe
other mechanisms will be possible.

3.5 Counter: Initiate reconnaissance and
counter-attack

With an active security infrastructure in place, additional
measures beyond protective measures become possible and
attractive. In particular, we believe additional actions in-
clude reconnaissance and counter attack.

Reconnaissance: As an attack is detected, it may be valu-
able to allow the attack to continue, but monitor the activ-
ity closely. In doing so, we can learn a lot about the at-
tacker such as identity, motive, and techniques. Honeypots
have been used to attract attackers and studied their behav-
ior. With active security, we look to go one step further and
upon detection of a compromised system, effectively turn
that system into one that closely monitors the activity — giv-
ing the attacker the perception that they’re interacting with a
real system when, in reality, it’s a system that records their
actions, decisions, and reactions, giving insight into their
methodology. In particular, we can migrate the malicious
code and its open network connections to a dedicated virtual
machine. With SDN providing control over the forwarding,
we can then isolate any malicious traffic to the quarantined
machine and all other traffic to the original victim machine,
which continues to operate as normal after being cleaned up.

Counter attack: In some cases, the best defense may be to
attack the attacker — e.g., launching a denial of service may
consume all of the attacker’s resources and limit their ability
to continue an attack. We are providing the platform to be
able to gather evidence, potentially during an attack. Once
we gather this information, we can choose to counter the
attack by going after the attacker — e.g., launching a denial-
of-service against the attacking machine.

4. PLATFORM FOR ACTIVE SECURITY

Shown in Figure 1 is the overall architecture of our active
security system (we discuss the security of the framework
itself in Section 7.1). Operators will run (potentially cus-
tomized) software programs to specify the behavior of the
active security. Further, operators will interact with the secu-
rity controller through reports and direct control interfaces.
The controller platform will provide APIs to the program-
mer and a plug-in ability to interface with different types
of devices. This plug-in architecture includes interfaces to
receive information from the sensors, perform forensic ev-
idence collection, and configure the infrastructure — all on-
demand at run-time. There will be an additional interface
to more sophisticated actions, namely reconnaissance and
counter-attack software. Each of these plug-ins interact with
the various devices in the infrastructure.

S. PROTOTYPE

We built an initial prototype to test the feasibility of the
core architecture. This initial prototype supports the mo-
tivating example of in-attack forensics, detailed further in
Section 6. We envision a tight coupling with software-defined

Operator
Interface

Control Platform

Software
Programs

Sense Collect Adjust Counter Plug-ins|
(detection)]|(forensics)|(configure)] | (attack, recon)
|

Controller to infrastructure
Communication channel

I (security End-hosts Network |
I |devices Devices 1
| e.g., IDS, | |e.g., server, e.g., switch, |
| Firewall mart phone Wi-Fi access point 1
L e e e e e e e e e = - - a

Cyber Infrastructure

Figure 1: Platform for Active Security.

networking which provides the programmatic control over
the network devices, and so we chose to integrate within the
FloodLight [6] controller platform rather than run separately
(a decision we can revisit in the future). We extended Flood-
Light to not only control the network, but to also interact
with end-host systems and security middleboxes.

Interaction with an IDS security middlebox: Within our
test implementation, we chose the Snort [8] Intrusion De-
tection System as the source of sensory input to our active
security controller. We parse Snort’s standard alert log with
a middleware Perl script that continually parses the IDS log
looking for alerts. When it discovers an intrusion alert, it
obtains pertinent information from the log output, feeds it as
input to the controller, and activates a controller module —
in this case, a module designed to take a forensic image of
volatile memory.

Interaction with an end-host forensic system: Upon re-
ceiving the trigger from the IDS, our FloodLight module
takes steps to load the Linux Memory Extractor

(LiME) [7] linux kernel module onto the infected end host,
capture a dump of memory, send it back to the controller,
and store it. The controller achieves this by establishing a
secure connection with the victim host, remotely loading the
kernel module, securely copying the resulting image back
to the controller, and removing the kernel module following
transfer of the file. Our controller module loads and unloads
the LiME kernel module through an SSH call, and secure
copies the resulting memory image back to the controller for
later analysis. A hash may be computed at a later time on the
controller’s copy of the image to verify its integrity, trust-
worthiness, and admissibility in court. SSH keys are used to
authenticate the controller’s actions on the victim host. The
controller verifies the fingerprint of the victim’s SSH key on
each connection asserting the authenticity of the victim host.

6. COMPLETE ACTIVE SECURITY EXAM-
PLE

As a complete walk through of an example of active se-
curity in practice, we expand upon the motivating exam-
ple of in-attack volatile memory forensics. Importantly, we
have built and demonstrated this scenario using our proto-
type (discussed in Section 5).

The scenario for this example is an enterprise network
which uses good security practices, uses up-to-date anti-virus
software, has ownership of the devices attached to the net-
work, and can ensure a software configuration of the devices
before allowing the devices onto the network (we discuss
‘bring your own device’ (BYOD) in Section 7.2).

Figure 2 illustrates a small-scale version of a generic net-
work architecture which we used to realize our prototype.
Two directed arrows, depict the path from attacker to vic-
tim, in red, and a purple arrow shows the return path from
victim to attacker, illustrating the attack flow. Our network
consists of a gateway router, which acts as a layer 3 device
separating the internal network from the public Internet and
wireless access points, a network Intrusion Detection Sys-
tem, two OpenFlow switches at the core and access layers,
our active security controller (which is integrated with an
SDN controller to control the network), an Internet proxy
server, and some form of secure storage for evidence preser-
vation and analysis. We will briefly walk through an attack
scenario referencing Figure 1 and the associated time line
detailed in Table 1.

=

Windows Host

Victim Linux Host

Figure 2: Network architecture for the active security
example.

We start with the assumption that the attacker was able
to penetrate the firewall to place an executable on the end
host (e.g., overwriting an existing application), evade the
anti-virus software (e.g., by performing an xor with a bit-
mask), and execute the software on the end host (e.g., by the
user running the executable). In particular, we achieved this
through a client-side exploit, altered the calc.exe executable,

Table 1: Time of events of the example to obtain memory
contents and reconfigure the network.

Time from | Event

start (sec)

0.000 User Executes Malware on client sys-
tem

0.763 Detection by IDS

1.769 Controller Receives alert/activate
mempull FL module

62.483 Volatile Memory Image Complete

124.175 Volatile Memory Transferred to Stor-
age

125.819 Volatility Recovers Network Sockets
and Malware Executable

and were able to evade 31 out of 42 different anti-virus soft-
ware packages we tested with this simple exploit (includ-
ing some popular ones such as AVG, ClamAV, F-Secure,
McAfee, and Sophos).

At time zero, the calc.exe application is executed, and the
TCP socket is immediately established to “call home” and
provide the attacker with a command shell. After less than a
second, Snort IDS detects this anomalous egress traffic and
about one second later, our active security controller is no-
tified of the IDS alert. Our active security controller then
initiates the volatile memory capture module on the host
machine specified by the IDS alert. An SSH connection
is immediately established and the LiME kernel module is
loaded. At this point, LIME immediately images volatile
memory, lasting approximately 60 seconds (for the entire
8GB of memory — in the future, we’ll look at being more
targeted in which memory to grab). Upon completion of
the memory imaging, the image is securely transferred back,
taking 62 seconds. Upon completion of the transfer, we
scripted Volatility to parse several pieces of information from
the memory capture relevant to this example. In particular,
we extracted the decoded executable contents which we can
then analyze offline with the Immunity debugger [2]. We
also extracted a list of open TCP sockets. In this case, there
was an additional TCP connection open that our IDS missed.
While there are many possible things one might do with this
information, we fed it into the FloodLight controller to sim-
ply block the traffic that evaded detection.

Upon detecting this anomalous traffic, the active security
controller has successfully parsed the IDS alert for pertinent
details, delivered this information to a central, active security
controller, and triggered a programmed response to collect
physical memory on the victim client. The key was success-
fully detecting anomalous behavior, successful analysis of
the attack through capturing volatile memory in real-time,
and programmatically analyzing the capture and altering the
network based on its contents.

While we only looked for open network sockets, we also
have the ability to scrape process trees, determine loaded and

unloaded DLLs, inspect session IDs to determine the user
level the attacker attempted to achieve, etc. A substantial
amount of work has been done in the area of examining and
correlating Virtual Address Descriptor (VAD) [19] values,
loaded kernel modules, mutual-exclusive objects, and many
other physical memory artifacts for the purpose of detecting
root kits.

7. DISCUSSION

With our initial prototype to demonstrate the core archi-
tecture, and the working evaluation of a complete scenario,
we have provided concrete examples of the possibilities that
active security brings to help secure network and computing
infrastructures. There, however, remain many open ques-
tion. We discuss a few here.

7.1 Securing the Controller

Active security introduces a software program within a
feedback loop that monitors a networked infrastructure and
takes actions on the infrastructure to better monitor and pro-
tect it. This introduces a new source of vulnerability that
must be dealt with. In particular, (i) the privileged controller
at the center of the control loop, and (ii) the interfaces to
the various actions and sensors in the infrastructure. For the
controller, the upshot is that there is only one (or a few) of
these that need to be protected, and we can narrow our focus
on securing that one system. We believe that much of the
concern can be addressed through a combination of existing
technology such as trusted boot [13], operating systems [26,
27, 20, 38], languages [16, 10, 30], and SDN controllers [17,
33]. For the interfaces, we will make use of network-based
enforcement and monitoring. That is, we plan to investi-
gate an approach that will restrict access to actions/sensors
to those coming from the controller (we can verify the en-
tire path with the underlying programmable network) and
we will monitor/log all message exchanges.

7.2 Deployment (BYOD)

In the running example, we presented a situation where
an enterprise has full control over the end hosts, e.g., being
able to deny the device access to the network without a spe-
cific software configuration. Today, employees want to bring
their own devices to the work place. This bring your own
device (BYOD) challenge is an open issue for enterprises.
Without the ability to run software on end systems (such as
mobile phones), we clearly cannot execute software to, for
example, obtain an snapshot of memory. We can, however,
still actively manage the rest of the security response. For
example, SDN has been applied to be able to isolate personal
devices on a campus network [5]. Further, virtualization is
being introduced as a means to allow employees to bring
their own device, but employers to control the software en-
vironment [11, 4]. It might be possible to leverage that to be
able to execute software on the mobile device without im-
pacting the user’s personal VM.

7.3 Sensory Input, Tools, and Techniques

A well-rounded approach to network security must con-
sider many different vantage points to gain a complete pic-
ture of what is actually happening. At times, this information
can become so complex and often too sensitive that it feels
like looking for a needle in a haystack. Luckily the commu-
nity of security professionals have improved at pruning off
the excess and fine tuning their sensors. Our active security
controller helps take this a step further by using programmed
responses to act on an attack or anomalous traffic in real-time
while attempting to maintain resource availability. The mod-
ular nature of this concept and mechanism also facilitates the
incorporation of virtually any tool or technique. This means
that, even if an organization is confident in the security tools
and products they are using, an active security controller will
enhance their effects, not replace them.

7.4 Beyond the Enterprise

While our example in Section 6 focused on an enterprise
network, active security can extend beyond the scope of en-
terprise networks into the realms of datacenter networks and
web application security. More and more enterprise infras-
tructure is moving to cloud infrastructures, and with it, many
of the same security issues will remain.

One unique aspect of a cloud infrastructure is that the
attackers may be using the same infrastructure as the vic-
tims [21]. The easy to access computing power of hosted
cloud infrastructures has led many attackers to use the cloud
for illicit activity. The challenge previously discussed of
malware cleaning up after itself has a direct analogy that
virtual machines can be spun up and shut down, and leave
virtually no trace. We can envision a cloud provider intro-
ducing a security based API that can be triggered from ten-
ants and access control only available at the provider level —
e.g., the provider is in position to grab a memory dump of a
VM that one tenant suspected as malicious. Of course, this
needs to be further studied to ensure proper privacy and pro-
tection against either putting too much load on the provider
or interfere with the suspected malicious tenant until they are
found to actually be acting maliciously.

8. CONCLUSION

In the face of ever increasing number and complexity of
cyber-attacks, new tools are needed to overcome the limi-
tations of the rigidity of existing security infrastructure. In
this paper we presented a vision for active security which
provides the programmatic control over an infrastructure to
better deal with the changing threat landscape. Using our
prototype, we were able to interface with an IDS system and
upon an alert for anomalous traffic, we collected a dump of
volatile memory from the affected end-host machine which
we then analyzed for information about open files and sock-
ets and information that can be used to detect root-kits in-
stalled by the malware. This is only the first step in provid-
ing an active security system.

9m

(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10]
(1]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

,5[!%}? e!v{vgrﬁge%(%ow SP Threat Management System.

http://www.arbornetworks.com/products/
peakflow/tms.

Immunity debugger. http://www.immunityinc.
com/products—immdbg.shtml.

Solarwinds. http:
//www.solarwinds.com/log-event-manager/
active-response-library.aspx.

VMware Horizon Mobile.
http://www.vmware.com/products/desktop_
virtualization/mobile/overview.html.
Ballarat grammar secures byod with hp sentinel sdn.
http://h20195.www2.hp.com/v2/GetPDF.
aspx/4AA4-T496ENW.pdf, Aug. 2013.

Floodlight. http:/floodlight.openflowhub.org, 2013.

Linux memory extrator.
https://code.google.com/p/lime-forensics/, 2013.

Snort. http://www.snort.org/, 2013.

G. Abelar and D. Tesch. Role of CS-MARS in Your
Network. http://www.ciscopress.com/
articles/article.asp?p=664149, 2006.

D. S. Alexander and J. M. Smith. The Architecture of
ALIEN. In Proc. International Working Conference on
Active Networks (IWAN), 1999.

J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells:
a virtual mobile smartphone architecture. In Proc.
Symposium on Operating Systems Principles (SOSP), 2011.
D. G. Andy Sayler, Eric Keller. Jobber: Automating
inter-tenant trust in the cloud. In Proc. Workshop on Hot
Topics in Cloud Computing (HotCloud), 2013.

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and
reliable bootstrap architecture. In Proc. IEEE Symposium on
Security and Privacy, 1997.

A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C.

Skalsky. Hypersentry: enabling stealthy in-context
measurement of hypervisor integrity. In Proc. ACM
conference on Computer and communications security
(CCS), 2010.

Y. Bartal. Firmato: A novel firewall management toolkit.
Proceedings of the 1999 IEEE Symposium on Security and
Privacy, 22(4):381-420, 2004.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility safety and performance in the spin operating
system. In Proc. symposium on Operating systems principles
(SOSP), 1995.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and

J. Rexford. A NICE way to test OpenFlow applications. In
Proc. Network System Design and Implementation (NSDI),
Apr. 2012.

M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: taking control of the enterprise. In
Proc. SIGCOMM, 2007.

B. Dolan-Gavitt. The VAD tree: A process-eye view of
physical memory. Digital Investigation, 4:62—-64, 2007.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazieres, F. Kaashoek, and

R. Morris. Labels and event processes in the asbestos
operating system. In Proc. symposium on Operating systems
principles (SOSP), 2005.

S. Garfinkel. The criminal cloud.
http://www.technologyreview.com/news/
425770/the-criminal-cloud/, Oct 2011.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,

J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean
slate 4d approach to network control and management.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

[38]

SIGCOMM Comput. Commun. Rev. (CCR), 35(5):41-54,
Oct. 2005.

A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel.
Accountable virtual machines. In Proc. USENIX conference
on Operating systems design and implementation (OSDI),
2010.

J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random
host mutation: transparent moving target defense using
software defined networking. In Proc. Workshop on Hot
topics in software defined networks (HotSDN), 2012.

S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S.
Wang, editors. Moving Target Defense - Creating
Asymmetric Uncertainty for Cyber Threats, volume 54 of
Advances in Information Security. Springer, 2011.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, et al. selL.4: Formal verification of an OS kernel.
In Proc. symposium on Operating systems principles
(SOSP), 2009.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for
standard os abstractions. In Proc. symposium on Operating
systems principles (SOSP), 2007.

C.-C. Lin, M. Caesar, and J. V. der Merwe. Towards
Interactive Debugging for ISP Networks. In ACM Workshop
on Hot Topics in Networks (HotNets), Oct. 2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. (CCR), 38(2), 2008.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: highly compatible and complete spatial memory
safety for c. In Proc. conference on Programming language
design and implementation (PLDI), 2009.

R. Perez-Pena. Universities face a rising barrage of
cyberattacks. http://www.nytimes.com/2013/07/
17/education/barrage-of-cyberattacks\
\-challenges—-campus—culture.html, Jul 2013.
N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A. Arbaugh.
Copilot - a coprocessor-based kernel runtime integrity
monitor. In Proc. USENIX Security Symposium, 2004.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and
G. Gu. A security enforcement kernel for OpenFlow
networks. In Proc. workshop on Hot topics in software
defined networks (HotSDN), 2012.

M. Riley and B. Elgin. Chinas Cyberspies Outwit Model for
Bonds Q. http:
//www.bloomberg.com/news/2013-05-01/
china-cyberspies—-outwit-u-s—-stealing\
\-military-secrets.html, May 2013.

S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and

M. Tyson. Fresco: Modular composable security services for
software-defined networks. In Proc. Network and Distributed
System Security Symposium (NDSS), February 2013.

A. Wool. A quantitative study of firewall configuration
errors. Computer, 37:62-67, 2004.

A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
Ofrewind: enabling record and replay troubleshooting for
networks. In USENIX Annual Technical Conference, 2011.
N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres.
Making information flow explicit in histar. In Proc.
symposium on Operating systems design and implementation
(OSDI), 2006.

